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This supplementary material contains lemmas and a longer version of the proofs.

1 Assumptions

We consider triangular arrays because they are required to derive asymptotic results under the Pitman drift
alternatives. Define X to be the domain of g (-,#) which includes the support of zr,Vt,VT. Let By and Ay
denote compact subsets of R” and R” that contains neighborhoods of 5y and Jy in the parameter spaces B and
A. Finally, let pr, denote the distribution of zr,; and let fip = (1/7) Zthl pr,. Throughout the Appendix,
w.p.a.1l means with probability approaching one; p.s.d. denotes positive semi-definite; ||-|| denotes the Euclidean
norm of a vector or matrix; - and 4 denote respectively convergence in probability and in distribution and
= denotes weak convergence as defined by Pollard (1984, pp. 64-66). Finally, C denotes a generic positive

constant that may differ according to its use.

Assumption 1.1. {x7,:t <T,T > 1} is a triangular array of X-valued rv’s that is L°-near epoch dependent
(NED) on a strong mizing base {Yr; :t = ...,0,1,...;T > 1}, where X is a Borel subset of R*, and {ur,
T > 1} is tight on X!,

Define the smoothed moment conditions as:?2

t—1
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,6 = 35 k{—— —m> 76

0r(0.0) = 3= 3 k(7 ) o omeemi5.0)
m=t—T

for an appropriate kernel and Mr is a bandwidth parameter. From now on, we consider the uniform kernel

proposed by Kitamura and Stutzer (1997):

Kr
1
gtT(ﬁ75) = m m;}( g (-TT,tfmy 6a 6) .

Assumption 1.2. K7/T? -0 and K7 — 00 as T — oo and K1 = O T2 or some n > 13.
p

Assumption 1.3. For some d > max (2,%), {9(zr4,B0,00) : t < T,T > 1} is a triangular array of

mean zero R-valued rv’s that is L*-near epoch dependent of size f% on a strong mizing base {Yr, : t =

cos0,1,..5T > 13, of size —d/(d — 2) and sup ||g (27.t, Bo, do) ||¢ < oc.
Assumption 1.4. Var (ﬁ ZtT:sl g (z7.4, Bos (50)) — sQ Vs € [0,1] for some positive definite ¢ X ¢ matriz 2.

The above assumptions are sufficient to yield weak convergence of the standardized partial sum of the
smoothed moment conditions under the null and the alternatives (see Lemmas 1.1 and 1.2). In the following,

x4 is used to denote x7, for notational simplicity.

1For a definition of LP-near epoch dependence and tightness, see Andrews (1993, p. 829-830). For a presentation of the concept
of near epoch dependence, we refer the reader to Gallant and White (1988) (chapters 3 and 4).

2Note here that g;7 denotes the smoothed moment conditions and x7,¢ a triangular array of random variables.

3This assumption is slightly different than that in Smith, 2011 but facilitates the proofs at no real cost.



Assumption 1.5. § (8o, d0) = 0 with (Bo, ) € B x A where g (Bo, do) = limr_ o Zthl Eg (z¢,8,6) and B and
A are bounded subsets of R" and RY, g(x4, 8,0) is continuous in x for all (8,8) € B x A and is continuous in
(8,0) uniformly over (8,6,2) € B x A x ¢ for all compact sets ( C X.

Assumption 1.6. For every meighborhood ©9 C © of 6y, inf,cg (infee@/eo Hg(G,s)H) > 0 where g(0,s) =
(s9(B1,6)', (1 = $)g(B2,6)")".

Assumption 1.7. (a) p(-) is twice continuously differentiable and concave on its domain, an open interval ®
containing 0, p1 = ps = —1; (b) A(s) € Ap(s) where Ap(s) = {A(s) : | A(s)|| < D (T/((2Kr +1)%) 74} for some

Assumption 1.7 (b) parallels the assumption in Newey and Smith, 2011 and Smith, 2011 but for A(s) =
(N, \y)". Tt specifies bounds on A(s) and with the existence of higher than second moments in Assumption 1.3
leads to the arguments A(s) g;7(6, s) being in the domain ® of p(-) w.p.a.1 in the first subsample for all 51,8
and 1 <¢ < [T's] and in the second subsample for all 82,¢ and [T's] +1 <t < T (see Lemma 1.3).

Under Assumptions 1.1, 1.2, 1.3, 1.5, 1.6 and 1.7, we show for the partial-sample GEL estimator that
supees 107(s) — O B 0, sup,eslAr(s)l B0, [Ar(s)l = O (T/2Kyp +1)2)
sub,cs ||+ X1zt i (O (s), )| = Op(T/2),

The consistency of the full-sample GEL estimator is obtained by slight modifications of Assumptions 1.6 and

and

1.7 (b). Assumption 1.6 must be modified by a simplified version with §(53,9) instead of g(0,s). Assumption
1.7 (b) holds but for the full-sample Lagrange multiplier A. The consistency result that 67 2 6, is then derived
under weaker conditions than in Smith, 2011.

The following high level assumptions are sufficient to derive the weak convergence under the null of the

PS-GEL estimators A7 (s) and Az (s). These assumptions are similar to the ones in Andrews (1993).

Assumption 1.8. sup,cg 1Qur(s) — Q| B 0 where Q is defined in Section 2.1 and S whose closure lies in (0,1)
fori=1,2.

Assumption 1.8 holds under conditions given in Andrews (1991) and Lemma A.3 in Smith, 2011. To respect

these conditions, Assumption 1.3 can be replaced by the following assumption:

Assumption 6.3". {g(z¢,00,00) : t < T,T > 1} is a triangular array of mean zero RZ-valued rv’s that is a-

mixing with mixing coefficients > 72, §2a(j)V=Y/" < oo for some v > 1 and supi<r.r>1E||g (¢, Bo, %) || < 00

for some d > max (41/, %)

Assumptions 6.3’ and 1.8 guarantee for the full-sample and partial-sample GEL that

-~ 2K +1
Or = =

T
> gir(Br, 61)ger(Br, o1)' 5 Q
=1

and

T
Qr(s) = 2555 gur(lr(s), 9)ger (Br(s), ) % s).




Now, let G(3,0) = im0 % 23:1 E[0g(xt,8,6)/0(8,8")] and G = G(So, dp)-

Assumption 1.9. g(x,3,0) is differentiable in (8,0),V (8,0) € By x Ay Va € Xo C X for a Borel measurable
set Xo that satisfies P (z; € Xo) = IVt < T,T > 1, g(x, 5,0) is Borel measurable in x ¥ (5,0) € By x Ao,
9g(xy, 8,0)/0(B',4") is continuous in (x,8,8) on X x By X A,

sup B | sup  [|dg(ae, 8,6)/0(8,8) |V V] < o0
I<t<T | (8,6)€Box Ao
and rank(G) =r+v.
Assumption 1.10. limTﬁoo%Z?:Sl Egr(B,0) exists uniformly over (8,0,s) € B x A x S and equals
slimy_ o0 % ZZ:I Eg(xthvé) = Sg(ﬁ,(S)

Assumption 1.11. limp_, o % ZtT:Sl Edgi1(Bo,00)/0 (8,8") exists uniformly over s € S and equals sG Vs € S

and S whose closure lies in (0,1).

Assumption 1.12. G(s)'Q(s)"1G(s) is nonsingular Vs € S and has eigenvalues bounded away from zero Vs € S

and S whose closure lies in (0,1).

Assumptions 1.10 and 1.11 are asymptotic covariance stationary conditions and follow directly from Eg;r (3, 0)
Eg(x, 8,0) + 0p(1) and Edgyr(Bo, 00)/0 (B',0") = Edg(xy, Bo,00)/0(B',0") 4+ op(1) for the uniform kernel. As-
sumption 1.12 guarantees that the partial-sample GEL estimators éT(s) has a well defined asymptotic variance
Vs € S and holds if G# and G? are full rank.

2 Lemmas

Lemma 2.1. Under Assumptions 1.1 to 1.4, the asymptotic distribution of the smoothed moment conditions

under the null is given by:

Q_1/2
VT =

where B(s) is a q-dimensional vector of standard Brownian motion.

[Ts]
1
— = E 91 (Bo, 00) = B(s),
t=1

Proof of Lemma 2.1

First, under Assumptions 1.1, 1.3 and 1.4 , Lemma A4 in Andrews (1993) implies:

[Ts]

Q2> " g (w1, Bo, 00) = Bls)

t=1
where B(s) is a g-vector of standard Brownian motion.
Second, the smoothed moment condition are defined as:

[Ts] 1 Kr

1
Q12N Tty B0 80) -
i 2 9w o)

mszT



Considering the ”endpoint effect” introduced by the extra K¢ terms, we have:

[Ts] [Ts] min{t—1,Kr}
Z Z xt m7ﬁ0760) = Z g(xtf’m;50750)
t=1 m=—K ZKT - 1 t=1 2KT +1 m=max{t—[Ts],—Kr}
[Ts]— Kr
t+ K
= 9(3%50,50 +Z Tl (¢, Bo, do)
t=Kr+1
. [i] (Ts] —t4 Kbl oo
2KT+1 g\Zt, Po, 00
7[TS]—KT+1
[T's]
= Zg xt750350 +Z 2K +1 xt7ﬁ0750>
(T's]

[TS] —t— KT
+ Z 2KT+]- g('xtvﬁ()aéo)
t=[Ts]—Kr+1

which implies that

[Ts] [Ts]

Zg(mt,ﬂoﬁo thT Bo,do) + Op < Kil).
t=1

Under the Assumptions that max;<;<7 ||g(zt, B, d0)|| = 0, (T*/?) and K2/T — 0, we get
[T's] [T's]

szzg (@, Bo, 6o) = I/Q\FZQtT (B0, d0) + 0p(1)

which yields the asymptotic equivalence.
The following Lemma provides the asymptotic distribution of the smoothed moment condition under the

general sequence of local alternatives appearing in (77).

Lemma 2.2. Under the alternative (77), Assumptions 1.1, 1.2, 1.4 and replacing g(zx+, Bo, do) by g(x+, Bo, do) —
h(n, T, %)/\/T in Assumption 1.3, then
(5]

1
—Q7Y2N " gi0(Bo, 60) = B(s) + Q Y2H(s)
\/T ; tT \ 05 00

where H(s) = [ h(n,7,u)du and B(s) is a q-dimensional vectors of standard Brownian motion.
Proof of Lemma 2.2

Under the alternative (??) and Lemma 2.1, the sample smoothed moments satisfy:

[Ts]

QAT thT Bo, o) — thT Bo,d0) | = B(s)



which implies under the alternative (?7)

[Ts] Kt
TR Z 2KT +1 ;KT (9 (%¢—m, Bo, d0) — W) = B(s),

where h(t/T) = h(n, 7, %) to reduce the notation. Now we need to show

[Ts] Kr

1 h((t—m)/T) -
i — T LS Q7Y2H(s).
Z ZKT 2 Nii (s)
m=—Krp
Let us examine this expression,
[Ts] K [Ts] min{t—1,Kr}
i 1 Z A= m)/T) 1§~ o h((t—m)/T)
\/7 2KT +1 m=—Kr \/T \/T t=1 2KT +1 m=max{t—[Ts],—Kr} \/T
which equals
[Ts]—-Kr Kr [T's]
t+ Kr 1 [Ts] —t+ Kr +1
h(t/T)+ ——h(t/T)+ = h(t/T
Z #/T) Z2KT+1 (/)+T Z 2Kt +1 (#/T)
f Kr+1 =1 t=[Ts]—Kr+1
[TS] Kr (Ts]
) 1Zt—KT—1 1 [TS]—t—KT
72 ————h(t/T)+—= > S ———h(t/T).
T —~ 2Krp+1 T Sy 2Kr +1
The first term of the last equality converges to fo v)dv. Under the assumption that 52 — 0, the 1ast two terms
converge to zero and using /v & YU gir (8o, 80) = 07VT (4 S ger (o, 60) — £ 5 g o, o))+
O V2YTEL S g,1(80, 80), the result follows.
Lemma 2.3. Under the null and Assumptions 1.8 and 1.7,
sup sup IN(s) ger (8,5)| 2 0.

s€S5 9cO,\(s)eAr(s),1<t<T

~

Also w.p.a.1 Ap(s) C Ap (6, s) where Mg (6, 5) = {A(s) = (N}, AL) ¢ A(s) ger (0,8) € @, (t=1,...,T)}.
Proof of Lemma 2.3

We first show that the results hold for both subsambles for a given s. Let Ap(s) = Ayp(s) fort =1,...,[T's])
and Ap(s) = KgT(s) fort =[Ts]+1,...,T). So, we have

sup IA(s) gir (0,5)] < sup |\ger (8,6) |
0c0r AT (s),1<t<T BeB,s€A N €Air(s),1<t<[Ts]
+ sup [Asg: (B, 0) |-

BEB,SEA NaE€Rar(s),[Ts]+1<t<T

Consider the first subsample, by the Cauchy-Schwarz inequality and Assumption 1.7 (b)

—¢
sup Ngir (8,0)] < D(T/@Kr +1)%) sup _|lger (8.6) .
BEB,M €N (s),1<t<[Ts] BEB,S€A,1<t<[T's]



For the last term on the RHS, we get

1 min{t—1,Kr}

sip g (B0 € s——  sup 3 9 (Tt—m, B.5)

BEB,SEA,1<t<[Ts| 2K + 1 geBsen,1<t<[Ts] mmmas{tTs], K}

S Sup ||g ($t75,6) ||
BEB,FeEN,1<t<[Ts]

uniformly in ¢. Using Assumption 1.3 and by Markov’s inequality:

swp g (e 8,0 = O, (T).

BEB,SEA1<t<T

Hence

sup Mg (8,8)] < D(T/2Kr+1)*) "0, (Tl/d) 20
BEB,SEA N €A1 (s),1<t<[Ts]

by Assumption 1.7 (b). This also holds for the second subsample.

Therefore under the null

sup ‘/\llgtT (B,6)| =0
BEB,SEA N ER 7 (s),1<t<[T's]

and Njgir € © for t = 1,...,[Ts] w.p.a.l for all 8 € B, 6 € A which implies that \; € Air (8,0,s). For the

second subsample,

sup \Noger (8,8) | 0
BEB,SEAN2ERar (5),[Ts]+1<t<T

and Mygir € @ for t = [T's]+1,...,T w.p.a.1 for all 8 € B, § € A which implies that Ay € Aoy (8,0,s). Finally,
these results holds uniformly Vs € S.

Lemma 2.4. Under Assumptions 1.1, 1.2, 1.8, 1.5 and 1.10

supsup gz (6, s) — g(6, s)[| = 0

sSES €O
where
T [Ts] T
. 1 g (B 1 0
gr(0,8) == > gr(0,5) = Z += > [ 1
T t=1 t=1 T t=[T's]+1 ger(8,9)
and g(0,s) = (5G(8,9)', (1 - 5)3(8,)')"
Proof of Lemma 2.4
Using ZEFTS} 21 - , the result of the Lemma holds if

R
1
sup sup E l9er(B,6) — §(8,98)]| =
t:l

BEB,JEA TS<RLT



where s = inf{s : s € S}.
By the triangular inequality

sup sup
0€© TS<RLT

Z gir(B,6) — §(B,6)]

R
- > e (5.0) ~ Eger (5.

< sup sup
0€0 TS<RLT

We show that both terms on the right-hand side converge in probability to zero. For the first term, we first
show that Zt Nger(B,8) — Equr(B,6)] = + 2?:1 l9(z¢, 8,0) — Eg(x4, 8,0)] + 0p(1). By the proof similar to
the one in Lemma 2.1, we can show that: % Zf’;l g(x, B,0) = % 25;1 gir(B,0) 4+ 0,(1). This also holds for the
partial sum of the expectation, the result follows. Now using Lemma A3 in Andrews with Assumptions 1.1 and
1.7 guarantees the UWL for supp<p H% Zf‘zl lg(x¢, B,0) — Eg(zy, 5,9)] H This yields

+sup sup
0€© TS<RLT

R
Z Egir(8,6) — (8, 9)]
=1

R
sup sup Z xt76 5 Eg(xt7ﬁ75)]
0€© TS<RLT —
which directly implies
1R
sup sup | [r(8,0) — Eger(B,9)] ‘ 0.
pe0 Ts<Rr<T || 1 i
The second term holds by Assumption 1.10.
Now define
T
~ A(s) gir (0 —
P(@(S),)\(S),S) — Z [P( (8) gtT; ,S)) ;00]
t=1
< [o(, SN IeY 5
_ Z L9¢T 517 — ol 3 [p(N3g¢7 (B2, 0)) — pol
T
t=1 t=[Ts]+1

and gr (6o, s) = % Zthl ger (0o, ).

Lemma 2.5. Under Assumptions 1.8, 1.7 and 1.8, there is a constant C' such that w.p.a.1.

1 A
ﬁsup sup (90,)\(5),5) :supCHgT(eo,s)HQ.
T+ sES )\(S)EAT(OO, ) seS

Proof of Lemma 2.5

By a proof similar to the one of Lemma A.5 in Smith, 20114, we can show that
1

- 2] — 4 2
o1 S P00A(s).5) = Cllgr (o, 9]

A(s)EAT (60,s)

4In his proof, Smith, 2011 uses the fact that (2K + 1) 23:1 02 ().\’gtT(Bo,zSo)> ge7(Bo,80)ger (Bo, 80)' /T 5 —Q in
our notation. This needs more restrictive assumptions than those imposed here. In fact, we only need that (2Kp +
DXL s (A'gtT(ﬁo,ao)) 9:7(B0,80)ge(Bo, 80)' /T < —ClI, in the p.s.d. sense w.p.a.l which holds by the fact that the outer

product of smoothed moment conditions is automatically positive semi-definite.



for a given s € S w.p.a.l. Since this holds for all s € S, this holds for s which achieves the supremum.

2.1 Proofs of Theorems
Proof of Theorem 2.1

The outline of the proof is similar to that of Lemma A.6 and Theorem 2.2 in Smith, 2011 except that the
results have to be established uniformly in s € S and by taking into account of the differences in Assumptions
1.2, 1.3 and 1.7 with respect to the corresponding assumptions in Smith, 2011.

First, we show that sup,cg lgr(07(s), s)||2 = O,(T~1) which allows us to show that sup,g 16(s) — 6o = 0.
By arguments similar to Smith, 2011, we can show that Zthl ger(0r(s), 8)ger (Or(s),s) /T = Op(1). Following
Newey and Smith (2001) and Smith, 2011, let

Ae(Br(s),5) = (Mar(Bur(s), br(5), 5)', Ao (Bar (5), b2 () s )Z—*thT (Or(s). )z /g (0r(s), 5)|

with ki = D (T/(2Kr +1)?)"° and

[TS]

hr(s). Zm Bir(s), 3r(s))kr /llgr (Or(s), )],

>l
—
!
~~
=
=
S
=
“Qﬂ
~
—
V)
~—
N

Il

T
ot (Bar(s), 01 (s),5) = *% > g (Bar(s),6r(s))rr/||gr(Or(s), 9)]

t=[T's]+1

and writing A7 (s) = Ar(07(s), s), Az (s) = Ao (Bir(s), 0r(s), s) and Aar(s) = Aor (Bar(s), o1 (s),

s) to simplify
£) 0 and S\T(S) S AT(éT 8)

the notation. By Lemma 2.3, sup,cg maxj<;<7 |\(s) gir (éT(s),s) ,8) w.p.a.l.

(
. . N . _ . _
Thus, for a given s, Ap(s) = (A’lT, XzT) with Mir = 1A\, 0 <7 <1 and dor = Ao, 0 < < 1

?EII;Z [P2 )\T gtT(éT(S)a s)) — P2(0)] gtT(éT(5)7 S)QtT(éT(S)v s)'/T 50

and therefore sup,c¢(2K1 + 1) Z?:l p2(Ar(5) gir(07(5), 8))ger (Br(s), ) ger (07 (s), ) /T > —Cly, in the p.s.d.
sense w.p.a.l. Hence, by a second-order Taylor expansion

s PO 50(9,9) = = (5 ) rlr(.

_|_

(2KT+1) (Zp2 Ar(s) gir (07(5), 8)gir (07(5), 8)ger (07 (s), )/T> 7(s)/2
(Yoo ) ()

= |lgr(0z(s),s)| <2KKT+ 1) ¢ <2KI;T—&-1)2




w.p.a.l and this holds Vs € S. Now using Lemma 2.5, we get w.p.a.l

2
~ /A KT 1 ~ [ n _
- - < [E—
sup 97 (97 (s), >||< +1) C<2KT+1) < s g P (0r(s), A0 (s),5)

1 o~/
< sup sup ——— P (07(s), A(s), s)
S€5 (s)ehr(dr(s),s) 2KT 1 (
1 -
< sup  sup mp (00, A(s), 5)

sES )\(S)G[A\T(Qo,s)
< Sugo\|§T(9075)H2 =0, (T71)
se

as ||gr (6o, s)|| = O,(T~/2) by CLT (Corollary 3.1 of Wooldridge and White, 1988). This yields

~ /A RT A 2 RT
< A — | = 2K 1
EIEIEHQT(QT(s)vS)H < C<2KT+1> +§16120||9T(90,8)|I (2KT+1) Op (kr/(2Kr +1)),

which implies sup,cg [|§7(0r(s),s)| = O,(T~1/2) by Assumption 1.2 for all > 1. By the result that
SUD,cg g7 (07 (s), s|| = O,(T~'/2) we have sup,. g gr(07(s), s) & 0. By Lemma 2.4, SUPycg SUPgeo |97 (0, ) —
9(8,5)|| & 0and (8, §) is continuous by Assumption 1.5. The triangular inequality then gives that sup,cg g(07(s),s) B
0. Since g(3,0) = 0 has a unique zero at Sy and dy (by Assumption 1.6), for every neighborhood ©¢(€ O) of
0o, infses (infge o, [l9(0, s)||) > 0, then sup,g 162 (s) — 6ol 2 0.

Now we need to show sup,cg Az (s)]| = Op ((T/(QK + 1)2)*1/2)and SUP,cg [Ar(s)| & 0. By a second-
order Taylor expansion around A(s) = 0, for a given s € S and for any Ar(s) = (XlT,)\’QT)/ with \jp =
TiAir,0 <7 < 1and Aor = mdor, 0 <7 < 1

(2Kr +1)P (éT( ), 0,3) < sup  (2Kr +1)P (éT(s),A(s),s>

A(s)EAT (07 (s),s)

(2K + 1)P(Or(s), Ar(s), 5)

—(2K7 + 1D)Ar(s) gr(07(s), s)
T

Ar(s) ((2KT +1)> " pa(Ar(s) gir (01 (s), 8))§tT(éT(S)»S)QtT(éT(S)»S)’/T> Ar(s)/2

t=1

IN

_|_

IN

—(2K7 + DAr(s) g7 (01 (s), s) — CAr(s) Ar(s)
< @2Kr + D[ Ar(s)llgrBr(s), s)ll = CllAr ()|

w.p.a.l. Since P (éT(s),o, s) — 0,Vs € S, this implies directly that C|Ar(s)| < (2K + 1)[§r(6r(s), s)|| and
this holds for all s € S which implies that sup,cg C||Ar(s)|| < sup,eg(2Kr + 1)||gr (07 (s), s)||. Finally, consid-
ering that sup,cg g7 (07(s), s)|| = O,(T~1/2) directly yields that sup,.g IAr(s)]| = Op {(T/(?KT + 1)2)71/2}
and sup,g ||[Ar(s)|| = 0 by Assumption 1.2.

Proof of Theorem 2.2

10



The first-order conditions of the partial-sample GEL with respect to A(s) and 6(s) are:

’ﬂ \

T
Z ) ger (6 0 7(s), 5))gtT(éT($),8) =0

Z ) gi(07(5), 8))Gir (07 (s), 8) Ar(s) = 0.

'ﬂ \

By a mean-value expansion of the former first-order conditions for the partial-sample GEL where

N N A N X N/
Er = (ﬁlT(s)/»B2T(5)/75T(S)I7 ;}(TT(i)l, ;?T(j’)l) and Zo = (85, 85, 0h,0,0)" with the latter first-order conditions

yields:
_ _pl/2 0 T2 (B o
" ' ( %ZtT:lgtT(eo,S) ) +M(s)T ( 7(s) 0)
where
1
== t_zl
with Mia(s) = pr (Ar(s) ger (Br(s).9)) Ger(Or(s). 8. Mon(s) = pr (Ar(s) ger (Br(s).5)) Ger (Br(s). ) and
el = (Hr e <5\T(S),gtT(éT(s)’8)) 9ir(07(5), 8)ger (O (s), s)" and f7(s) is a random vector on the

line segment joining f7(s) and 6y and Ap(s) is a random vector joining Ar(s) to (0/,0') that may differ from

Mlg(s) ]
Mgl(s) MQQ(S)

row to row.

Now, we need to show that M (s) 2 M(s) where

By Lemma 2.3; sup,cgSup;<;<r IAr(s) ger (Or(s), s)| 2 0 and sup,g sup) <y<1 |Ar(8) ger (01 (s), )| 20
which implies

B I ) o P,
sup max oy (Ar(s)'gur (Br(s),5)) = ()] % 0

sup max |1 (7 (8)’gtT(éT(s),s)> -mO)] 5 o0
ses 1st<

ZEIS)T ;Pl (5\ (s) ger (Or(s) )) Gir(07(s),s) B —G(s)
and
T o ~ A~
sup 73 o1 (A9 Br(6).9)) G Or().) 2 G,



it remains to show that

1 & _ »
sup || 7 ;GtT(GT(S), s) = G(s)|| 50 (1)
and
1 — A »
Zlelg T ; Ger(0r(s),s) — G(s)|| = 0. (2)

IN

1 & _ 1< _
sup || ; Gir(0r(s),5) = E ; Gir(07(s), 5)

seS

T T
1 _ 1
+ sup ETZ;GtT(é)T(s),s) —E?;Gtgp(eo,s)

ses

T
1
+ sup ET;GtT(Qo,S)—G(S)

ses

The first term on the right-hand side - 0 by an application of UWL given by Lemma A3 in Andrews (1993)

which implies

sup sup
seS €O

ZGtTﬁs ZGtMs

The second term > 0 under the tightness of {fip; T > 1} (Assumption 1.1), Assumption 1.9 and 67 (s) = 6
(see equations A.13 and A.14 in Andrews, 1993). Finally, the third term % 0 by Assumption 1.11 and by
* gél] % =1 gél] Guyr(5,9) + 0p(1). The proof for (2) is similar.

Moreover, Assumptions 1.8 implies that

(T's]
2Kr +1
Ti thT Bir,01)ger (Bir, or) 5 sQ

and
2K +1 : = WA
—_— Z gir (Bar, 07) gt (Bar, 07)" = (1 — 5)Q2
t=[T's]+1
which yields
2Ky +1 e~ [+ A _ .
== 02 (M) 9er (Or(5), ) ) 9er (O (), 8)9er (Or (5), 5)' 5 ().
t=1
By Assumption 1.12, this gives
) H
M(S)—l _ (5) (5)
H(s)"  P(s)




where 2

) = (G(sYQs) 1 G(5)) ', H(s) = X(s)G(s)'Q(s) "  and P(s) = Q(s) 1= Qs) "1 G(5)5(s) G(s) Q(s) L.

(s
As M (s) is positive definite w.p.a.1, we obtain:

S
0
S
O
|
[
N
Il

T
—N(s) <0, —\/T% > ger(fo, 8)’) + 0p(1)
T
= —(H(s),P(s)) \/f% S ger (80, 5) + 0p(1).

We also have by Lemma 2.1, % Zthl gir (6o, s) = J(s) for s € S. Combining the results above yields:

A / -1 -1 / -1 1
VT (0r(s) = 6) = —(G()'2s)7G(5)) ™ Gls)'s) ﬁ;gﬂ(eo,s)ﬂpa)
= —(G(s)Q>s) " G(s)) T G(s)Qs) 1T (5)
and
T
2KT\/T+1A (s) = —(Q—l(s)—Q_l(S)G(s) (G(s)/Q(S)_la(S))_lG(S)’Q(s)_l)\/]-th_;gtT(ao, ) +op(1)

Proof of Theorem 2.3

This is a direct implication of Lemma 2.2 and the proof of Theorem ?77.

Proof of Theorem 3.1

Using results derived above, we get for terms in the Wald statistic:

[Ts] ~ A
~ 1 6g(xt761T(8>75T(8))
GP (s) = — + 0,(1),
l,tT( ) [TS] ; aﬂi P( )
T ~ A
A 1 09(¢, Bar(s), 67(s))
B -t g\ Tt
GQ,tT(S) - T — [TS] Z 8185 + OP(]'))
t=[Ts]+1
Qir(s) B (s), Qar(s) B Qa(s)
and terms in the LM statistic
[T's]
ar(0r,5) = fZ 91, Br, 07) + 0p(1),
T
-~ xtaBTvaT)
GET = T z:: aﬂ/ + O;U(l)7
Qr 5 Q.



The asymptotic distributions for the Waldr(s) and LMy (s) under the null can then be directly derived using the
expressions above from similar arguments than in the proof of Theorem 3 in Andrews (1993). The asymptotic
distribution under the alternative is a direct implication of Theorem ??. For the LRr(s) statistic, expanding

the partial-sample GEL objective function evaluated at the unrestricted estimator about A = 0 yields,

& ; T 1 s ,
2KT+1 Z:: s) ger(0r(s),s) = —mT;AT(QT(S)J) gir(07(s),s) —
P DRUCICRIACIC R RO
+ 0p(1)

since p1(-) & —1 and po() B —1.
By the fact that Qp(s) = 2K+l Zthl ger(07(s), $)ger (Or(s), s) is a consistent estimator of Q(s) and by
VT/@2Kr + DAr(s) = —Qs) 7! = S, gir(0r(s), 5)) + 0p(1), we get

T
T Z ) gur (Br(5), 9)) = Tgr(0r(s), 5 2s) " gr(Br(s). ) + 0,(1),

Similarly, the expansion of the partial-sample GEL objective function but evaluated at the restricted estimator

yields:

2T

WT ZP )\T 9T, ) gtT(éT, 3)) = TgT(éTa 3)/9(3)719T(9~T, S) + Op(l)

since that Qp(s) = 2K+l Zthl gir (07, $)ger (07, 5)' is a consistent estimator of Q(s) under the null. The
LRr(s) is then asymptotically equivalent to the LR statistic defined in Andrews (1993) for the standard GMM.

Proof of Theorem 3.3

First, for the statistic Or(s), the asymptotic equivalence between ngl} ger (Brr(s)) with
ngl} g(zt, Brr(s)) and ZtT:[TsHl ger (Bar(s)) with ZtT:[TS]H g(x¢, Bor(s)) is a direct implication of the Lemmas
2.1 and 2.2 and by the asymptotic consistency of the estimator Qy7(s) and Qar(s) for €, the result under the
null and alternative follows directly from proofs for Theorems ?? and ?? and subsection A.2 in Hall and Sen
(1999).

Second, for the statistic O7(s)“FL, as in the proof of Theorem 3.2, we can show that:

Q[Ts] [T's] [p(qu(BU"(S),S)/gtT(/élT(S))) - PO} B
2Ky + 1 ; [Ts] ooty

and

2T — [Ts]) i [p(Gar(Bar (s), 5) ger (Bar (5)) — po]

2hr+1 = T — [Ts]

= OQT(S) =+ Op(l).
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The asymptotic distribution under the null and the alternative follows directly.

Finally, for the statistic LM (s), the have the following asymptotic equivalences:

[TS] R . [Ts]

mkn(ﬂm(s), s) = —Q(s)"Y([Ts])~V? ;gtT(31T(s)) +0,(1)
T —[Ts] - . B T A
mAzT(ﬂzT(s), s) = —Qs)"HT —[Ts])/? t_[TZS]H gir(Bar () + 0p(1)

which implies directly the asymptotic distribution of this statistic under the null and the alternative.

Proof of Theorem 3.4

Since 9~T(s) minimizes the restricted partial sample GEL for all s € S, this implies for all s € .S and all T,
P(0r(s), Ar(0r(s),5) < P60, Ar(0r(s), 5). ).

The limit for P(f7(s), \r(67(s), s), s) is then bounded by the limit of P(6g, Ar(6r(s), s),s). Let Ap(6o,s) =
AX, R (0o,5) P(Qo,/\( ) s) and /\T( ) = T:\T(S), 0 < 7 < 1. Thus, ﬁ(éT(s),j\T(gT(s),s),s)
< P(8o, Ar(07(s), s),s) < P(6, \r(6o,s),s). By a second-order Taylor expansion with Lagrange remainder
and using (2K + 1) Z p2(A(s) ger (00, 9))ger (B0, 8)gerbo, s) /T B —Q(s),

~ li
1 Fay S _ )\T(HOaS) ~
SKr T 1P(90,>\T(90,5)’5) = - <2KT+ 1 gr (0o, s)

<;\}F{T00jr 1) <Z P2 ()\T ) ger (0o, 3)) gtT(9075)gtT(9075)//T> Ar (6o, 5)/2

91(00,5)' Q)" g1 ((00, ) — g7 (00, 5)'Us) ™ 9700, 5)/2 + 0,(1)
91(00,5)'Q(s) " g7 (00, 5)/2 + 0p(1)

arg max

+

w.p.a.1 where the second equality holds by ﬁS\T(ﬁo, s) = —Q(s)"'gr (0o, s) + 0p(1). The asymptotic dis-
tribution of the statistic 2;T+1P(9T(s)75\T(0~T(s),s),s) is then asymptotically bounded for all s € S by the
asymptotic distribution of T'gr (0o, s)'2(s) 197 (0o, s). By using Lemma 2.1, the result under the null fol-
lows. Lemma 2.2 yields the asymptotic distribution under the alternative. The equivalence for the statistic
LMFE(07(s), s) is straightforward to show.

Proof of Theorem 3.5

To prove this Theorem, additional assumptions are needed. Let

T /
(fo) = lim var( Z 9t(Bo)  vee(Gy(Bo)) ))
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a (q+ qr) x (¢ + gr) positive semi-definite symmetric matrix and

| 2B Qa(Bo)
H(fo) Qag(B0) Qac(Bo)

where Q,c(80) = Qaq(Bo) is a (¢ X ¢gr) matrix and Qea(Bo) is a (¢r x gr) matrix.

We define the estimators under the null of no structural change

(7]
Sur(Bor 5) = % S (o) vec(Gu(B0))) (9e(Bo)', vec(Gi(Bo) — EGur(5))')
T
Sor(Bo, ) = ;K_T[;Sl} Z (gt(Bo)’wec(Gt(Bo))’)/ (g:(00)",vec(Gi(Bo) — EGyr(Bo))’) -
t=[Ts]+1

Assumption 6.8’. Under the true value of the parameters 6, sup,cg (227 (Bo, 8) — 2(Bo]| & 0 with S whose
closure lies in (0, 1) for i = 1, 2.

Assumption 6.3”. Under the true value of the parameters 6y, {g (z7+, B0) , vec (G (xt, Bo) — EG (x4, Bo)) :
t < T,T > 1} is a triangular array of mean zero R%-valued rv’s that is a-mixing with mixing coefficients
14

Z;’;l §2a(§)» /" < oo for some v > 1 with supr<t r>1E|g (211, Bo) | < 00 and supi<r r>1E||G (214, Bo) |4 <

oo for some d > max (4y, %)

Assumptions 6.3” and 6.8’ guarantee for the restricted partial-sample GEL that

(Ts)
Octgar(Bor ) = oL S vee (Gor (o)) ger(Bo)' & 59y (o), (3)
t=1
T
Qagor(B08) = ot L 3™ vee(Gur(60)) ger (o) % (1= )2, (Bo), (4)
t=[Ts]+1
and
A oK +1 22 -
Qaar(fo, s) = =—5— > _vec(Gir(Bo)) vee (Gir — EGir(Bo)’ = sQaa (o),
t=1
) 2K +1 ) p
Qac2r(Bo, 8) = Z vec (Gyr(Bo)) vee (Gir(Bo) — EGir(Bo)) = (1 — 5)Qaa(Bo)-
t=[T's]+1

Lemma 2.1 can be shown for the derivatives of the smoothed moment conditions under Assumptions 1.1,
1.2, 6.3" and 6.8 as shown for the smoothed moment conditions. Thus, the asymptotic distribution of the
derivatives of the centered smoothed moment conditions under the null is given by:

(Ts]

77 2 vee (Gar ()~ BGer(50) = O0(30)* B4 (5)
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where By,(s) is a gr-dimensional vector of standard Brownian motion. Using Lemma 2.1, this yields for the
whole vector (g:7(80)’, (vec(Gyr(Bo) — EGer(B0)))")’

[Ts]

T2 (ger (o), (vec(Ger(Bo) — EGrr(60)))') = £(50)"/*Bysqr (s) (6)

t=1
where Bg(s) is a ((g + gr) x 1)-vector of standard Brownian motion.
We also need the following assumptions:

Assumption 2.1. Suppose Assumption 1.9 but for 0g(x,8)/08; fori=1,...,r

Let DlT(ﬂo, 5) = {bl,lT(BOaS)aEQ,lT(BOaS)a ey Dyir(Bo, 8)| with D 17(B,5) =

7 Zt 1 pl()\lT(ﬁ, $)'gi7(B))Givr(B,s) for i = 1,...,p and respectively for Dar(Bo,s). By a Taylor expansion
of Dz,lT(ﬁo, s) and Di72T(607 s) around 5\1T(30, s) =0 and 5\2T(607 s) = 0 respectively yields

[Tg (T's] [T's]
. 2K + 1 l
Diar(Bo,s) = — ZGz vr(Bo) + ZGZ e7(B0)ger (Bo) Qur (Bo, 5) ZQtT Bo) + op(1)
T T T
R 1 2K +1 A _ 1
D;or(Bo, s) = 7 Z Gir(Bo) + Z G (Bo)ger(Bo) Qar(Bo, s) lT ~[T5] Z ger(Bo) + 0p(1)
t=[T's]+1 t=[T's]+1 t=[T's]+1

using ﬁj\m(ﬁo,s) = —i7(Bo, 5) 7 Dl S ger(Bo) + 0p(1) and ﬁj\zT(ﬂo,S) =
— Qa1 (B0, 8) 7=ty Sirspi1 9er (Bo) + 0p(1) with sup,esmaxi<i<r |p2(Air(Bo, ) gir (B0)) — p2(0)] & 0 for
i=1,2.

Using (3), (4), (5), (6), Lemma 1.1 and with G(5p) = limy_, {T*I Zthl GtT(BO):|; we obtain that

I, 0 ] l \f ngl] gir(Bo) ]
— 2L ST vee (Gur(Bo)) gur (Bo) ar(Bo) ™1 Iy &= S vee (Gir(Bo) — EGur(80)

Q(B0) /2By (s) ]

T (DlT(BOa 5) — SG(ﬁo)) Qp(B0)'/2Bs.1(s)

L5 gur(8) ]

with QD(ﬂ0)1/232,1(8) = QGG(ﬁO)l/ B ( ) - QGg(ﬁO) (BO>_1Q(50)1/2Bq(S)7 QD(ﬂO) =
Qcc(Bo) — Qag(Bo)Q(Bo)  *Qaq(Bo) and B i(s)
of G(By). Thus, G(Bp) can be of full rank value, weak value such that Gr(8y) = T1/2 for ¢ x r matrix C or

is independent of B,(s). This result is true for any value

G(Bo) = 0 in the case of no identification.
This implies that

VT (Dur(Bo,5) = sG(fo) ) = —Qp(5)"/*B2a(s)

and

VT (Dar(Bo. ) = (1= )G (5) ) = ~Q(50)/*(Baa (1) = Baa(s)).
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Since D17(Bo,s) and Dar(fBo, s) are respectively independent of Zthl] gir(Bo) and 7 ZtT:[TS]H g1t (Bo)

this yields

. (T
(Buroy ur () Dir(0)) ™ Drr(Bo/ur (o)™ 7 3 o (80) = B @
and
(ﬁzT(ﬁo)/QzT(50)_1/21§2T(ﬂ0))7 Dar (o) Q2r(Bo) 1\/1T Z gr(Bo) = Br(1) — By (s) (8)
t=[Ts]+1

where B,.(s) is a r-vector of standard Brownian motion.

~ ~ ~ !/
Since 0k 1(s) = (BK,T(S)/, ﬁK,T(s)’> minimize the objective function

KGELr(s) = K1T(5K7T(s)7 5) + K2T(BK7T(s)a s5) < Kir(Bo, s) + Kot (5o, 5)
for all s € S and all T. The result follows directly under the null. The derivation under the alternative can be
easily obtained. The proof for KLMZE(s) is straightforward considering that

[Ts]

VT/(2Kr + 1)\i7(8,8) = —up(B \F thT )+ op(1),

and
VT/@Kr + Dsr(B,5) = —fzmm% t_%ﬂgw(m +0,(1).
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