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This supplementary material contains lemmas and a longer version of the proofs.

1 Assumptions

We consider triangular arrays because they are required to derive asymptotic results under the Pitman drift

alternatives. Define X to be the domain of g (·, θ) which includes the support of xT,t,∀t, ∀T . Let B0 and ∆0

denote compact subsets of Rr and Rν that contains neighborhoods of β0 and δ0 in the parameter spaces B and

∆. Finally, let µT,t denote the distribution of xT,t and let µ̄T = (1/T )
∑T
t=1 µT,t. Throughout the Appendix,

w.p.a.1 means with probability approaching one; p.s.d. denotes positive semi-definite; ‖·‖ denotes the Euclidean

norm of a vector or matrix;
p→ and

d→ denote respectively convergence in probability and in distribution and

⇒ denotes weak convergence as defined by Pollard (1984, pp. 64-66). Finally, C denotes a generic positive

constant that may differ according to its use.

Assumption 1.1. {xT,t : t ≤ T, T ≥ 1} is a triangular array of X-valued rv’s that is L0-near epoch dependent

(NED) on a strong mixing base {YT,t : t = . . . , 0, 1, . . . ;T ≥ 1}, where X is a Borel subset of Rk, and {µT,t :

T ≥ 1} is tight on X1.

Define the smoothed moment conditions as:2

gtT (β, δ) =
1

MT

t−1∑
m=t−T

k

(
m

MT

)
g (xT,t−m, β, δ)

for an appropriate kernel and MT is a bandwidth parameter. From now on, we consider the uniform kernel

proposed by Kitamura and Stutzer (1997):

gtT (β, δ) =
1

2KT + 1

KT∑
m=−KT

g (xT,t−m, β, δ) .

Assumption 1.2. KT /T
2 → 0 and KT →∞ as T →∞ and KT = Op

(
T

1
2η

)
for some η > 13.

Assumption 1.3. For some d > max
(

2, 2η
η−1

)
, {g (xT,t, β0, δ0) : t ≤ T, T ≥ 1} is a triangular array of

mean zero Rq-valued rv’s that is L2-near epoch dependent of size − 1
2 on a strong mixing base {YT,t : t =

. . . , 0, 1, . . . ;T ≥ 1}, of size −d/(d− 2) and sup ‖g (xT,t, β0, δ0) ‖d <∞.

Assumption 1.4. V ar
(

1√
T

∑Ts
t=1 g (xT,t, β0, δ0)

)
→ sΩ ∀s ∈ [0, 1] for some positive definite q × q matrix Ω.

The above assumptions are sufficient to yield weak convergence of the standardized partial sum of the

smoothed moment conditions under the null and the alternatives (see Lemmas 1.1 and 1.2). In the following,

xt is used to denote xT,t for notational simplicity.

1For a definition of Lp-near epoch dependence and tightness, see Andrews (1993, p. 829-830). For a presentation of the concept

of near epoch dependence, we refer the reader to Gallant and White (1988) (chapters 3 and 4).
2Note here that gtT denotes the smoothed moment conditions and xT,t a triangular array of random variables.
3This assumption is slightly different than that in Smith, 2011 but facilitates the proofs at no real cost.
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Assumption 1.5. g̃ (β0, δ0) = 0 with (β0, δ0) ∈ B×∆ where g̃ (β0, δ0) = limT→∞
∑T
t=1Eg (xt, β, δ) and B and

∆ are bounded subsets of Rr and Rν , g(xt, β, δ) is continuous in x for all (β, δ) ∈ B ×∆ and is continuous in

(β, δ) uniformly over (β, δ, x) ∈ B ×∆× ζ for all compact sets ζ ⊂ X.

Assumption 1.6. For every neighborhood Θ0 ⊂ Θ of θ0, infs∈S
(
infθ∈Θ/Θ0

‖g(θ, s)‖
)
> 0 where g(θ, s) =

(sg̃(β1, δ)
′, (1− s)g̃(β2, δ)

′)
′
.

Assumption 1.7. (a) ρ(·) is twice continuously differentiable and concave on its domain, an open interval Φ

containing 0, ρ1 = ρ2 = −1; (b) λ(s) ∈ Λ̂T (s) where Λ̂T (s) = {λ(s) : ‖λ(s)‖ ≤ D
(
T/((2KT + 1)2

)−ζ} for some

D > 0 with 1
2 > ζ > 1

d(1−1/η) .

Assumption 1.7 (b) parallels the assumption in Newey and Smith, 2011 and Smith, 2011 but for λ(s) =

(λ′1, λ
′
2)
′
. It specifies bounds on λ(s) and with the existence of higher than second moments in Assumption 1.3

leads to the arguments λ(s)′gtT (θ, s) being in the domain Φ of ρ(·) w.p.a.1 in the first subsample for all β1, δ

and 1 ≤ t ≤ [Ts] and in the second subsample for all β2, δ and [Ts] + 1 ≤ t ≤ T (see Lemma 1.3).

Under Assumptions 1.1, 1.2, 1.3, 1.5, 1.6 and 1.7, we show for the partial-sample GEL estimator that

sups∈S ‖θ̂T (s) − θ0‖
p→ 0, sups∈S ‖λ̂T (s)‖ p→ 0, ‖λ̂T (s)‖ = Op

(
T/(2KT + 1)2

)−1/2
and

sups∈S ‖ 1
T

∑T
t=1 gtT (θ̂T (s), s)‖ = Op(T

−1/2).

The consistency of the full-sample GEL estimator is obtained by slight modifications of Assumptions 1.6 and

1.7 (b). Assumption 1.6 must be modified by a simplified version with g̃(β, δ) instead of g(θ, s). Assumption

1.7 (b) holds but for the full-sample Lagrange multiplier λ. The consistency result that θ̃T
p→ θ0 is then derived

under weaker conditions than in Smith, 2011.

The following high level assumptions are sufficient to derive the weak convergence under the null of the

PS-GEL estimators θ̂T (s) and λ̂T (s). These assumptions are similar to the ones in Andrews (1993).

Assumption 1.8. sups∈S ‖Ω̂iT (s)−Ω‖ p→ 0 where Ω is defined in Section 2.1 and S whose closure lies in (0, 1)

for i = 1, 2.

Assumption 1.8 holds under conditions given in Andrews (1991) and Lemma A.3 in Smith, 2011. To respect

these conditions, Assumption 1.3 can be replaced by the following assumption:

Assumption 6.3′. {g (xt, β0, δ0) : t ≤ T, T ≥ 1} is a triangular array of mean zero Rq-valued rv’s that is α-

mixing with mixing coefficients
∑∞
j=1 j

2α(j)(ν−1)/ν <∞ for some ν > 1 and supt≤T,T≥1E‖g (xt, β0, δ0) ‖d <∞
for some d > max

(
4ν, 2η

η−1

)
.

Assumptions 6.3′ and 1.8 guarantee for the full-sample and partial-sample GEL that

Ω̃T =
2K + 1

T

T∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′
p→ Ω

and

Ω̂T (s) =
2K + 1

T

T∑
t=1

gtT (θ̂T (s), s)gtT (θ̂T (s), s)′
p→ Ω(s).
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Now, let G(β, δ) = limT→∞
1
T

∑T
t=1E [∂g(xt, β, δ)/∂ (β′, δ′)] and G = G(β0, δ0).

Assumption 1.9. g(x, β, δ) is differentiable in (β, δ) ,∀ (β, δ) ∈ B0 ×∆0 ∀x ∈ X0 ⊂ X for a Borel measurable

set X0 that satisfies P (xt ∈ X0) = 1∀t ≤ T, T ≥ 1, g(x, β, δ) is Borel measurable in x ∀ (β, δ) ∈ B0 × ∆0,

∂g(xt, β, δ)/∂ (β′, δ′) is continuous in (x, β, δ) on X×B0 ×∆0,

sup
1≤t≤T

E

[
sup

(β,δ)∈B0×∆0

‖∂g(xt, β, δ)/∂ (β′, δ′) ‖d/(d−1)

]
<∞

and rank(G) = r + ν.

Assumption 1.10. limT→∞
1
T

∑Ts
t=1EgtT (β, δ) exists uniformly over (β, δ, s) ∈ B × ∆ × S and equals

s limT→∞
1
T

∑T
t=1Eg(xt, β, δ) = sg̃(β, δ).

Assumption 1.11. limT→∞
1
T

∑Ts
t=1E∂gtT (β0, δ0)/∂ (β′, δ′) exists uniformly over s ∈ S and equals sG ∀s ∈ S

and S whose closure lies in (0, 1).

Assumption 1.12. G(s)′Ω(s)−1G(s) is nonsingular ∀s ∈ S and has eigenvalues bounded away from zero ∀s ∈ S
and S whose closure lies in (0, 1).

Assumptions 1.10 and 1.11 are asymptotic covariance stationary conditions and follow directly from EgtT (β, δ) =

Eg(xt, β, δ) + op(1) and E∂gtT (β0, δ0)/∂ (β′, δ′) = E∂g(xt, β0, δ0)/∂ (β′, δ′) + op(1) for the uniform kernel. As-

sumption 1.12 guarantees that the partial-sample GEL estimators θ̂T (s) has a well defined asymptotic variance

∀s ∈ S and holds if Gβ and Gδ are full rank.

2 Lemmas

Lemma 2.1. Under Assumptions 1.1 to 1.4, the asymptotic distribution of the smoothed moment conditions

under the null is given by:

Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β0, δ0)⇒ B(s),

where B(s) is a q-dimensional vector of standard Brownian motion.

Proof of Lemma 2.1

First, under Assumptions 1.1, 1.3 and 1.4 , Lemma A4 in Andrews (1993) implies:

Ω−1/2

[Ts]∑
t=1

g (xt, β0, δ0)⇒ B(s)

where B(s) is a q-vector of standard Brownian motion.

Second, the smoothed moment condition are defined as:

Ω−1/2 1√
T

[Ts]∑
t=1

1

2KT + 1

KT∑
m=−KT

g (xt−m, β0, δ0) .
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Considering the ”endpoint effect” introduced by the extra KT terms, we have:

[Ts]∑
t=1

KT∑
m=−KT

1

2KT + 1
g (xt−m, β0, δ0) =

[Ts]∑
t=1

1

2KT + 1

min{t−1,KT }∑
m=max{t−[Ts],−KT }

g (xt−m, β0, δ0)

=

[Ts]−KT∑
t=KT+1

g(xt, β0, δ0) +

KT∑
t=1

t+KT

2KT + 1
g(xt, β0, δ0)

+

[Ts]∑
t=[Ts]−KT+1

[Ts]− t+KT + 1

2KT + 1
g(xt, β0, δ0)

=

[Ts]∑
t=1

g(xt, β0, δ0) +

KT∑
t=1

t−KT − 1

2KT + 1
g(xt, β0, δ0)

+

[Ts]∑
t=[Ts]−KT+1

[Ts]− t−KT

2KT + 1
g(xt, β0, δ0)

which implies that

[Ts]∑
t=1

g (xt, β0, δ0) =

[Ts]∑
t=1

gtT (β0, δ0) +Op

(
K2
T

2KT + 1

)
.

Under the Assumptions that max1≤t≤T ‖g(xt, β0, δ0)‖ = op(T
1/2) and K2

T /T → 0, we get

Ω−1/2 1√
T

[Ts]∑
t=1

g (xt, β0, δ0) = Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β0, δ0) + op(1)

which yields the asymptotic equivalence.

The following Lemma provides the asymptotic distribution of the smoothed moment condition under the

general sequence of local alternatives appearing in (??).

Lemma 2.2. Under the alternative (??), Assumptions 1.1, 1.2, 1.4 and replacing g(xt, β0, δ0) by g(xt, β0, δ0)−
h(η, τ, tT )/

√
T in Assumption 1.3, then

1√
T

Ω−1/2

[Ts]∑
t=1

gtT (β0, δ0)⇒ B(s) + Ω−1/2H(s)

where H(s) =
∫ s

0
h(η, τ, u)du and B(s) is a q-dimensional vectors of standard Brownian motion.

Proof of Lemma 2.2

Under the alternative (??) and Lemma 2.1, the sample smoothed moments satisfy:

Ω−1/2
√
T

 1

T

[Ts]∑
t=1

gtT (β0, δ0)− E 1

T

[Ts]∑
t=1

gtT (β0, δ0)

⇒ B(s)
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which implies under the alternative (??)

Ω−1/2 1√
T

[Ts]∑
t=1

1

2KT + 1

KT∑
m=−KT

(
g (xt−m, β0, δ0)− h ((t−m)/T )√

T

)
⇒ B(s),

where h(t/T ) ≡ h(η, τ, tT ) to reduce the notation. Now we need to show

Ω−1/2 1√
T

[Ts]∑
t=1

1

2KT + 1

KT∑
m=−KT

h ((t−m)/T )√
T

→ Ω−1/2H(s).

Let us examine this expression,

1√
T

[Ts]∑
t=1

1

2KT + 1

KT∑
m=−KT

h ((t−m)/T )√
T

=
1√
T

[Ts]∑
t=1

1

2KT + 1

min{t−1,KT }∑
m=max{t−[Ts],−KT }

h ((t−m)/T )√
T

which equals

1

T

[Ts]−KT∑
t=KT+1

h (t/T ) +
1

T

KT∑
t=1

t+KT

2KT + 1
h (t/T ) +

1

T

[Ts]∑
t=[Ts]−KT+1

[Ts]− t+KT + 1

2KT + 1
h (t/T )

=
1

T

[Ts]∑
t=1

h (t/T )√
T

+
1

T

KT∑
t=1

t−KT − 1

2KT + 1
h (t/T ) +

1

T

[Ts]∑
t=[Ts]−KT+1

[Ts]− t−KT

2KT + 1
h (t/T ) .

The first term of the last equality converges to
∫ s

0
h(ν)dν. Under the assumption that

K2
T

T → 0, the last two terms

converge to zero and using Ω−1/2
√
T 1
T

∑[Ts]
t=1 gtT (β0, δ0) = Ω−1/2

√
T
(

1
T

∑[Ts]
t=1 gtT (β0, δ0)− E 1

T

∑[Ts]
t=1 gtT (β0, δ0)

)
+

Ω−1/2
√
TE 1

T

∑[Ts]
t=1 gtT (β0, δ0), the result follows.

Lemma 2.3. Under the null and Assumptions 1.3 and 1.7,

sup
s∈S

sup
θ∈Θ,λ(s)∈Λ̂T (s),1≤t≤T

|λ(s)′gtT (θ, s) | p→ 0.

Also w.p.a.1 Λ̂T (s) ⊆ Λ̂T (θ, s) where Λ̂T (θ, s) = {λ(s) = (λ′1, λ
′
2)
′

: λ(s)′gtT (θ, s) ∈ Φ, (t = 1, . . . , T )}.

Proof of Lemma 2.3

We first show that the results hold for both subsambles for a given s. Let Λ̂T (s) = Λ̂1T (s) for t = 1, . . . , [Ts])

and Λ̂T (s) = Λ̂2T (s) for t = [Ts] + 1, . . . , T ). So, we have

sup
θ∈ΘT ,λ∈Λ̂T (s),1≤t≤T

|λ(s)′gtT (θ, s) | ≤ sup
β∈B,δ∈∆,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) |

+ sup
β∈B,δ∈∆,λ2∈Λ̂2T (s),[Ts]+1≤t≤T

|λ′2gtT (β, δ) |.

Consider the first subsample, by the Cauchy-Schwarz inequality and Assumption 1.7 (b)

sup
β∈B,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) | ≤ D
(
T/(2KT + 1)2

)−ζ
sup

β∈B,δ∈∆,1≤t≤[Ts]

‖gtT (β, δ) ‖.
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For the last term on the RHS, we get

sup
β∈B,δ∈∆,1≤t≤[Ts]

‖gtT (β, δ) ‖ ≤ 1

2K + 1
sup

β∈B,δ∈∆,1≤t≤[Ts]

∥∥∥∥∥∥
min{t−1,KT }∑

m=max{t−[Ts],−KT }

g (xt−m, β, δ)

∥∥∥∥∥∥
≤ sup

β∈B,δ∈∆,1≤t≤[Ts]

‖g (xt, β, δ) ‖

uniformly in t. Using Assumption 1.3 and by Markov’s inequality:

sup
β∈B,δ∈∆,1≤t≤T

‖g (xt, β, δ) ‖ = Op

(
T 1/d

)
.

Hence

sup
β∈B,δ∈∆,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) | ≤ D
(
T/(2KT + 1)2

)−ζ
Op

(
T 1/d

)
p→ 0

by Assumption 1.7 (b). This also holds for the second subsample.

Therefore under the null

sup
β∈B,δ∈∆,λ1∈Λ̂1T (s),1≤t≤[Ts]

|λ′1gtT (β, δ) | p→ 0

and λ′1gtT ∈ Φ for t = 1, . . . , [Ts] w.p.a.1 for all β ∈ B, δ ∈ ∆ which implies that λ1 ∈ Λ̂1T (β, δ, s). For the

second subsample,

sup
β∈B,δ∈∆,λ2∈Λ̂2T (s),[Ts]+1≤t≤T

|λ′2gtT (β, δ) | p→ 0

and λ′2gtT ∈ Φ for t = [Ts] + 1, . . . , T w.p.a.1 for all β ∈ B, δ ∈ ∆ which implies that λ2 ∈ Λ̂2T (β, δ, s). Finally,

these results holds uniformly ∀s ∈ S.

Lemma 2.4. Under Assumptions 1.1, 1.2, 1.3, 1.5 and 1.10

sup
s∈S

sup
θ∈Θ
‖ĝT (θ, s)− g(θ, s)‖ p→ 0

where

ĝT (θ, s) =
1

T

T∑
t=1

gtT (θ, s) =
1

T

[Ts]∑
t=1

[
gtT (β, δ)

0

]
+

1

T

T∑
t=[Ts]+1

[
0

gtT (β, δ)

]

and g(θ, s) = (sg̃(β, δ)′, (1− s)g̃(β, δ)′)
′
.

Proof of Lemma 2.4

Using
∑T

[Ts]+1 =
∑T

1 −
∑[Ts]

1 , the result of the Lemma holds if

sup
β∈B,δ∈∆

sup
Ts≤R≤T

∣∣∣∣∣ 1

T

R∑
t=1

[gtT (β, δ)− g̃(β, δ)]

∣∣∣∣∣ p→ 0

7



where s = inf{s : s ∈ S}.
By the triangular inequality

sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥ 1

T

R∑
t=1

[gtT (β, δ)− g̃(β, δ)]

∥∥∥∥∥ ≤ sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥ 1

T

R∑
t=1

[gtT (β, δ)− EgtT (β, δ)]

∥∥∥∥∥
+ sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥ 1

T

R∑
t=1

[EgtT (β, δ)− g̃(β, δ)]

∥∥∥∥∥ .
We show that both terms on the right-hand side converge in probability to zero. For the first term, we first

show that 1
T

∑R
t=1 [gtT (β, δ)− EgtT (β, δ)] = 1

T

∑R
t=1 [g(xt, β, δ)− Eg(xt, β, δ)] + op(1). By the proof similar to

the one in Lemma 2.1, we can show that: 1
T

∑R
t=1 g(xt, β, δ) = 1

T

∑R
t=1 gtT (β, δ) + op(1). This also holds for the

partial sum of the expectation, the result follows. Now using Lemma A3 in Andrews with Assumptions 1.1 and

1.7 guarantees the UWL for supR≤T

∥∥∥ 1
T

∑R
t=1 [g(xt, β, δ)− Eg(xt, β, δ)]

∥∥∥. This yields

sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥ 1

T

R∑
t=1

[g(xt, β, δ)− Eg(xt, β, δ)]

∥∥∥∥∥ p→ 0

which directly implies

sup
θ∈Θ

sup
Ts≤R≤T

∥∥∥∥∥ 1

T

R∑
t=1

[gtT (β, δ)− EgtT (β, δ)]

∥∥∥∥∥ p→ 0.

The second term holds by Assumption 1.10.

Now define

P̂ (θ(s), λ(s), s) =

T∑
t=1

[ρ(λ(s)′gtT (θ, s))− ρ0]

T

=

[Ts]∑
t=1

[ρ(λ′1gtT (β1, δ))− ρ0]

T
+

T∑
t=[Ts]+1

[ρ(λ′2gtT (β2, δ))− ρ0]

T

and ĝT (θ0, s) = 1
T

∑T
t=1 gtT (θ0, s).

Lemma 2.5. Under Assumptions 1.3, 1.7 and 1.8, there is a constant C such that w.p.a.1.

1

2KT + 1
sup
s∈S

sup
λ(s)∈Λ̂T (θ0,s)

P̂ (θ0, λ(s), s) = sup
s∈S

C‖ĝT (θ0, s)‖2.

Proof of Lemma 2.5

By a proof similar to the one of Lemma A.5 in Smith, 20114, we can show that

1

2KT + 1
sup

λ(s)∈Λ̂T (θ0,s)

P̂ (θ0, λ(s), s) = C‖ĝT (θ0, s)‖2

4In his proof, Smith, 2011 uses the fact that (2KT + 1)
∑T

t=1 ρ2
(
λ̇′gtT (β0, δ0)

)
gtT (β0, δ0)gtT (β0, δ0)′/T

p→ −Ω in

our notation. This needs more restrictive assumptions than those imposed here. In fact, we only need that (2KT +

1)
∑T

t=1 ρ2
(
λ̇′gtT (β0, δ0)

)
gtT (β0, δ0)gtT (β0, δ0)′/T ≤ −CIq in the p.s.d. sense w.p.a.1 which holds by the fact that the outer

product of smoothed moment conditions is automatically positive semi-definite.
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for a given s ∈ S w.p.a.1. Since this holds for all s ∈ S, this holds for s which achieves the supremum.

2.1 Proofs of Theorems

Proof of Theorem 2.1

The outline of the proof is similar to that of Lemma A.6 and Theorem 2.2 in Smith, 2011 except that the

results have to be established uniformly in s ∈ S and by taking into account of the differences in Assumptions

1.2, 1.3 and 1.7 with respect to the corresponding assumptions in Smith, 2011.

First, we show that sups∈S ‖ĝT (θ̂T (s), s)‖2 = Op(T
−1) which allows us to show that sups∈S ‖θ̂(s)− θ0‖

p→ 0.

By arguments similar to Smith, 2011, we can show that
∑T
t=1 gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T = Op(1). Following

Newey and Smith (2001) and Smith, 2011, let

λ̄T (θ̂T (s), s) =
(
λ̄1T (β̂1T (s), δ̂T (s), s)′, λ̄2T (β̂2T (s), δ̂T (s), s)′

)′
= − 1

T

T∑
t=1

gtT (θ̂T (s), s)κT /‖ĝT (θ̂T (s), s)‖

with κT = D
(
T/(2KT + 1)2

)−ζ
and

λ̄1T (β̂1T (s), δ̂T (s), s) = − 1

T

[Ts]∑
t=1

gtT (β̂1T (s), δ̂T (s))κT /‖ĝT (θ̂T (s), s)‖,

λ̄2T (β̂2T (s), δ̂T (s), s) = − 1

T

T∑
t=[Ts]+1

gtT (β̂2T (s), δ̂T (s))κT /‖ĝT (θ̂T (s), s)‖

and writing λ̄T (s) = λ̄T (θ̂T (s), s), λ̄1T (s) = λ̄1T (β̂1T (s), δ̂T (s), s) and λ̄2T (s) = λ̄2T (β̂2T (s), δ̂T (s), s) to simplify

the notation. By Lemma 2.3, sups∈S max1≤t≤T |λ̄(s)′gtT

(
θ̂T (s), s

)
| p→ 0 and λ̄T (s) ∈ ΛT (θ̂T (s), s) w.p.a.1.

Thus, for a given s, λ̇T (s) =
(
λ̇′1T , λ̇

′
2T

)′
with λ̇1T = τ1λ̄1T , 0 ≤ τ1 ≤ 1 and λ̇2T = τ2λ̄2T , 0 ≤ τ2 ≤ 1,

sup
s∈S

T∑
t=1

[
ρ2(λ̇T (s)′gtT (θ̂T (s), s))− ρ2(0)

]
gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T

p→ 0

and therefore sups∈S(2KT + 1)
∑T
t=1 ρ2(λ̇T (s)′gtT (θ̂T (s), s))gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T ≥ −CI2q in the p.s.d.

sense w.p.a.1. Hence, by a second-order Taylor expansion

1

2KT + 1
P̂ (θ̂T (s), λ̄T (s), s) = −

(
λ̄T (s)

2KT + 1

)′
ĝT (θ̂T (s), s)

+

(
λ̄T (s)

2KT + 1

)′( T∑
t=1

ρ2(λ̇T (s)′gtT (θ̂T (s), s)gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T

)
λ̄T (s)/2

≥ −
(

λ̄T (s)

2KT + 1

)′
ĝT (θ̂T (s), s)− C

(
λ̄T (s)

2KT + 1

)′(
λ̄T (s)

2KT + 1

)
= ‖ĝT (θ̂T (s), s)‖

(
κT

2KT + 1

)
− C

(
κT

2KT + 1

)2

9



w.p.a.1 and this holds ∀s ∈ S. Now using Lemma 2.5, we get w.p.a.1

sup
s∈S
‖ĝT (θ̂T (s), s)‖

(
κT

2KT + 1

)
− C

(
κT

2KT + 1

)2

≤ sup
s∈S

1

2KT + 1
P̂
(
θ̂T (s), λ̄T (s), s

)
≤ sup

s∈S
sup

λ(s)∈Λ̂T (θ̂T (s),s)

1

2KT + 1
P̂
(
θ̂T (s), λ(s), s

)
≤ sup

s∈S
sup

λ(s)∈Λ̂T (θ0,s)

1

2KT + 1
P̂ (θ0, λ(s), s)

≤ sup
s∈S

C‖ĝT (θ0, s)‖2 = Op
(
T−1

)
as ‖ĝT (θ0, s)‖ = Op(T

−1/2) by CLT (Corollary 3.1 of Wooldridge and White, 1988). This yields

sup
s∈S
‖ĝT (θ̂T (s), s)‖ ≤ C

(
κT

2KT + 1

)
+ sup
s∈S

C‖ĝT (θ0, s)‖2
(

κT
2KT + 1

)
= Op (κT /(2KT + 1)) ,

which implies sups∈S ‖ĝT (θ̂T (s), s)‖ = Op(T
−1/2) by Assumption 1.2 for all η > 1. By the result that

sups∈S ‖ĝT (θ̂T (s), s‖ = Op(T
−1/2) we have sups∈S ĝT (θ̂T (s), s)

p→ 0. By Lemma 2.4, sups∈S supθ∈Θ ‖ĝT (θ, s)−
g(θ, s)‖ p→ 0 and g̃(β, δ) is continuous by Assumption 1.5. The triangular inequality then gives that sups∈S g(θ̂T (s), s)

p→
0. Since g̃(β, δ) = 0 has a unique zero at β0 and δ0 (by Assumption 1.6), for every neighborhood Θ0(∈ Θ) of

θ0, infs∈S
(
infθ∈Θ/Θ0

‖g(θ, s)‖
)
> 0, then sups∈S ‖θ̂T (s)− θ0‖

p→ 0.

Now we need to show sups∈S ‖λ̂T (s)‖ = Op

((
T/(2K + 1)2

)−1/2
)

and sups∈S ‖λ̂T (s)‖ p→ 0. By a second-

order Taylor expansion around λ(s) = 0, for a given s ∈ S and for any λ̇T (s) =
(
λ̇′1T , λ̇

′
2T

)′
with λ̇1T =

τ1λ̂1T , 0 ≤ τ1 ≤ 1 and λ̇2T = τ2λ̂2T , 0 ≤ τ2 ≤ 1

(2KT + 1)P̂
(
θ̂T (s), 0, s

)
≤ sup

λ(s)∈Λ̂T (θ̂T (s),s)

(2KT + 1)P̂
(
θ̂T (s), λ(s), s

)
= (2KT + 1)P̂ (θ̂T (s), λ̂T (s), s)

≤ −(2KT + 1)λ̂T (s)′ĝT (θ̂T (s), s)

+ λ̂T (s)′

(
(2KT + 1)

T∑
t=1

ρ2(λ̇T (s)′gtT (θ̂T (s), s))ĝtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T

)
λ̂T (s)/2

≤ −(2KT + 1)λ̂T (s)′gT (θ̂T (s), s)− Cλ̂T (s)′λ̂T (s)

≤ (2KT + 1)‖λ̂T (s)‖‖ĝT (θ̂T (s), s)‖ − C‖λ̂T (s)‖2

w.p.a.1. Since P̂
(
θ̂T (s), 0, s

)
= 0,∀s ∈ S, this implies directly that C‖λ̂T (s)‖ ≤ (2KT + 1)‖ĝT (θ̂T (s), s)‖ and

this holds for all s ∈ S which implies that sups∈S C‖λ̂T (s)‖ ≤ sups∈S(2KT + 1)‖ĝT (θ̂T (s), s)‖. Finally, consid-

ering that sups∈S ‖ĝT (θ̂T (s), s)‖ = Op(T
−1/2) directly yields that sups∈S ‖λ̂T (s)‖ = Op

[(
T/(2KT + 1)2

)−1/2
]

and sups∈S ‖λ̂T (s)‖ p→ 0 by Assumption 1.2.

Proof of Theorem 2.2
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The first-order conditions of the partial-sample GEL with respect to λ(s) and θ(s) are:

1

T

T∑
t=1

ρ1(λ̂T (s)′gtT (θ̂T (s), s))gtT (θ̂T (s), s) = 0

1

T

T∑
t=1

ρ1(λ̂T (s)′gtT (θ̂T (s), s))GtT (θ̂T (s), s)′λ̂T (s) = 0.

By a mean-value expansion of the former first-order conditions for the partial-sample GEL where

ΞT =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′, λ̂1T (s)′

2KT+1 ,
λ̂2T (s)′

2KT+1

)′
and Ξ0 = (β′0, β

′
0, δ
′
0, 0, 0)

′
with the latter first-order conditions

yields:

0 = −T 1/2

(
0

1
T

∑T
t=1 gtT (θ0, s)

)
+ M̄(s)T 1/2

(
Ξ̂T (s)− Ξ0

)
where

M̄(s) =
1

T

T∑
t=1

[
0 M̄12(s)

M̄21(s) M̄22(s)

]

with M̄12(s) = ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)′, M̄21(s) = ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
GtT (θ̄T (s), s)′ and

M̄22(s) = (2KT + 1) ρ2

(
λ̄T (s)′gtT (θ̂T (s), s)

)
gtT (θ̄T (s), s)gtT (θ̂T (s), s)′ and θ̄T (s) is a random vector on the

line segment joining θ̂T (s) and θ0 and λ̄T (s) is a random vector joining λ̂T (s) to (0′, 0′)′ that may differ from

row to row.

Now, we need to show that M̄(s)
p→M(s) where

M(s) = −

[
0 G(s)′

G(s) Ω(s)

]
.

By Lemma 2.3; sups∈S sup1≤t≤T |λ̂T (s)′gtT (θ̂T (s), s)| p→ 0 and sups∈S sup1≤t≤T |λ̄T (s)′gtT (θ̄T (s), s)| p→ 0

which implies

sup
s∈S

max
1≤t≤T

|ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
− ρ1(0)| p→ 0

sup
s∈S

max
1≤t≤T

|ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
− ρ1(0)| p→ 0

and sups∈S max1≤t≤T |ρ2

(
λ̂T (s)′gtT (θ̂T (s), s)

)
− ρ2(0)| p→ 0. To show that

sup
s∈S

1

T

T∑
t=1

ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
GtT (θ̄T (s), s)

p→ −G(s)

and

sup
s∈S

1

T

T∑
t=1

ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)

p→ −G(s),

11



it remains to show that

sup
s∈S

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ̄T (s), s)−G(s)

∥∥∥∥∥ p→ 0 (1)

and

sup
s∈S

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ̂T (s), s)−G(s)

∥∥∥∥∥ p→ 0. (2)

For (1), by the triangular inequality

sup
s∈S

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ̄T (s), s)−G(s)

∥∥∥∥∥ ≤ sup
s∈S

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ̄T (s), s)− E 1

T

T∑
t=1

GtT (θ̄T (s), s)

∥∥∥∥∥
+ sup

s∈S

∥∥∥∥∥E 1

T

T∑
t=1

GtT (θ̄T (s), s)− E 1

T

T∑
t=1

GtT (θ0, s)

∥∥∥∥∥
+ sup

s∈S

∥∥∥∥∥E 1

T

T∑
t=1

GtT (θ0, s)−G(s)

∥∥∥∥∥ .
The first term on the right-hand side

p→ 0 by an application of UWL given by Lemma A3 in Andrews (1993)

which implies

sup
s∈S

sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ, s)− E 1

T

T∑
t=1

GtT (θ, s)

∥∥∥∥∥ p→ 0.

The second term
p→ 0 under the tightness of {µ̄T ; T ≥ 1} (Assumption 1.1), Assumption 1.9 and θ̄T (s)

p→ θ0

(see equations A.13 and A.14 in Andrews, 1993). Finally, the third term
p→ 0 by Assumption 1.11 and by

1
T

∑[Ts]
t=1

∂g(xt,β,δ)
∂(β′,δ′) = 1

T

∑[Ts]
t=1 GtT (β, δ) + op(1). The proof for (2) is similar.

Moreover, Assumptions 1.8 implies that

2KT + 1

T

[Ts]∑
t=1

gtT (β̄1T , δ̄T )gtT (β̂1T , δ̂T )′
p→ sΩ

and

2KT + 1

T

T∑
t=[Ts]+1

gtT (β̄2T , δ̄T )gtT (β̂2T , δ̂T )′
p→ (1− s)Ω

which yields

2KT + 1

T

T∑
t=1

ρ2

(
λ̄T (s)′gtT (θ̂T (s), s)

)
gtT (θ̄T (s), s)gtT (θ̂T (s), s)′

p→ −Ω(s).

By Assumption 1.12, this gives

M(s)−1 =

[
−Σ(s) H(s)

H(s)′ P (s)

]
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where Σ(s) =
(
G(s)′Ω(s)−1G(s)

)−1
, H(s) = Σ(s)G(s)′Ω(s)−1 and P (s) = Ω(s)−1−Ω(s)−1G(s)Σ(s)G(s)′Ω(s)−1.

As M̄(s) is positive definite w.p.a.1, we obtain:

√
T (ΞT (s)− Ξ0) = −M̄−1(s)

(
0,−
√
T

1

T

T∑
t=1

gtT (θ0, s)
′

)
+ op(1)

= − (H(s)′, P (s))
′√
T

1

T

T∑
t=1

gtT (θ0, s) + op(1).

We also have by Lemma 2.1, 1√
T

∑T
t=1 gtT (θ0, s)⇒ J(s) for s ∈ S. Combining the results above yields:

√
T
(
θ̂T (s)− θ0

)
= −

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1 1√

T

T∑
t=1

gtT (θ0, s) + op(1)

⇒ −
(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1J(s)

and

√
T

2KT + 1
λ̂T (s) = −

(
Ω−1(s)− Ω−1(s)G(s)

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1

) 1√
T

T∑
t=1

gtT (θ0, s) + op(1)

⇒ −
(

Ω−1(s)− Ω−1(s)G(s)
(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1

)
J(s).

Proof of Theorem 2.3

This is a direct implication of Lemma 2.2 and the proof of Theorem ??.

Proof of Theorem 3.1

Using results derived above, we get for terms in the Wald statistic:

Ĝβ1,tT (s) =
1

[Ts]

[Ts]∑
t=1

∂g(xt, β̂1T (s), δ̂T (s))

∂β′1
+ op(1),

Ĝβ2,tT (s) =
1

T − [Ts]

T∑
t=[Ts]+1

∂g(xt, β̂2T (s), δ̂T (s))

∂β′2
+ op(1),

Ω̂1T (s)
p→ Ω1(s), Ω̂2T (s)

p→ Ω2(s)

and terms in the LM statistic:

ĝ1T (θ̃T , s) =
1

T

[Ts]∑
t=1

g(xt, β̃T , δ̃T ) + op(1),

G̃βtT =
1

T

T∑
t=1

∂g(xt, β̃T , δ̃T )

∂β′
+ op(1),

Ω̃T
p→ Ω.
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The asymptotic distributions for the WaldT (s) and LMT (s) under the null can then be directly derived using the

expressions above from similar arguments than in the proof of Theorem 3 in Andrews (1993). The asymptotic

distribution under the alternative is a direct implication of Theorem ??. For the LRT (s) statistic, expanding

the partial-sample GEL objective function evaluated at the unrestricted estimator about λ = 0 yields,

2T

(2KT + 1)

1

T

T∑
t=1

ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s) = − 2T

(2KT + 1)

1

T

T∑
t=1

λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)−

T

(2KT + 1)

1

T

T∑
t=1

λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)gtT (θ̂T (s), s)′λ̂T (θ̂T (s), s)

+ op(1)

since ρ1(·) p→ −1 and ρ2(·) p→ −1.

By the fact that Ω̂T (s) = 2KT+1
T

∑T
t=1 gtT (θ̂T (s), s)gtT (θ̂T (s), s)′ is a consistent estimator of Ω(s) and by

√
T/(2KT + 1)λ̂T (s) = −Ω(s)−1 1√

T

∑T
t=1 gtT (θ̂T (s), s)) + op(1), we get

2T

(2KT + 1)

1

T

T∑
t=1

ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)) = TgT (θ̂T (s), s)′Ω(s)−1gT (θ̂T (s), s) + op(1).

Similarly, the expansion of the partial-sample GEL objective function but evaluated at the restricted estimator

yields:

2T

(2KT + 1)

1

T

T∑
t=1

ρ(λ̂T (θ̃T , s)
′gtT (θ̃T , s)) = TgT (θ̃T , s)

′Ω(s)−1gT (θ̃T , s) + op(1)

since that Ω̃T (s) = 2KT+1
T

∑T
t=1 gtT (θ̃T , s)gtT (θ̃T , s)

′ is a consistent estimator of Ω(s) under the null. The

LRT (s) is then asymptotically equivalent to the LR statistic defined in Andrews (1993) for the standard GMM.

Proof of Theorem 3.3

First, for the statistic OT (s), the asymptotic equivalence between
∑[Ts]
t=1 gtT (β̂1T (s)) with∑[Ts]

t=1 g(xt, β̂1T (s)) and
∑T
t=[Ts]+1 gtT (β̂2T (s)) with

∑T
t=[Ts]+1 g(xt, β̂2T (s)) is a direct implication of the Lemmas

2.1 and 2.2 and by the asymptotic consistency of the estimator Ω̂1T (s) and Ω̂2T (s) for Ω, the result under the

null and alternative follows directly from proofs for Theorems ?? and ?? and subsection A.2 in Hall and Sen

(1999).

Second, for the statistic OT (s)GEL, as in the proof of Theorem 3.2, we can show that:

2[Ts]

2KT + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̂1T (s), s)′gtT (β̂1T (s)))− ρ0

]
[Ts]

= O1T (s) + op(1)

and

2(T − [Ts])

2KT + 1

T∑
t=[Ts]+1

[
ρ(λ̂2T (β̂2T (s), s)′gtT (β̂2T (s)))− ρ0

]
T − [Ts]

= O2T (s) + op(1).
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The asymptotic distribution under the null and the alternative follows directly.

Finally, for the statistic LMO
T (s), the have the following asymptotic equivalences:√

[Ts]

(2KT + 1)
λ̂1T (β̂1T (s), s) = −Ω(s)−1([Ts])−1/2

[Ts]∑
t=1

gtT (β̂1T (s)) + op(1)

√
T − [Ts]

(2KT + 1)
λ̂2T (β̂2T (s), s) = −Ω(s)−1(T − [Ts])1/2

T∑
t=[Ts]+1

gtT (β̂2T (s)) + op(1)

which implies directly the asymptotic distribution of this statistic under the null and the alternative.

Proof of Theorem 3.4

Since θ̃T (s) minimizes the restricted partial sample GEL for all s ∈ S, this implies for all s ∈ S and all T ,

P̂ (θ̃T (s), λ̂T (θ̃T (s), s) ≤ P̂ (θ0, λ̂T (θ̃T (s), s), s).

The limit for P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s) is then bounded by the limit of P̂ (θ0, λ̂T (θ̃T (s), s), s). Let λ̂T (θ0, s) =

arg maxλs∈Λ̂T (θ0,s)
P̂ (θ0, λ(s), s) and λ̇T (s) = τ λ̂T (s), 0 ≤ τ ≤ 1. Thus, P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s)

≤ P̂ (θ0, λ̂T (θ̃T (s), s), s) ≤ P̂ (θ0, λ̂T (θ0, s), s). By a second-order Taylor expansion with Lagrange remainder

and using (2KT + 1)
∑T
t=1 ρ2(λ̇(s)′gtT (θ0, s))gtT (θ0, s)gtT θ0, s)

′/T
p→ −Ω(s),

1

2KT + 1
P̂ (θ0, λ̂T (θ0, s), s) = −

(
λ̂T (θ0, s)

2KT + 1

)′
ĝT (θ0, s)

+

(
λ̂T (θ0, s)

2KT + 1

)′( T∑
t=1

ρ2

(
λ̇T (s)′gtT (θ0, s)

)
gtT (θ0, s)gtT (θ0, s)

′/T

)
λ̂T (θ0, s)/2

= ĝT (θ0, s)
′Ω(s)−1ĝT ((θ0, s)− ĝT (θ0, s)

′Ω(s)−1ĝT (θ0, s)/2 + op(1)

= ĝT (θ0, s)
′Ω(s)−1ĝT (θ0, s)/2 + op(1)

w.p.a.1 where the second equality holds by 1
2KT+1 λ̂T (θ0, s) = −Ω(s)−1ĝT (θ0, s) + op(1). The asymptotic dis-

tribution of the statistic 2T
2KT+1 P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s) is then asymptotically bounded for all s ∈ S by the

asymptotic distribution of T ĝT (θ0, s)
′Ω(s)−1ĝT (θ0, s). By using Lemma 2.1, the result under the null fol-

lows. Lemma 2.2 yields the asymptotic distribution under the alternative. The equivalence for the statistic

LMR
T (θ̃T (s), s) is straightforward to show.

Proof of Theorem 3.5

To prove this Theorem, additional assumptions are needed. Let

Σ(β0) = lim
T→∞

var

(
1

T

T∑
t=1

(gt(β0)′, vec(Gt(β0))′)

)′
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a (q + qr)× (q + qr) positive semi-definite symmetric matrix and

Σ(β0) =

[
Ω(β0) ΩgG(β0)

ΩGg(β0) ΩGG(β0)

]
where ΩgG(β0) = ΩGg(β0)′ is a (q × qr) matrix and ΩGG(β0) is a (qr × qr) matrix.

We define the estimators under the null of no structural change

Σ̂1T (β0, s) =
2KT + 1

[Ts]

[Ts]∑
t=1

(gt(β0)′, vec(Gt(β0))′)
′
(gt(β0)′, vec(Gt(β0)− EGtT (β0))′)

Σ̂2T (β0, s) =
2KT + 1

T − [Ts]

T∑
t=[Ts]+1

(gt(β0)′, vec(Gt(β0))′)
′
(gt(θ0)′, vec(Gt(β0)− EGtT (β0))′) .

Assumption 6.8′. Under the true value of the parameters θ0, sups∈S ‖Σ̂iT (β0, s) − Σ(β0‖
p→ 0 with S whose

closure lies in (0, 1) for i = 1, 2.

Assumption 6.3′′. Under the true value of the parameters θ0, {g (xTt, β0) , vec (G (xTt, β0)− EG (xTt, β0)) :

t ≤ T, T ≥ 1} is a triangular array of mean zero Rq-valued rv’s that is α-mixing with mixing coefficients∑∞
j=1 j

2α(j)(ν−1)/ν <∞ for some ν > 1 with supt≤T,T≥1E‖g (xTt, β0) ‖d <∞ and supt≤T,T≥1E‖G (xTt, β0) ‖d <
∞ for some d > max

(
4ν, 2η

η−1

)
.

Assumptions 6.3′′ and 6.8′ guarantee for the restricted partial-sample GEL that

Ω̂Gg,1T (β0, s) =
2K + 1

T

[Ts]∑
t=1

vec (GtT (β0)) gtT (β0)′
p→ sΩGg(β0), (3)

Ω̂Gg,2T (β0, s) =
2K + 1

T

T∑
t=[Ts]+1

vec (GtT (β0)) gtT (θ0)′
p→ (1− s)ΩGg(β0), (4)

and

Ω̂GG,1T (β0, s) =
2K + 1

T

[Ts]∑
t=1

vec (GtT (β0)) vec (GtT − EGtT (β0))
′ p→ sΩGG(β0),

Ω̂GG,2T (β0, s) =
2K + 1

T

T∑
t=[Ts]+1

vec (GtT (β0)) vec (GtT (β0)− EGtT (β0))
′ p→ (1− s)ΩGG(β0).

Lemma 2.1 can be shown for the derivatives of the smoothed moment conditions under Assumptions 1.1,

1.2, 6.3′′ and 6.8′ as shown for the smoothed moment conditions. Thus, the asymptotic distribution of the

derivatives of the centered smoothed moment conditions under the null is given by:

1√
T

[Ts]∑
t=1

vec (GtT (β0)− EGtT (β0))⇒ ΩGG(β0)1/2Bqr(s) (5)
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where Bqr(s) is a qr-dimensional vector of standard Brownian motion. Using Lemma 2.1, this yields for the

whole vector (gtT (β0)′, (vec(GtT (β0)− EGtT (β0)))′)
′

T−1/2

[Ts]∑
t=1

(gtT (β0)′, (vec(GtT (β0)− EGtT (β0)))′)
′ ⇒ Σ(β0)1/2Bq+qr(s) (6)

where BG(s) is a ((q + qr)× 1)-vector of standard Brownian motion.

We also need the following assumptions:

Assumption 2.1. Suppose Assumption 1.9 but for ∂g(xt, β)/∂βi for i = 1, . . . , r.

Let D̂1T (β0, s) =
[
D̂1,1T (β0, s), D̂2,1T (β0, s), . . . , D̂r,1T (β0, s)

]
with D̂i,1T (β, s) =

1
T

∑[Ts]
t=1 ρ1(λ̂1T (β, s)′gtT (β))Gi,tT (β, s) for i = 1, . . . , p and respectively for D̂2T (β0, s). By a Taylor expansion

of D̂i,1T (β0, s) and D̂i,2T (β0, s) around λ̂1T (β0, s) = 0 and λ̂2T (β0, s) = 0 respectively yields

D̂i,1T (β0, s) = − 1

T

[Ts]∑
t=1

Gi,tT (β0) +
2K + 1

T

[Ts]∑
t=1

Gi,tT (β0)gtT (β0)′Ω̂1T (β0, s)
−1 1

[Ts]

[Ts]∑
t=1

gtT (β0) + op(1)

D̂i,2T (β0, s) = − 1

T

T∑
t=[Ts]+1

Gi,tT (β0) +
2K + 1

T

T∑
t=[Ts]+1

Gi,tT (β0)gtT (β0)′Ω̂2T (β0, s)
−1 1

T − [Ts]

T∑
t=[Ts]+1

gtT (β0) + op(1)

using 1
2KT+1 λ̂1T (β0, s) = −Ω̂1T (β0, s)

−1 1
[Ts]

∑[Ts]
t=1 gtT (β0) + op(1) and 1

2KT+1 λ̂2T (β0, s) =

− Ω̂2T (β0, s)
1

T−[Ts]

∑T
t=[Ts]+1 gtT (β0) + op(1) with sups∈S max1≤t≤T |ρ2(λ̂iT (β0, s)

′gtT (β0)) − ρ2(0)| p→ 0 for

i = 1, 2.

Using (3), (4), (5), (6), Lemma 1.1 and with G(β0) = limT→∞

[
T−1

∑T
t=1GtT (β0)

]
, we obtain that[

Iq 0

− 2K+1
T

∑[Ts]
t=1 vec (GtT (β0)) gtT (β0)′Ω̂1T (β0)−1 Iqr

]
×

[
1√
T

∑[Ts]
t=1 gtT (β0)

1√
T

∑[Ts]
t=1 vec (GtT (β0)− EGtT (β0))

]

=

 1√
T

∑[Ts]
t=1 gtT (β0)

−
√
T
(
D̂1T (β0, s)− sG(β0)

) ⇒ [
Ω(β0)1/2Bq(s)

ΩD(β0)1/2B2.1(s)

]

with ΩD(β0)1/2B2.1(s) = ΩGG(β0)1/2Bqr(s) − ΩGg(β0)Ω(β0)−1Ω(β0)1/2Bq(s), ΩD(β0) =

ΩGG(β0) − ΩGg(β0)Ω(β0)−1ΩGg(β0) and B2.1(s) is independent of Bq(s). This result is true for any value

of G(β0). Thus, G(β0) can be of full rank value, weak value such that GT (β0) = C1

T 1/2 for q × r matrix C1 or

G(β0) = 0 in the case of no identification.

This implies that

√
T
(
D̂1T (β0, s)− sG(β0)

)
⇒ −ΩD(β0)1/2B2.1(s)

and

√
T
(
D̂2T (β0, s)− (1− s)G(β0)

)
⇒ −ΩD(β0)1/2(B2.1(1)−B2.1(s)).
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Since D̂1T (β0, s) and D̂2T (β0, s) are respectively independent of 1
T

∑[Ts]
t=1 gtT (β0) and 1

T

∑T
t=[Ts]+1 gtT (β0)

this yields

(
D̂1T (β0)′Ω̂1T (β0)−1D̂1T (β0)

)−1/2

D̂1T (β0)′Ω̂1T (β0)−1 1√
T

[Ts]∑
t=1

gtT (β0)⇒ Br(s) (7)

and (
D̂2T (β0)′Ω̂2T (β0)−1/2D̂2T (β0)

)−1

D̂2T (β0)′Ω̂2T (β0)−1 1√
T

T∑
t=[Ts]+1

gtT (β0)⇒ Br(1)−Br(s) (8)

where Br(s) is a r-vector of standard Brownian motion.

Since θ̃K,T (s) =
(
β̃K,T (s)′, β̃K,T (s)′

)′
minimize the objective function

KGELT (s) = K1T (β̃K,T (s), s) +K2T (β̃K,T (s), s) ≤ K1T (β0, s) +K2T (β0, s)

for all s ∈ S and all T . The result follows directly under the null. The derivation under the alternative can be

easily obtained. The proof for KLMR
T (s) is straightforward considering that

√
T/(2KT + 1)λ̂1T (β, s) = −Ω̂1T (β)

1√
T

[Ts]∑
t=1

gtT (β) + op(1),

and

√
T/(2KT + 1)λ̂2T (β, s) = −Ω̂2T (β)

1√
T

T∑
t=[Ts]+1

gtT (β) + op(1).
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