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Abstract

This paper proposes SupWald tests from a threshold autoregressive model computed with an adaptive set of thresholds.

Simple examples of adaptive threshold sets are given. A second contribution of the paper is a general asymptotic null limit

theory when the threshold variable is a level variable. We obtain a pivotal null limiting distribution under some simple

conditions for bounded or asymptotically unbounded thresholds. Our general approach is flexible enough to allow a choice

of the auxiliary threshold model or of the threshold set involved in the test specifically designed for nonlinear stationary

alternatives relevant for macroeconomic and financial topics involving arbitrage in presence of transaction costs. A Monte-

Carlo study and an application to the interest rates spread for French, German, New-Zealander and US post-1980

monthly data illustrate the ability of the adaptive SupWald tests to reject unit-root when the ADF does not.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A debate on the performance of linear unit-root tests to detect nonlinear stationary alternatives has recently
grown in the econometric literature. Indeed, the presence of fixed adjustment costs, transaction costs or
arbitrage boundaries can create nonlinear adjustments in economic variables quite close to nonstationarity.
Economic policy characterized by discrete intervention to manage exchange rate, target zone or
inflation–output targets could also induce such nonlinear dynamics. Empirical studies as Anderson (1997),
Michael et al. (1997), Obstfeld and Taylor (1997) or Sollis et al. (2002) also argued for nonlinear dynamics. On
the other hand, the simulation studies of Balke and Fomby (1997), Pippenger and Goering (1993) and Taylor
(2001) have risen doubts about the power of standard linear unit-root tests against nonlinear stationary
e front matter r 2007 Elsevier B.V. All rights reserved.
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alternatives. As a consequence, a fast developing branch of the econometric literature has proposed as a
remedy to use an auxiliary nonlinear dynamic model in place of a linear autoregression to build a unit-root
test. This includes among others a Threshold Autoregressive (TAR) specification as in Bec et al. (2004),
Berben and van Dijk (1999), Caner and Hansen (2001), Enders and Granger (1998), Gonzalez and Gonzalo
(1998), Kapetanios and Shin (2006), Seo (2003), Shin and Lee (2001, 2003), or a smooth transition
autoregressive specification as in Kapetanios et al. (2003). A substantial difficulty is then that the threshold
parameter is not identified under the null. Consequently, much attention has been focused on the null limiting
distribution of threshold unit-root tests but, as seen from the previous references, consistency studies are
limited to restricted classes of threshold alternatives. This contrasts with the augmented Dickey–Fuller (ADF)
test which is consistent against general ergodic alternatives and is somehow paradoxical in view of the claimed
power superiority of the nonlinear approach.

A first contribution of the present paper is to examine the construction of threshold unit root tests toward
consistency and power comparison issues. In place of the linear autoregression of the ADF statistic, a general
threshold specification is considered to serve as an auxiliary model to build a unit-root test. However, in such
model, the true threshold is unknown. Our unit-root testing strategy is based on an adaptive set of thresholds
which behaves differently under the null and the alternatives. As many of the references above, we propose a
SupWald test SupWaldT ðLT Þ which maximizes the Wald statistic over a set of thresholds LT , T being the
sample size. In previous works, a quantile choice of LT ensuring a minimal percentage of observations in each
regime was considered, see e.g. Caner and Hansen (2001). But, due to this restrictive quantile choice, nothing
ensures consistency since such LT does not necessarily contain a threshold associated with a diverging Wald
statistic. Therefore, a more general construction of LT should be considered to achieve consistency. Under the
alternative, the set LT should allow as many thresholds as possible, including diverging thresholds
corresponding to not identified regimes that should typically be avoided under the null. We refer to this
property as adaptation, a behavior that can be achieved by defining the boundaries of LT as function of
consistent unit-root test statistics. The claimed benefits of adaptation are twofold. First, this gives consistency
against any (nonlinear) stationary ergodic alternatives. This finding clarifies in particular early critics on the
possible inconsistency of threshold unit-root tests, see e.g. Balke and Fomby (1997). As a by-product of
adaptation, we obtain bounds showing that the SupWaldT ðLT Þ is asymptotically larger than the squared ADF
statistic under the alternative, indicating so potential power improvements. Second, reconsidering usual
quantile threshold sets can be useful to obtain test statistics with smaller critical values which would have
better power properties. We give examples of adaptive, asymptotically unbounded or bounded, sets of
thresholds LT with boundaries depending upon the consistent ADF statistic. The unbounded example is a
modification of the quantile-based LT while the bounded example is new.

A second contribution is a general asymptotic theory under the null. Such a theory must cope in particular
with random threshold sets LT and give conditions ensuring a finite null pivotal limiting distribution. We
consider a general 3-regime TAR specification as a baseline model. Following Bec et al. (2004), Berben and
van Dijk (1999), Enders and Granger (1998), Kapetanios and Shin (2006) and Seo (2003), the lagged level
variable is chosen as the threshold variable, which is therefore nonstationary under the null. This differs from
the choice of Caner and Hansen (2001), Gonzalez and Gonzalo (1998) and Shin and Lee (2003) who consider
an ad hoc stationary threshold. By contrast, our approach is in line with many macroeconomic or financial
models involving arbitrage behavior in presence of transaction costs. Moreover, it yields a pivotal null limit
distribution which simplifies the implementation of the test. Finding the null limiting distribution of such a
SupWald test requires to establish a new functional version of the limit results of Park and Phillips (2001)
which can be useful for other nonlinear specifications.

Finally, we compare small sample properties of the existing unit-root tests with the ones proposed in
simulation experiments that illustrates the interest of adaptive SupWald tests compared to the linear ADF. An
application to the yield spread dynamics illustrates the ability of adaptive SupWald tests to detect stationarity
when the ADF does not.

The remainder of the paper is as follows. Section 2 introduces adaptation and provides examples of adaptive
threshold. The consistency and the null limiting distribution results of the SupWald tests for a simple
autoregression of order one is also presented. Section 3 extends those results to more general autoregression of
order p and to more general auxiliary models. Section 4 is devoted to simulation experiments and Section 5
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applies our proposed SupWald tests to the yield spread dynamics. Section 6 gives some final remarks and
proofs are gathered in Section 7 and in an Appendix.
2. Adaptation, consistency and null limit distributions

Consider first the basic case of a centered random walk null hypothesis given by

H0 : Dyt ¼ yt � yt�1 ¼ et,

where y0 ¼ 0 and fetg is a sequence of i.i.d. centered random variables with variance s2. Assume that T þ 1
observations y0; . . . ; yT are available to test H0 against

H1 : fytg is a nonconstant stationary ergodic process with a finite

nonvanishing variance.

A well-known example of a linear test of H0 against H1 is the Dickey–Fuller (DF) test which uses the auxiliary
model

Dyt ¼ mþ ryt�1 þ vt. (2.1)

and the associated t statistic DF for the null hypothesis r ¼ 0. Indeed, for any alternative in H1, the limit r of
the OLS estimate br captures a mean reverting effect which ensures that ro0 and yields consistency of the DF
test. Unfortunately, simulation studies by e.g. Pippenger and Goering (1993) or Taylor (2001) have shown that
although consistent, the DF test lacks power against nonlinear stationary alternatives. Hence, subsequent
research has focused on developing unit-root tests based on a nonlinear auxiliary model instead of the linear
one given by Eq. (2.1). Among the possible nonlinear candidates, the TAR specification aims to explicitly
account for mean reversion and to allow for local unit-root in a regime where asymptotic adjustment does not
hold. For instance, motivated by the type of nonlinear behavior generated by transaction costs in general
equilibrium models, an illustration is the following symmetric mirroring 3-regime TAR specification
previously considered in Taylor (2001) and Bec et al. (2004)

Dyt ¼ ut þ

m1 þ r1yt�1 if yt�1 2 ð�1; l1� ¼ I1ðlÞ

m2 þ r2yt�1 if yt�1 2 ½l1; l2� ¼ I2ðlÞ

�m1 þ r1yt�1 if yt�1 2 ðl2;þ1� ¼ I3ðlÞ

8><>: with l2 ¼ �l1 ¼ l. (2.2)

This specification may be rewritten as the dynamic linear regression model:

Dyt ¼ extðlÞbþ ut with ex0tðlÞ ¼
Iðyt�1 2 I1ðlÞÞ � Iðyt�1 2 I3ðlÞÞ

yt�1ðIðyt�1 2 I1ðlÞÞ þ Iðyt�1 2 I3ðlÞÞÞ

Iðyt�1 2 I2ðlÞÞ

yt�1Iðyt�1 2 I2ðlÞÞ

266664
377775 and

b ¼

m1
r1
m2
r2

266664
377775.

In such a setup, for a given value of the threshold l, the OLS estimators of b and VarðutÞ are given by

bbT ðlÞ ¼
XT

t¼1

ex0tðlÞextðlÞ

 !�1XT

t¼1

ex0tðlÞDyt; bs2T ðlÞ ¼ 1

T � k

XT

t¼1

ðDyt � extðlÞbbT ðlÞÞ
2,
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where k is the dimension of extðlÞ. Furthermore, the Wald statistic to test that there is a unit-root in each
regime, r1 ¼ r2 ¼ 0, writes

WaldT ðlÞ ¼ ðRbbT ðlÞÞ
0 bs2T ðlÞR XT

t¼1

ex0tðlÞextðlÞ

 !�1
R0

0@ 1A�1ðRbbT ðlÞÞ, (2.3)

where R is a selection matrix such that ðRbÞ0 ¼ ½r1;r2�. A large WaldT ðlÞ favors rejection of H0.
1

In practice, an important issue in building such a Wald threshold unit-root test is the choice of a suitable
threshold level l when its true value is unknown. To overcome this issue, the most widespread approach (Bec
et al., 2004; Caner and Hansen, 2001; Gonzalez and Gonzalo, 1998; de Jong et al., 2005; Kapetanios and Shin,
2006; Park and Shintani, 2005; Seo, 2003; Shin and Lee, 2001, 2003) builds on the structural change literature,
see Andrews (1993) among others, and uses a SupWald test statistic of the form:

SupWaldT ðLT Þ ¼ sup
l2LT

WaldT ðlÞ.

This amounts to choose for the test the threshold value which maximizes WaldT ð�Þ over LT .
Following Andrews (1993), the common use in the papers cited above consists in considering a quantile-

based threshold set such as

LT ¼ ½jyjðpTÞ; jyjðð1�pÞTÞ�; p 2 ð0; 1=2Þ, (2.4)

where the jyjðtÞ, t ¼ 0; . . . ;T � 1, are the ordered jyt�1j and, for x 2 Rþ with integer part ½x�, jyjðxÞ ¼ yð½x�Þ, so
that yðpTÞ is the empirical quantile of order p. For such thresholds l, the inequality jyjðpTÞpl ensures that the
proportion of observations in the inner regime I2ðlÞ is at least p. Symmetrically, lpjyjðð1�pÞTÞ gives a minimal
proportion of p observations in the outer regime I1ðlÞ [ I3ðlÞ. As a consequence, the parameters of each
regime are correctly estimated and SupWaldðLT Þ remains finite. Following Andrews’s (1993) suggestion, the
usual choice of p is 15%.

However, this SupWald approach does not really tackle the consistency issue. Under the stationary
alternative, a LT as defined in (2.4) converges to ½QðpÞ;Qð1� pÞ�, where QðpÞ is the pth quantile of jytj that
solves PðjytjpQðpÞÞ ¼ p. But nothing ensures that there is a threshold in ½QðpÞ;Qð1� pÞ� that gives a diverging
Wald statistic, even in the case of a correctly specified TAR.2

2.1. Introducing adaptation to achieve consistency

The cornerstone of our strategy to build a consistent test is the choice of the threshold set LT . We argue that
the asymptotic behavior of LT should differ accordingly to the hypotheses at hand. Such a suitable adaptation

property can be described in the following requirements:
R0. Under H0, LT should remain ‘‘as small as possible’’ so that the test statistic has a finite null limit

distribution, with moderate critical values if possible. Indeed, small critical values za would increase the power
of the test which has a rejection region SupWaldT ðLT Þ4za.

R1. Under H1, LT should be ‘‘as large as possible’’ so that the SupWaldT ðLT Þ test would be more powerful
by considering many WaldT ðlÞ statistics.

3

In other words, it is desirable that the boundaries of the threshold set adapt to the hypothesis of interest,
making the threshold set wider under H1 than under H0. One intuitive way to achieve this feature is to index
these boundaries with a consistent unit-root test statistic. A natural candidate is the absolute value of the DF
statistic, hereafter denoted jDF T j. Roughly speaking, by defining the lower boundary of l1, say lT , as a
1Observe that bbT ðlÞ and WaldT ðlÞ may not be defined properly if
PT

t¼1ex0tðlÞextðlÞ has no inverse, in particular if there is no observation

in a regime I jðlÞ. In this case, the Wald statistic can be set to its infinite limit value or a Moore–Penrose pseudo-inverse can be used.
2The consistency issue is hardly considered in the literature and existing consistency results often build on assumptions that are difficult

to check. For instance, Kapetanios and Shin (2006) and Park and Shintani (2005) assume that the true threshold value is in ½QðpÞ;Qð1�
pÞ� while de Jong et al. (2005) consider stationary alternatives with E½Dyt�1ðyt�p �mÞIðyt�p4mÞ�o0 for all p where m is the median.

3Note that the usual threshold set (2.4) is asymptotically ½QðpÞ;Qð1� pÞ� and cannot be adaptive since p40. Actually, (2.4) also

contradicts R0 and R1. Indeed, such a LT has a length of order
ffiffiffiffi
T
p

under H0 and remains bounded under H1.
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decreasing function of jDFT j and the upper boundary of l2, say lT , as an increasing function of jDFT j, the
desired type of threshold set LT ¼ ½lT ; lT � would obtain. Indeed, from the consistency property of the DF
statistic, it follows that jDF T j is bounded under H0 but diverges under H1. Consequently, under the null lT

(resp. lT ) would be relatively large (resp. relatively small), implying a narrow threshold set. By contrast, under
the alternative, the threshold set widens as jDFT j diverges. The next theorem shows that fulfilling conditions
as R1 is sufficient to get consistency against ergodic alternatives.

Theorem 1. Consider the TAR specification (2.2). Assume that LT is such that, for any fytg in H1, there is a lT

converging to Qð1Þ which is in LT with a probability tending to 1. Then, under H1, SupWaldT ðLT Þ diverges in

probability, with

SupWaldT ðLT ÞXDF 2
T ð1þ oPð1ÞÞ. (2.5)

Importantly, it follows from Theorem 1 that adaptation is a sufficient condition for consistency against any

ergodic stationary alternative. Then, the inequality (2.5) indicates that the SupWald test can be more powerful
than a DF test provided its critical values are close enough to the squared critical values of the DFT statistic.
The intuition behind (2.5) is that the TAR specification (2.2) is asymptotically equivalent to the autoregressive
linear model (2.1) when the threshold is lT ¼ jyjðTÞ. In this case, the central regime diverges and WaldT ðlT Þ is
asymptotically equivalent to DF 2

T .
2.2. Examples of adaptive threshold sets and null limit distributions

Two examples of adaptive threshold sets will be considered here. The first one is an asymptotically
unbounded set directly derived from the usual threshold set (2.4). This adaptive set is asymptotically
unbounded in the sense that the boundaries grow with the sample size. More precisely, we show how the latter
may be amended to satisfy the adaptation property. As will be stressed below, this version of (2.4) is not
entirely satisfactory in that it does not match the requirement R0, since its length diverges with the sample size
under the null. The second example belongs to the bounded class of threshold sets and gives up any reference
to an arbitrary proportion of observations in the definition of the threshold set boundaries. It is shown to
match both R0 and R1 requirements.

2.2.1. A class of asymptotically unbounded threshold sets

A first example of adaptive threshold set follows from a modification of the quantile-based threshold set
(2.4) that changes 1� p into a random proportion of the sample. Let p and d40 be proportion and length
parameters to be chosen by the econometrician, and define

LU
T ¼ ½

ffiffiffiffi
T
p

lT ;
ffiffiffiffi
T
p

lT � with
ffiffiffiffi
T
p

lT ¼ jyjðpT TÞ and
ffiffiffiffi
T
p

lT ¼ yðð1�pT ÞTÞ
, (2.6)

where

1� pT ¼ min 1� pþ
djDF T jffiffiffiffi

T
p ;

T � 2

T

� �
which parallels (2.4). The introduction of the term ðT � 2Þ=T in the definition of 1� pT ensures that there is at
least two observations in the outer regime so that SupWaldT ðL

U
T Þ is finite. To describe the null behavior, recall

that the Donsker line fy½Tv�=
ffiffiffiffi
T
p
gv2½0;1� converges in distribution to fsW ðvÞgv2½0;1� where W ð�Þ is a standard

Brownian Motion. For any p in ½0; 1�, let QjW jðpÞ be the random variable that solves
R 1
0 IðjW ðvÞjpQÞdv ¼ p.

Since DFT is bounded under the null, pT converges to p so that

ðlT ; lT Þ!
d
ðsQjW jðpÞ; sQjW jð1� pÞÞ

which gives
LU

Tffiffiffiffi
T
p !

d
LU ¼ ½sQjW jðpÞ;sQjW jð1� pÞ�, ð2:7Þ

showing that LU
T has the same asymptotic behavior than the threshold set (2.4) and asymptotically contains

the same percentage ð1� 2pÞ% of observations. Note the standardization of LU
T with

ffiffiffiffi
T
p

implies that the
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thresholds of LT are of order
ffiffiffiffi
T
p

: in what follows, (asymptotically) unbounded thresholds refer to thresholds
with this order. Under a fixed alternative, the DFT statistic diverges with the order T,4 so that 1� pT has the
limit of minð1� pþ d

ffiffiffiffi
T
p

; ðT � 2Þ=TÞ which goes to 1. Hence
ffiffiffiffi
T
p

lT converges to Qð1Þ in probability and LU
T

is adaptive. The SupWaldT ðL
U
T Þ thus inherits of the consistency of the DFT statistic against any ergodic

stationary alternative by Theorem 1.
The next theorem shows that SupWaldT ðL

U
T Þ has a pivotal null limit distribution. Define, for each regime

j ¼ 1; 2; 3,

xj;U ðlÞ ¼

R 1
0 W ðvÞIIj ðlÞðW ðvÞÞdW ðvÞ �

R 1
0

W ðvÞIIj ðlÞðW ðvÞÞdvR 1
0 IIj ðlÞðW ðvÞÞdv

R 1
0 IIj ðlÞðW ðvÞÞdW ðvÞ

R 1
0 W 2ðvÞIIj ðlÞðW ðvÞÞdv�

ð
R 1
0

W ðvÞIIj ðlÞðW ðvÞÞdvÞ2R 1
0 IIj ðlÞðW ðvÞÞdv

24 351=2
, (2.8)

xO;U ðlÞ ¼

R 1
0 W ðvÞII1;3ðlÞðW ðvÞÞdW ðvÞ �

R 1
0

W ðvÞII1;3ðlÞðW ðvÞÞdvR 1
0 II1;3ðlÞðW ðvÞÞdv

R 1
0 ðII1ðlÞ � II3ðlÞÞðW ðvÞÞdW ðvÞ

R 1
0 W 2ðvÞII1;3ðlÞðW ðvÞÞdv�

ð
R 1
0

W ðvÞII1;3ðlÞðW ðvÞÞdvÞ2R 1
0
II1;3ðlÞðW ðvÞÞdv

" #1=2 ,

where I1;3ðlÞ ¼ I1ðlÞ [ I3ðlÞ and xO;U is for the outer regimes 1 and 3.

Theorem 2. Consider the TAR specification (2.2). Let LU
T and LU be as in (2.6) and (2.7) and assume that

Assumption EðsÞ given in Section 7 for s44 holds. Then, under H0, SupWaldT ðL
U
T Þ converges in distribution to

supl2LU ðx2O;U ðl=sÞ þ x22;U ðl=sÞÞ, which has a pivotal distribution.

2.2.2. A class of bounded threshold sets

An alternative is to use bounded thresholds as also considered in Kapetanios and Shin (2006) and Seo
(2003).5 According to the asymptotic theory developed in Park and Phillips (1999), the number of thresholds
jyt�1j in a bounded interval is of order

ffiffiffiffi
T
p

only, therefore yielding an asymptotically vanishing percentage of
observations in a bounded threshold set. Hence bounded threshold sets can be used to produce lower
SupWald critical values than asymptotically unbounded ones.

We now give an example of an adaptive bounded threshold set LB
T . The estimated variance of the noise fetg

in the linear specification (2.1), bs2eT ¼PT
t¼1ðyt � bm� ð1þ brÞyt�1Þ

2=ðT � 2Þ, is used as a scaling factor in LB
T ,

where bm and br are least-squares estimators. Let d be a length parameter to be chosen by the econometrician
and define the bounded set by

LB
T ¼ ½lT ; lT � with lT ¼ jyjð2Þ þ

bseT
djDFT j

and lT ¼ lT þ dbseT jDF T j. (2.9)

The term jyjð2Þ in the definition of the lower threshold lT ensures that there are at least 2 observations in the
inner regime of (2.2) to allow for estimation of m2 and r2. The artificial term bseT=ðdjDFT jÞ in lT has been
added to obtain more observations in the inner regime so as to avoid small values of the Wald statistics. The
null behavior of LB

T depends on the limit in distribution of the DFT statistic:

t ¼

R 1
0

W ðvÞdW ðvÞ �W ð1Þ
R 1
0

W ðvÞdv

½
R 1
0 W 2ðvÞdv� ð

R 1
0 W ðvÞdvÞ2�1=2

. (2.10)
4As formally established in the Proof section for any arbitrary ergodic alternative.
5These authors consider 3-regime TAR specifications with m2 ¼ 0 and r2 ¼ 0. This considerably simplifies the derivation of the null

limits of the resulting test since the parameters of the central regime are not estimated. Note: however, that their test is not adaptive and

that they limit to detection of specific TAR alternatives.
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Define

LB ¼ ½l; l� with l ¼
s
djtj

and l ¼ lþsdjtj, (2.11)

which is such that LB
T!

d
LB, showing that the thresholds of LB

T are bounded under H0. Under H1, the DFT

statistic diverges, so that lT goes to the lower bound Qð0Þ of the support of the jyt�1j’s and lT diverges. Hence

LB
T is adaptive, and we now turn to the null limit distribution of SupWaldðLB

T Þ. Let Bð�Þ be a standard

Brownian Motion independent of W ð�Þ. The contribution of the inner regime in the Wald statistic is given here

by z2BðlÞ ¼
R l
�lðw� lÞdBðwÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2l3=3

q
.

Theorem 3. Consider the TAR specification (2.2). Let LB
T and LB be as in (2.9) and (2.11) and assume that

Assumption EðsÞ given in Section 7 for s44 holds. Then, under H0, SupWaldT ðL
B
T Þ converges in distribution to

xO;U ð0Þ þ supl2LBz2BðlÞ, which has a pivotal distribution, and where xO;U ð�Þ is as in Theorem 2.

Compared to the null limit distribution of Theorem 2, the contribution of the outer regimes to the limit of
SupWaldT ðL

B
T Þ is now given by xO;U ð0Þ corresponding to the fixed threshold 0, see Kapetanios and Shin (2006)

and Seo (2003) for similar results. This can be useful to achieve smaller critical values. The intuition is that the
order

ffiffiffiffi
T
p

of the yt�1’s in the outer regime dominates the thresholds. The contribution of the inner regime
supl2LBz2BðlÞ is given by the bounded values of the yt�1’s and remains finite since l40.

3. Extensions

In this section, the consistency and null limit distribution of the SupWald test are extended to the more
general case of an autoregression of order p, as well as to more general auxiliary models and threshold sets.
The considered null hypothesis is now
H0ðpÞ:
Please

Econom
Dyt ¼ aðLÞDyt�1 þ et for tX1; y0 ¼ � � � ¼ y�p�1 ¼ 0, where fetg is a (strong) white noise sequence with
variance s2 and 1� aðLÞ is of known order pX0 with roots outside the unit circle, so that
s2y ¼ limT!1VarðyT=

ffiffiffiffi
T
p
Þ40.
To account for the additional lagged polynomial term aðLÞDyt�1, we extend the TAR specification to include
lagged variables. We also allow for asymmetric regimes by considering a two dimensional threshold parameter
l0 ¼ ½l1; l2� with l1pl2, noting that l1 ¼ l2 gives a 2-regimes TAR as considered in Berben and van Dijk
(1999), Caner and Hansen (2001), Enders and Granger (1998) and Shin and Lee (2003).

Extensions of the results of the preceding section concerns first consistency. A general definition of
adaptation is given, which allow for a general threshold variable st that does not need to be the level yt�1.
Second, under the null and for st ¼ yt�1, we derive the functional limit distribution of baseline variables
entering the SupWald test for a wide class of TAR specifications, using unbounded or bounded thresholds. We
then give general conditions on unbounded or bounded threshold sets that ensures a pivotal limit distribution
for the SupWald test.

3.1. Adaptation

Our baseline general TAR model of order p is

Dyt ¼ ut þ

m1 þ r1yt�1 þ a1ðLÞDyt�1 if st 2 I1ðlÞ;

m2 þ r2yt�1 þ a2ðLÞDyt�1 if st 2 I2ðlÞ;

m3 þ r3yt�1 þ a3ðLÞDyt�1 if st 2 I3ðlÞ:

8><>: (3.1)

Bec et al. (2004), Berben and van Dijk (1999), Enders and Granger (1998), Kapetanios and Shin (2006) and
Seo (2003) consider a threshold variable st ¼ yt�1 which is integrated under H0ðpÞ but stationary under H1,
while Caner and Hansen (2001) and Shin and Lee (2003) use a stationary st under H0ðpÞ and H1 as for instance
st ¼ Dyt, see also Gonzalez and Gonzalo (1998). Our approach assumes that fyt; stg is stationary under H1,
cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
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hence allowing for all the choices considered in the references above. Various restrictions of (3.1) have been
considered in the literature, as for instance the symmetric mirroring 3-regime TAR specification (2.2). These
restriction can be written as

Dyt ¼ extðlÞbþ ut; ðl; bÞ 2 Yl � Rk with extðlÞ ¼ xtðlÞr,

xtðlÞ ¼ ½ð1; yt�1ÞIðst 2 I jðlÞÞ; ðDyt�1; . . . ;Dyt�pÞIðst 2 I jðlÞÞ�, (3.2)

for j ¼ 1; 2; 3 where r is a known selection matrix which is given by the restriction of (3.1) of interest. The
parameters set Yl can include various constraints for the thresholds, as l1 ¼ �l2 which corresponds to a
symmetric inner regime as in (2.2). The Wald statistics combined in the SupWald test correspond to the
hypothesis rj ¼ 0, j ¼ 1; 2; 3, for a threshold l, and can be computed as in (2.3), with a matrix R such that Rb
gives the r coefficients of the model. In what follows, r and R are assumed to be full-rank. As a benchmark, we
now consider the augmented Dickey–Fuller ðADFT Þ statistic, that is the t-statistic for the autoregressive
coefficient r of the linear specification

Dyt ¼ mþ ryt�1 þ aðLÞDyt�1 þ vt. (3.3)

An important feature of the symmetric mirroring TAR specification (2.2) was that a growing inner regime
I2ðlÞ gives the dynamic linear model (2.1) as a limit, so that (2.2) asymptotically nests (2.1), as formalized in
the next definition.

Definition 1. Consider a restriction (3.2) of the 3-regime threshold autoregressive model (3.1) such that the
parameters mj, rj and ajðLÞ are constant across a subset J of regime indices. Let S be the support of the
stationary threshold variable st and IJðlÞ ¼

S
j2JI jðlÞ.

This restricted autoregressive threshold model nests the augmented linear autoregressive model (3.3)
through the subset of regimes J if and only if
(i)
Pl

Ec
There exists a sequence ln 2 Yl such that IJðlnÞ ! S when n goes to infinity (i.e. limn!1PðsteIJðlnÞÞ ¼ 0).

(ii)
 The covariates xtðlÞ admit a partition xJtðlÞ; x�JtðlÞ, with xJtðlÞIðst 2 IJðlÞÞa0 and x�Jt ¼

x�JtIðsteIJðlÞÞ (implying limIJðlÞ!Sx�JtðlÞ ¼ 0). In addition, with limIJðlÞ!SxJtðlÞ ¼ ½1; yt�1;
Dyt�1; . . . ;Dyt�p�.
The introduction of the regime index set J allows for strongly constrained symmetric TAR specification as

Dyt ¼ ut þ

m1 þ r1yt�1 þ a1ðLÞDyt�1 if st 2 ð�1;�l� ¼ I1ðlÞ;

m2 þ r2yt�1 þ a2ðLÞDyt�1 if st 2 ð�l; lÞ ¼ I2ðlÞ;

m1 þ r1yt�1 þ a1ðLÞDyt�1 if st 2 ½l;þ1Þ ¼ I3ðlÞ;

8><>:
where l is in Rþ here. In this specification I1ðlÞ and I3ðlÞ cannot diverge to R while I1ðlÞ [ I3ðlÞ can, so that
this model asymptotically nests (3.3) through the inner regime j ¼ 2 and the outer regime J ¼ f1; 3g. The next
definition introduces adaptation.

Definition 2. Assume that the threshold variable st is chosen such that fyt; stg is stationary for any alternative
fytg in H1. Let S be the support of the stationary st. Consider a restriction (3.2) of the TAR model (3.1) which
nests the linear augmented autoregressive model (3.3) through the subset of regimes J. Then a random set LT

of admissible thresholds is J-adaptive if and only if
(i)
 The SupWaldT ðLT Þ has a finite null limiting distribution.

(ii)
 For any alternatives fytg of H1, there exists a deterministic sequence lT in Yl with limT!1IJðlT Þ ¼ S,

and lT is in LT with a probability tending to 1.
The statistic SupWaldT ðLT Þ is J-adaptive if and only if LT is.
ease cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
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This gives the following extension for Theorem 1 which similarly suggests that a SupWaldT ðLT Þ can
improve on the ADF test.

Theorem 4. Assume that the threshold variable st is chosen such that fyt; stg is stationary for any alternative fytg

in H1. Consider a restriction (3.2) of the TAR model (3.1) which nests the linear augmented autoregressive model

(3.3) through the subset of regimes J.
Then, if LT satisfies Definition 2(ii), SupWaldT ðLT Þ diverges in probability for any fytg in H1 and

SupWaldT ðLT ÞXADF2
T ð1þ oPð1ÞÞ.

3.2. Pivotal null limit distributions for asymptotically unbounded thresholds

From now on, we consider a level threshold variable, that is st ¼ yt�1, so that (3.1) becomes

Dyt ¼ ut þ

m1 þ r1yt�1 þ a1ðLÞDyt�1 if yt�1 2 I1ðlÞ;

m2 þ r2yt�1 þ a2ðLÞDyt�1 if yt�1 2 I2ðlÞ;

m3 þ r3yt�1 þ a3ðLÞDyt�1 if yt�1 2 I3ðlÞ:

8><>: (3.4)

We first focus on asymptotically unbounded thresholds

LT ¼ fl ¼ ½l1; l2�0 2 Yl;
ffiffiffiffi
T
p

lTpl1pl2p
ffiffiffiffi
T
p

lT ; l2 � l1X
ffiffiffiffi
T
p

nT g, (3.5)

where the inequalities
ffiffiffiffi
T
p

lTpl1pl2p
ffiffiffiffi
T
p

lT now control for the number of observations in the outer

regimes while l2 � l1X
ffiffiffiffi
T
p

nT deals with the inner regime. Finding the null limit distribution of the SupWald
statistic in this context necessitates to introduce a suitable standardization of the baseline covariate xtðlÞ in
(3.2). Consider X U

j;t and DX U
j;tðlÞ with,

X U
jt ðlÞ ¼ I

yt�1

sy

ffiffiffiffi
T
p 2 I jðlÞ

 !
1ffiffiffiffi
T
p ;

yt�1

T

� �
,

DX U
jt ðlÞ ¼ I

yt�1

sy

ffiffiffiffi
T
p 2 I jðlÞ

 !
Dyt�1ffiffiffiffi

T
p ; . . . ;

Dyt�pffiffiffiffi
T
p

� �
(3.6)

for j ¼ 1; 2; 3. Recall that W ð�Þ is a standard Brownian Motion and define

MjðlÞ ¼ s

R 1
0
IðW ðvÞ 2 I jðlÞÞdW ðvÞ

sy

R 1
0 W ðvÞIðW ðvÞ 2 I jðlÞÞdW ðvÞ

24 35; MU ðlÞ ¼

M1ðlÞ

M2ðlÞ

M3ðlÞ

03p�1

266664
377775, (3.7)

CjðlÞ ¼

R 1
0 IðW ðvÞ 2 I jðlÞÞdv sy

R 1
0 W ðvÞIðW ðvÞ 2 I jðlÞÞdv

sy

R 1
0 W ðvÞIðW ðvÞ 2 I jðlÞÞdv s2y

R 1
0 W 2ðvÞIðW ðvÞ 2 I jðlÞÞdv

24 35,
CU ðlÞ ¼ Diag½C1ðlÞ;C2ðlÞ;C3ðlÞ; 03p�3p�

0. (3.8)

The next theorem establishes functional convergence of sums related to the standardized xtðlÞ’s under H0ðpÞ,
for any p41. Following van der Vaart (1996) and van der Vaart and Wellner (1996), we consider functional

convergence in distribution in ‘1ð½�a; a�2Þ, the space of bounded functions over ½�a; a�2 equipped with the
supremum norm.

Theorem 5. Assume that H0ðpÞ, Assumptions EðsÞ with s44 and L given in Section 7 hold, and let

O ¼ Var½Dyt�1; . . . ;Dyt�p�
0.
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Then, for any a40,XT

t¼1

X U
jt ð�Þ

0et;
XT

t¼1

X U
jt ð�Þ

0X U
jt ð�Þ;

XT

t¼1

DX U
jt ð�Þ

0DX U
jt ð�Þ; j ¼ 1; 2; 3

" #
converges in distribution in ‘1ð½�a; a�2Þ to

Mjð�Þ;Cjð�Þ;O
Z 1

0

IðW ðvÞ 2 I jð�ÞÞdv; j ¼ 1; 2; 3

� �
and supl2½�a;a�2 k

PT
t¼1DX U

jt ðlÞ
0X U

jt ðlÞk ¼ oPð1Þ, for j ¼ 1; 2; 3. Moreover,
PT

t¼1 Dyt�ket=
ffiffiffiffi
T
p
¼ OPð1Þ and if

s414, supl2½�a;a�2 k
PT

t¼1 DX U
jt ðlÞ

0etk ¼ OPð1Þ, for j ¼ 1; 2; 3.

As seen from Bec et al. (2004), a result as Theorem 5 can be used to obtain the null limit distribution of
supremum of statistics as the Likelihood ratio, Score and Wald statistics. As shown in the proof section, the
fact that Theorem 5 holds for any real number a40 is sufficient to allow for an asymptotically random
LT=

ffiffiffiffi
T
p

in such statistics. The next corollary concerns more specifically the SupWald statistic. Let

L ¼ fl ¼ ½l1; l2�0 2 Yl; lpl1pl2pl; l2 � l1Xng

be the limit in distribution of LT=
ffiffiffiffi
T
p

. The next corollary extends Theorem 2 to a general TAR specification
and gives a simple condition on L ensuring that a SupWaldðLT Þ has an asymptotic pivotal distribution.

Corollary 1. Assume that Assumption EðsÞ with s414 as in Section 7 holds. Assume that ðlT ; lT ; nT Þ, satisfying

Assumption L in Section 7, converges in distribution to ðl; l; nÞ with

inf
v2½0;1�

W ðvÞo
l
sy

p
l
sy

o sup
v2½0;1�

W ðvÞ and n40. (3.9)

Consider a restriction of the TAR specification (3.4) with a covariate extðlÞ ¼ xtðlÞr with entries taken from

vectors

er1
II1ðlÞðyt�1Þ

II2ðlÞðyt�1Þ

II3ðlÞðyt�1Þ

0B@
1CA; er2

yt�1II1ðlÞðyt�1Þ

yt�1II2ðlÞðyt�1Þ

yt�1II3ðlÞðyt�1Þ

0B@
1CA; er3

½Dyt�1; . . . ;Dyt�p�II1ðlÞðyt�1Þ

½Dyt�1; . . . ;Dyt�p�II2ðlÞðyt�1Þ

½Dyt�1; . . . ;Dyt�p�II3ðlÞðyt�1Þ

0B@
1CA,

for some suitable er1;er2;er3. Then, under H0ðpÞ and if LT is as in (3.5), SupWaldT ðLT Þ converges in distribution to

sup
l2L=sy

fMU ðlÞ
0rðr0CU ðlÞrÞ

�1R0ðs2Rðr0CU ðlÞrÞ
�1R0Þ�1Rðr0CU ðlÞrÞ

�1r0MU ðlÞg,

which is finite and has a pivotal distribution provided that ½l; l; n�=sy has a pivotal distribution.

The restrictions on the covariates imply in particular that the restricted TAR does not impose constraints
linking the autoregression coefficients rj with the mean parameters mj or the lags coefficients, j ¼ 1; 2; 3. The
condition (3.9) entails that each regimes are not empty asymptotically, ensuring that inverse matrix in the limit
exists so that the limit variable is finite.

3.3. Pivotal null limit distributions for bounded thresholds

We restrict here to the common dynamic TAR specification

Dyt ¼ ut þ aðLÞDyt�1 þ

m1 þ r1yt�1 if yt�1 2 I1ðlÞ;

m2 þ r2yt�1 if yt�1 2 I2ðlÞ;

m3 þ r3yt�1 if yt�1 2 I3ðlÞ;

8><>: (3.10)

and consider bounded threshold sets as

LT ¼ fl ¼ ½l1; l2�0 2 Yl; lTpl1pl2plT ; l2 � l1XnT g. (3.11)
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To study this case, a specific standardization is needed for the inner regime of the baseline covariate xtðlÞ
in (3.2). Define

X B
2tðlÞ ¼

Iðyt�1 2 I2ðlÞÞ

T1=4
½1; yt�1�; X B

jtðlÞ ¼ Iðyt�1 2 I jðlÞÞ
1ffiffiffiffi
T
p ;

yt�1

T

� �
; j ¼ 1; 3,

DX B
t ¼

1ffiffiffiffi
T
p ½Dyt�1; . . . ;Dyt�p�. (3.12)

The study of the inner regime builds here on local-time asymptotics as considered in Park and Phillips (2001).
For a Brownian Motion W ð�Þ over the time interval ½0; 1�, the occupation time A7!

R 1
0 IðW ðvÞ 2 AÞdv defines a

measure over the Borel subsets of R. This measure has a density LW ð�Þ with respect to the Lebesgue measure
called local time, see Revuz and Yor (1999). In particular, the local time LW ð0Þ gives the limit distribution of
the number of observations in a central interval I2ðlÞ standardized with ðl2 � l1Þ

ffiffiffiffi
T
p

, see Park and Phillips
(2001). Consider a two-sided standard Brownian Motion Bð�Þ independent of W ð�Þ.6 Define, for Mjð�Þ and
Cjð�Þ as in (3.7) and (3.8),

MB
2 ðlÞ ¼

sL
1=2
W ð0Þ

s1=2y

R l2
l1

dBðwÞR l2
l1

wdBðwÞ

24 35; MBðlÞ ¼

M1ð0Þ

MB
2 ðlÞ

M3ð0Þ

0p�1

266664
377775, (3.13)

CB
2 ðlÞ ¼

LW ð0Þ

sy

l2 � l1
l22 � l21

2

l22 � l21
2

l32 � l31
3

26664
37775,

CBðlÞ ¼ Diag½C1ð0Þ;C
B
2 ðlÞ;C3ð0Þ; 0p�p�

0. (3.14)

The next theorem establishes limit results relevant for the bounded case under H0ðpÞ.

Theorem 6. Assume that H0ðpÞ, Assumptions EðsÞ with s44 and L given in Section 7 hold, and let O ¼
Var½Dyt�1; . . . ;Dyt�p�

0.
Then, for any a40,XT

t¼1

X B
jtð�Þ
0et;
XT

t¼1

X B
jtð�Þ
0X B

jtð�Þ;
XT

t¼1

DX B0
jt DX B

jt ; j ¼ 1; 2; 3

" #
converges in distribution in ‘1ð½�a; a�2Þ to ½Mjð�Þ;Cjð�Þ;O; j ¼ 1; 2; 3� and

sup
l2½�a;a�2

XT

t¼1

DX B0
jt X B

jtðlÞ

�����
����� ¼ oPð1Þ;

XT

t¼1

Dyt�ket=
ffiffiffiffi
T
p
¼ OPð1Þ.

for j ¼ 1; 2; 3.

Kapetanios and Shin (2006) and Seo (2003) implicitly used a similar result, but that did not include the
asymptotic of the inner regime because they impose a central unit root. The fact that the limit variables of the
outer regimes (j ¼ 1; 3 in (3.13)) are random constant is in line with the results of these authors. As a corollary
we derive the limit distribution under H0ðpÞ of a SupWald test based on a restriction of the TAR specification.
As seen for the specific TAR specification used in Theorem 3, the local time LW ð0Þ can disappear from the
limit variable due to self-standardization of the Wald statistic. As stated below, the SupWald statistics is
asymptotically pivotal under conditions that differs from the one of the unbounded case. In particular, the
6Recall that a two-sided Brownian Motion is a Brownian Motion defined over R as BðwÞ ¼ BþðwÞ for wX0, BðwÞ ¼ B�ð�wÞ for wo0,

where fBþðwÞgw2Rþ and fB�ðwÞgw2Rþ are independent Brownian Motions over Rþ.
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parameters of the central regime cannot depend upon the parameters of the inner regime, but m2 and r2 can be
dependent.

Corollary 2. Assume that Assumption EðsÞ with s414 as in Section 7 holds. Assume that ðlT ; lT ; nT Þ, satisfying

Assumption L in Section 7, converges in distribution to ðl; l; nÞ with n40 almost surely.
Consider a restriction of the TAR specification (3.4) with a covariate extðlÞ ¼ xtðlÞr with entries taken from

vectors

er1 II1ðlÞðy�1Þ

II3ðlÞðy�1Þ

 !
; er2 yt�1II1ðlÞðy�1Þ

yt�1II3ðlÞðy�1Þ

 !
; II2ðlÞðy�1Þ; yt�1II2ðlÞðy�1Þ; er4

Dyt�1

..

.

Dyt�p

0BB@
1CCA,

for some suitable er1;er2;er3. Then, under H0ðpÞ and if LT is as in (3.11), the SupWaldT ðLT Þ statistic converges in

distribution to

sup
l2L
fMBðlÞ

0rðr0CBðlÞrÞ
�1R0ðs2Rðr0CBðlÞrÞ

�1R0Þ�1Rðr0CBðlÞrÞ
�1r0MBðlÞg,

which is finite and has a pivotal distribution provided that ½l =l; n=l� has a pivotal distribution.

4. Simulation experiments

Comparing the adaptive quantile threshold set (2.6) with its nonadaptive counterpart (2.4) suggests that the
practical choice of an adaptive procedure may be more delicate due to a higher number of parameters. But
adaptation allows for drastically different behaviors under the null and the alternative as seen from
requirements R0 and R1. Hence a possible practical benefit of adopting an adaptive approach is a better trade-
off between the length of LT under the null and the alternatives as permitted by these additional parameters,
resulting in a more powerful test.7

In this section, we propose a practical methodology to devise adaptive threshold sets accordingly. As
suggested in Balke and Fomby (1997) and Taylor (2001), we use a set of stationary TAR alternatives
exhibiting various features for calibration of the adaptive sets (2.6) and (2.9), see Table 2 which reports the
behavior of the resulting test against some of the considered TAR alternatives. To ease calibration, we change
jDF T j into maxð1; jDF T jÞ in (2.6) and (2.9). As a result of the comparison of several values, the retained length
parameter in (2.9) is d ¼ 6. For (2.6), we fix p to :85 and retain d ¼ 10. Because limiting to TAR alternative
would ignore that adaptive SupWald tests can detect a larger class of ergodic alternatives, we study the power
of the test against Autoregressive Conditional Root models (ACR, see Bec et al., 2005 and Gouriéroux and
Robert, 2006). As a benchmark for comparison, we consider the ADF T test and a nonlinear unit-root test tNL

introduced by Kapetanios et al. (2003).8

4.1. Critical values

Table 1 gives the critical values based on 40,000 simulations of different sample sizes. Note that these critical
values are much higher than the squared ones of ADF test, which is ð�2:88Þ2 ¼ 8:2944 at the 5% level.
As shown later on in the simulation experiments, this will have some consequences on the relative power of
our tests with respect to the ADF test for close to linear DGPs. Note also that the critical values of the test
based upon unbounded LU

T are larger in small and medium samples than the ones associated to bounded LB
T ,
7Caner and Hansen (2001), in analogy with a discussion in Andrews (1993) concerning trimming in tests for a structural change, have

already argued that an ideal choice of a quantile threshold set (2.4) should be based on a trade-off between the null and the alternative: a

small proportion p decreases the power of the test by increasing its critical values while a large p limits the power by decreasing the set of

admissible thresholds. We extend this approach to the case of adaptive threshold sets.
8These last authors derived the model Dyt ¼ ry3t�1 þ vt as an approximation of a smooth transition autoregressive model. The tNL test is

based on the Student statistic for r. For comparison sake with our TAR that includes mean parameters, we consider the demeaned version

of the tNL test. From 40,000 replications of simulations with T ¼ 200 and 300, it follows that the critical value at the 5%-level is �2:94.
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Table 1

Critical values (40,000 simulations)

Sample size WSup
U WSup

B

15% 10% 5% 1% % in LU
T

15% 10% 5% 1% % in LB
T

100 12.00 13.20 15.24 19.83 97.78 10.82 12.04 14.01 18.64 73.69

150 11.96 13.17 15.11 19.30 93.43 10.84 12.02 13.89 17.99 67.79

200 11.80 12.99 14.84 19.33 88.79 10.80 11.98 13.83 18.05 62.89

250 11.73 12.92 14.76 19.22 87.88 10.90 12.04 13.90 17.92 61.91

300 11.57 12.77 14.74 19.27 82.61 10.90 12.01 13.82 18.14 56.21

500 11.41 12.58 14.54 18.67 77.56 11.05 12.22 14.13 18.09 48.31

1000 11.35 12.49 14.47 18.43 73.74 11.14 12.28 14.20 18.28 37.90
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suggesting that the length of LT is larger in mean than the one for the bounded LT . The last column for WSup
U

and WSup
B contains the percentage of yt�1 2 LT and confirms this conjecture. For instance, with a sample size

of 200, the percentage of observations in LU
T is 20% greater than the one for LB

T . Moreover, as expected, the
percentage of yt�1 in the inner regime for LB

T decreases sharply with the sample size. The critical values of the
two tests become closer when T increases, suggesting that the maximum of the WaldT ðlÞ statistic is achieved
for moderate thresholds l.
4.2. TAR alternatives

In order to investigate the effect of the choice of the threshold values on the power of the test, we consider
the TAR alternatives with an integrated inner regime

Dyt ¼ aDyt�1 þ et þ

m1 þ r1yt�1 if yt�1p� l

r2yt�1 if jyt�1jol

�m1 þ r1yt�1 if yt�1Xl

8>><>>:
with m1 ¼ 1:3� jr1j � l; r2 ¼ 0.

and et is an i.i.d. Nð0; 1Þ. The choice of the parameters values follows Bec et al. (2004) analysis of real
exchange rate data. Table 2 reports the 5%-level rejection rates of the ADF, WSup

U and WSup
B for T ¼ 200 and

300, using 1,000 replications.
The percentages of jytj contained in LU

T and LB
T , given into brackets, are greater than the ones under the null

(see Table 1) especially for LB
T . This illustrates the adaptive behavior of L

U
T and LB

T . It can also be seen that the
percentage of data in the stationary regimes depends crucially on the thresholds size (see the third column of
Table 2).

As expected, the power of all the tests increases with the sample size. The tests based on WSup
U and WSup

B

generally outperform the standard ADF except for close to linear alternatives, that is when the percentage in
the stationary regimes is more important. However, for these cases the power of adaptive tests is close or equal
to the power of the standard ADF especially for WSup

B . For processes characterized by a low percentage of
data in the stationary regimes, the gain of the adaptive tests can be as high as 70% compared to the ADF. The
power of tNL is always dominated by both SupWald tests. Beyond the lack of adaptation, the relative failure of
the tNL test may come from the fact that it is specifically devised for smooth transition threshold autoregressive
models under the alternative.

Finally, the test based on WSup
B outperforms the one based on WSup

U for all the cases. This gain in power by
the bounded interval compared to unbounded interval is due to the fact that the critical values of WSup

B are
relatively small since the percentage of observations in LU

T and LB
T are quite close.
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Table 2

Empirical power of the unit-root tests against TAR alternatives

ðl; a; r1Þ T % ADF tNL WSup
U WSup

B

ð10; 0;�0:1Þ 200 2.8 14.5 22.6 58.5 [91.9] 61.6 [93.6]

300 2.7 18.4 32.8 74.9 [86.4] 81.8 [95.8]

ð10; 0;�0:3Þ 200 1.5 18.3 66.3 84.9 [93.5] 88.6 [97.8]

300 1.4 23.4 84.1 93.9 [88.7] 96.5 [98.5]

ð10; 0:3;�0:1Þ 200 3.9 17.1 38.3 82.2 [93.8] 84.5 [97.0]

300 3.8 24.4 67.5 95.6 [88.9] 98.0 [98.8]

ð10; 0:3;�0:3Þ 200 2.1 36.4 94.2 98.3 [97.2] 98.6 [98.4]

300 2.0 77.3 98.3 99.8 [93.5] 100 [98.7]

ð2; 0:3;�0:1Þ 200 41.5 100 90.3 94.5 [98.5] 97.6 [98.3]

300 41.4 100 97.4 100 [99.0] 100 [98.7]

ð2; 0:3;�0:3Þ 200 23.9 100 100 100 [98.5] 100 [98.3]

300 23.8 100 100 100 [99.0] 100 [98.7]

Note: The column labeled % reports the percentage of data in the stationary regimes. The figures into brackets are percentages of jytj

contained in LU
T and LB

T .
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4.3. Autoregressive conditional root alternatives

Let us now check consistency of our SupWald test against a broader set of stationary alternatives. We
consider here an ACR model proposed by Bec et al. (2005) and Gouriéroux and Robert (2006). This
alternative is given by

yt ¼ ð1þ rÞst yt�1 þ aDyt�1 þ et,

where the transition variable st is binomial given the past, and specified by its conditional probability
Pðst ¼ 1jyt�1; etÞ ¼ ½1þ expð�ðaþ bjyt�1j

1=2ÞÞ��1, r is a real number, b is non-negative and a and b are
finite. In this model, et is an i.i.d. Nð0;s2Þ. The Markov ACR model exhibits local nonstationarity
when st ¼ 0, which is more likely to arise if aþ bjyt�1j

1=2 is small. When b40 as in our simulation experiment,
this source of local stationarity corresponds to a central regime, but with a less precise delimitation than
for the TAR model (2.2). Indeed, due to the randomness of st, local nonstationarity may also hold
outside a central zone. Even though the degree of local nonstationarity of the ACR model is related to the
parameters ða;bÞ, it is worth computing the percentage of time spent in the stationary regime (column ‘%’ in
Table 3) for interpretation’s sake. The parameters values considered for this power analysis are motivated
by Bec et al. (2005). In line with their ACR estimates for real exchange rate data, s is set to 0.009, and our
benchmark calibration sets a, a, b and r to 0.3, �10, 30 and �0:3, respectively. The results are reported
in Table 3.

Again, the ADF test slightly dominates the other tests in the case where the time spent in the stationary
regime (st ¼ 1) is important. In the other cases, the unit-root tests based on the threshold specification do
remarkably well while the ADF test has poor power. For instance, with the parameter values of the first DGP
reported in Table 3, the time spent in the stationary regime is equal to 4.4%, and the rejection rate of WSup

B is
75.1% compared to 27.2% for the ADF test. Finally, the power ofWSup

B slightly dominates the power ofWSup
U

for 13 cases out of 16. The tNL test slightly outperforms the WSup
B test in two cases.

5. The yield spread dynamics revisited

We propose here an application of our adaptive approach to the analysis of the yield spread dynamics.
Under costless and instantaneous portfolio adjustment assumption, arbitrage arguments often augmented by
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Table 3

Empirical power of the unit-root tests against ACR alternatives

ða;b; a; rÞ T % ADF tNL WSup
U WSup

B

ð�10; 30; 0:3;�0:3Þ 200 4.4 27.2 70.9 63.8 [96.5] 75.1 [98.4]

300 4.4 61.9 91.5 86.0 [92.2] 93.3 [98.8]

ð�10; 30; 0:3;�0:1Þ 200 7.9 14.3 20.9 17.7 [93.7] 27.0 [94.9]

300 7.9 22.8 38.9 30.0 [88.5] 44.4 [97.9]

ð�15; 30; 0:3;�0:3Þ 200 1.3 11.6 27.4 36.6 [91.7] 29.8 [79.4]

300 1.2 14.4 37.0 39.8 [85.8] 41.0 [80.8]

ð�15; 30; 0:3;�0:1Þ 200 2.1 8.1 13.8 11.9 [90.9] 10.7 [67.7]

300 2.1 12.8 15.1 13.5 [85.0] 13.1 [66.9]

ð�20; 120; 0:3;�0:3Þ 200 19.4 100 99.9 100 [98.5] 100 [98.4]

300 19.4 100 100 100 [99.0] 100 [98.7]

ð�20; 120; 0:3;�0:1Þ 200 35.0 89.3 81.6 64.4 [98.4] 72.0 [98.4]

300 35.1 100 95.0 93.1 [98.1] 97.1 [98.8]

ð�10; 30; 0;�0:3Þ 200 3.5 14.4 31.7 32.6 [93.5] 45.2 [97.5]

300 3.5 24.4 53.4 47.6 [88.5] 68.2 [98.5]

ð�10; 30; 0;�0:1Þ 200 6.3 10.0 11.2 10.4 [91.7] 14.6 [92.3]

300 6.2 15.8 17.2 16.0 [86.1] 24.0 [94.5]

Note: The column labeled % reports the percentage of data in the stationary regimes. The figures into brackets are percentages of jytj

contained in LU
T and LB

T .
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risk considerations leads to a very general relationship between yields of different maturities, i.e.

Rðk; tÞ ¼
1

k

Xk

j¼1

Et½Rð1; tþ j � 1Þ�

" #
þ Lðk; tÞ, (5.1)

where Rðk; tÞ denotes the k-period interest rate, Et is the expectation operator conditional on time t

information, and Lðk; tÞ represents the term premium, accounting for risk and liquidity premia.9 This in turn
implies the stationarity of the yield spread between longer-term and shorter-term interest rates. Indeed, by
rearranging (5.1), the spread which prevails may be expressed as

S�ðk; 1; tÞ ¼ Rðk; tÞ � Rð1; tÞ ¼
1

k

Xk�1
i¼1

Xi

j¼1

Et½DRð1; tþ jÞ� þ Lðk; tÞ, (5.2)

where the right-hand side is stationary as soon as interest rates are integrated of order one and the risk
premium is stationary. Hence, as noticed by Hall et al. (1992) and Anderson (1997), Eq. (5.2) acts as an
attractor as soon as the actual spread Sðk; 1; tÞ differs from the equilibrium spread S�ðk; 1; tÞ.

However, as pointed out by Anderson (1997), if one considers homogeneous transaction costs which reduce
the investor’s yield on a purchased bond by a constant amount l, then the investor will convert a portfolio
of one-period bonds to k-period bonds if and only if loSðk; 1; tÞ � S�ðk; 1; tÞ, or convert k-period bonds to
1-period bonds if and only if Sðk; 1; tÞ � S�ðk; 1; tÞo� l. Therefore, in presence of transaction costs, the
attraction toward Eq. (5.2) is inactive when

�loSðk; 1; tÞ � S�ðk; 1; tÞol. (5.3)
9For instance, the pure expectation hypothesis implies that Lðk; tÞ is zero while some other versions of the expectations hypothesis assert

that the premia are constant over time.
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Table 5

SupWald unit-root tests

SupWaldðLB
T Þ l LB

T LU
T

(1) (2) (3) (4)

SF 10.96 1.98 [0.09;7.86] [0.29;2.77]

SG 15.42 1.03 [0.11;3.63] [0.55;2.54]

SNZ 52.16 7.98 [0.06;11.76] [0.39;9.40]

SUS 30.07 1.69 [0.04;5.98] [0.29;2.68]

Note: See text.

Table 4

ADF and KPSS tests

Stat. k; ‘ SG k; ‘ SUS k; ‘ SF k; ‘ SNZ

ADF(k) 1 �1.889 4 �2.726 1 �2.672 4 �3.211

KPSSð‘Þ 3 1.671 4 0.602 2 0.101 4 1.691

The critical values at the 5% level are �2.88 for ADF and 0.463 for KPSS.
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Hence, there is no reason for the cointegration relation between long- and short-term rates to hold in this area,
or put in other words, for the spread to revert toward S�ðk; 1; tÞ. This arbitrage behavior clearly suggests a
stationary but nonlinear dynamics for the yield spread, which should be well captured by our parsimonious
auxiliary model. Moreover, recent empirical evidence—see e.g. Keim and Madhavan (1997) or Wagner
(1998)—displays transaction costs estimates ranging roughly from 0.5% to more than 2% depending on the
types of costs included in the calculation.

The interest rates data used in this study are monthly averages spanning from 1980:01 to 1998:12 for France
and Germany since the Euro was introduced in January 1999, and to 2001:08 for the US.10 For the New
Zealand,11 the available data span from 1985:01 to 2002:01. For France, Germany, the New Zealand and the
US, the short-term interest rate is, respectively, the 3-month PIBOR, the 3-month FIBOR, the 90-day Bank
Bill yield and the 3-month Treasury Bill rate, while the long term is the 10-year public and semi-public sector
bonds rate, the 9 to 10-year Bd listed federal securities rate, the 10-year secondary market government bond
yield and the 10-year treasury constant maturity rate. The yield spreads are defined as the difference between
the long and the short-term rates, and are denoted SF, SG, SNZ and SUS.

As can be seen from Table 4, performing the standard ADF unit-root test and KPSS stationarity test12

reveals that the US and German spreads are well characterized by a unit-root process, whereas no clear-cut
conclusion emerges for SF and SNZ.

Indeed, the KPSS statistics fails to reject the null of stationarity for the French spread while the ADF test
leads to reject the unit-root for SNZ. The values obtained for the SupWaldðLT Þ statistics—and reported in
Table 5—have to be compared with the corresponding critical values given in Table 1. The lag order of the
aðLÞ polynomial in model (2.2) is chosen according to the BIC and Ljung–Box statistics which suggest p ¼ 1
for the European spreads, and p ¼ 4 for the remainders. For each series considered here, the same threshold
value maximizes both SupWaldðLB

T Þ and SupWaldðLU
T Þ—see column (2) in Table 5. Hence, both test statistics

reach exactly the same value which is reported in column (1). However, the SupWaldðLB
T Þ and SupWaldðLU

T Þ

statistics depart from each other by the set of thresholds considered, as can be seen from columns (3) and (4).
10European and US data come, respectively, from Datastream and FRED databanks.
11These data come from the Reserve Bank of New Zealand.
12The lag length for the ADF(k) is chosen according to the Ljung–Box statistic. The size of the Bartlett windows for KPSS(‘) is obtained

following Andrews (1991).
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The SupWaldðLB
T Þ and SupWaldðLU

T Þ statistics lead to the same conclusion in three cases out of four: the null
is rejected by both tests at the 1%-level for SNZ and SUS and at the 5%-level for SG. Nevertheless, the French
data provide an illustration of the potential discrepancy between the bounded and unbounded intervals
approaches. Whereas the null can be rejected for SF at the 15%-level according to the SupWaldðLB

T Þ critical
values reported in Table 1, the unit root cannot be rejected at this level on the basis of the SupWaldðLU

T Þ

statistic. Hence, this empirical application confirms the gain in power implied by the bounded interval—which
has already been emphasized by the simulation experiments in the previous section. It is also worth noting that,
as expected, the SupWaldðLB

T Þ test seems more adaptive that the SupWaldðLU
T Þ test, since there are always more

observations lying in LB
T than in LU

T . The percentage of observations lying in LB
T ranges from 97.2 for the US

spread to 99.5 for German and New-Zealander data, whereas it never exceeds 86:2% for LU
T . Finally, this

empirical investigation of yield spread data provides support to the so-called expectations hypothesis, once the
transaction costs are accounted for—i.e. once the nonlinear feature of the stationary alternative is allowed for.

6. Conclusion

This paper develops adaptive threshold SupWald unit-root tests as an alternative to linear ones. Adaptive
threshold SupWald unit-root tests are consistent against stationary ergodic alternatives, therefore including a
large variety of nonlinear processes relevant in macroeconomic or financial applications. A power bound
indicates that these new unit-root tests can outperform linear ones, hence justifying the quite recent strand in
econometrics literature which searches for such an improvement through the use of a more complex nonlinear
specification to build a unit-root test. This theoretical finding is mostly confirmed by our simulation
experiment. It is also illustrated by an empirical analysis of yield spread data: when applied to post-1980
French, German, New-Zealander and US monthly data, our test rejects the null of unit root whereas ADF
and KPSS tests give mixed evidence at best. But the power bound suggests that the order of the improvement
crucially depends on the magnitude of the critical values of the SupWald test and our simulations reveal that
this is especially true for alternatives close to linearity, against which linear tests better perform. Regarding the
choice of a threshold set, the simulation experiments show that using bounded ones give a more powerful test,
by producing smaller critical values under the null, and because the retained choice of the bounded LT is
larger under the alternative. In addition, considering such bounded set of thresholds may also improve the
accuracy of the null limiting distribution, because they are smaller under the null.

7. Main assumptions and proofs

The proof section is organized as follows. We first state our main assumptions. We then prove Theorem 4,
which implies Theorem 1 in Section 7.2. Section 7.3 contains a general functional extension of Park and
Phillips (2001) which is used in Section 7.4 to establish Theorems 5 and 6. Our main limit results for the
SupWald statistics (Theorems 2 and 3, Corollaries 1 and 2) are proved in Section 7.5, and an Appendix groups
some useful lemmas and the proof of and intermediate result.

In what follows,!
P

denotes convergence in probability,!
d

stands for convergence in distribution and ¼
d
is

equality in distribution. Depending on the context, k � k denotes vector, matrix, or function norm, but in case
of a vector, kzk is the Euclidean norm of z. C is a generic constant that may vary from line to line.

7.1. Assumptions

Let us first introduce a limit theorem for sums of transformations of the yt�1’s due to Park and Phillips
(2001), see also Park and Phillips (1999). The next definitions are from Park and Phillips (2001). A map f ð�Þ

from R to R is regular if it is continuous in a neighborhood of infinity, and, for any compact subset C of R,

there exist some continuous functions f
�
ð�Þ and f �ð�Þ with lim�!0

R
ðf � � f

�
ÞðwÞdw ¼ 0, and d�40 such that

f
�
ðw0Þpf ðwÞpf �ðw

0Þ for all jw� w0jpd� on C. A finite-dimensional vector of functions is regular if each entry

is regular. Typical examples of such functions are the indicators Iðw 2 I jðlÞÞ j ¼ 1; 3, of the lower and upper
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regimes of the TAR model (3.4). A map f ð�Þ from R to R is I-regular if it is integrable, square integrable, and
satisfies the Lipschitz condition jf ðwÞ � f ðw0ÞjpK jw� w0j on its support. A finite-dimensional vector of
functions is I-regular if each entry is I-regular. A typical example of such functions is the indicator Iðw 2 I2ðlÞÞ
of the central regime of (3.4) Following Park and Phillips (2001), we shall assume that

Assumption E(s). The i.i.d. et’s are such that Eet ¼ 0 and Ejetj
4þso1. The et’s have a bounded density and

limy!1 ygE expðiye1Þ ¼ 0 for some g40.

Assumption L. For tX1 yt � yt�1 ¼
P1

i¼0piet�i with y0 ¼ 0, and where p0 ¼ 1,
P1

i¼0pia0 and
P1

i¼1ijpijo1.

Note that H0ðpÞ is a special case of Assumption L. The next theorem combines Theorems 3.1 and 3.2 in Park
and Phillips (2001).

Theorem 7 (Park and Phillips (2001)). Let s2 ¼ VarðetÞ, s2y ¼ s2ð
P1

i¼0piÞ
2, fW ðvÞgv2½0;1� and fBðwÞgw2R be two

independent standard Brownian Motions. Let F1 and F2 be collections of regular maps and I-regular maps,

respectively. Then, under Assumptions L and EðsÞ, s44, the finite dimensional marginal distributions of the

process indexed by ðf 1; f 2Þ,

1

T

XT

t¼1

f 1

yt�1ffiffiffiffi
T
p

� �
;
1ffiffiffiffi
T
p

XT

t¼1

f 1

yt�1ffiffiffiffi
T
p

� �
et;

1ffiffiffiffi
T
p

XT

t¼1

f 2 yt�1

� 	
;

1

T1=4

XT

t¼1

f 2 yt�1

� 	
et

" #0
,

ðf 1; f 2Þ 2F1 �F2, converge to the ones of

Z 1

0

f 1ðsyW ðvÞÞdv;s
Z 1

0

f 1ðsyW ðvÞÞdW ðvÞ;
LW ð0; 1Þ

sy

Z
f 2ðwÞdw;

sL
1=2
W ð0; 1Þ

s1=2y

Z
f 2ðwÞdBðwÞ

" #0
.

We now give our main assumption on the boundaries lT , lT and nT of LT .

Assumption K. Set F1 ¼ f½1;w;w2�Iðwpl1Þ; ½1;w;w2�Iðl1owol2Þ; ½1;w;w2�IðwXl2Þ; l 2 R2g and F2 ¼

f½1;w;w2�Iðl1owol2Þ; l 2 R2g. Under H0, the vector ½lT ; lT ; nT �
0 converges in distribution to the finite

vector ½l; l; n�0 jointly with the convergence in distribution of Theorem 7. The random vector ½l; l; n�0is
measurable with respect to the s field generated by the Brownian Motion fW ðvÞgv2½0;1�. Moreover, nX0 and
lþnpl almost surely, i.e. LT is nonempty asymptotically.

7.2. Proof of Theorem 4

We first introduce some related notations. M�1 denotes the Moore–Penrose pseudo-inverse of M. � denotes
the usual order of symmetric matrix, i.e. M1 �M2 if and only if M2 �M1 is nonnegative. We use the
following generalization of the Cauchy-Schwarz Inequality. Let Y and X be random column vectors and
Y ¼ BX þU with B ¼ E½YX 0�E�1½XX 0�. Then E½X 0U � ¼ 0 and 0 � E½UU 0� yields that

0 � E½YX 0�E�1½XX 0�E½Y 0X � � E½YY 0�. (7.1)

Changing expectations into empirical means yields an empirical version of (7.1).
Let us stack the autoregressive coefficients rj, j ¼ 1; 2; 3 of the TAR model into a vector r!. Under H1 and

stationarity of fyt; stg, the limit rjðlÞ of brjðlÞ writes, for each l

r!ðlÞ ¼ RðE½x0tðlÞxtðlÞ�Þ
�1E½x0tðlÞDyt� where R is a selection matrix with Rb ¼ r!. (7.2)

The next lemma studies the rjðlÞ’s under H1 when a regime grows.

Lemma 1. Assume that the threshold variable st is chosen such that fyt; stg is stationary for any alternative fytg in

H1. Let S be the support of the stationary st. Consider a restriction (3.2) of the TAR model (3.1) which nests the

linear augmented autoregressive model through regimes J. Then, for any fytg in H1 and j 2 J,
limIJðlÞ!SrjðlÞo0. Hence there exists a threshold parameter lj such that rjðl

j
Þo0.
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Proof of Lemma 1. Denote H1 as H1;pþ1 to recall that pþ 1 lags are used in the autoregressive model (3.3).
Write similarly vt ¼ vt;pþ1 and rewrite (3.3) as

Apþ1ðLÞðyt �mÞ ¼ vt;pþ1 ¼ yt � m� ð1þ rÞyt�1 � aðLÞDyt�1 so that Apþ1ð1Þ ¼ 1� ð1þ rÞ ¼ �r,

where Apþ1ðLÞ ¼ 1þ A1;pþ1Lþ � � � þ Apþ1;pþ1L
pþ1 is given by the linear regression of yt on yt�1; . . . ; yt�p�1,

which is uniquely defined since Varð½yt�1; . . . ; yt�p�1�
0Þ has an inverse under H1;pþ1.

13 In the equation above, m

is the mean of yt which can be set to 0 as done from now on, by changing yt into yt �m. We first show that, for
all pX1, the proposition PðpÞ: Apð1Þ40 for any fytg in H1;p. is true. We first show that Pð1Þ is true. For p ¼ 1,
we have A1ðLÞyt ¼ yt � A1;1yt�1 ¼ vt;1 with

A1;1 ¼
Covðyt; yt�1Þ

Varðyt�1Þ
¼

Covðyt; yt�1Þ

Var1=2ðytÞVar
1=2ðyt�1Þ

¼ Corrðyt; yt�1Þ

by stationarity. The Cauchy–Schwarz Inequality then yields that

�1pA1;1p1 with jA1;1j ¼ 1 if and only if yt ¼ yt�1 or yt ¼ �yt�1.

Note that A1;1 ¼ 1 is impossible, since it would give yt ¼ y0 which is a process excluded by H1. Then A1ð1Þ ¼
1� A1;1 is in ð0; 2� and Pð1Þ is true.

We now show that PðpÞ is true for any p41 by a contradiction argument. Assume that Apð1Þp0. Then,
since Apð0Þ ¼ 1, Apð�Þ has a root r in ð0; 1� by the Mean Value Theorem. Write ApðLÞ ¼ ð1� L=rÞ eApðLÞ and
consider the stationary process eyt ¼

eApðLÞyt. Note that feytg satisfies H1;1 because fytg is in H1;p andeyt ¼
eAðLÞyt ¼

eA0;p�1yt þ � � � þ
eAp�1;p�1yt�pþ1, so that Var½eyt� ¼ 0 would contradict H1;p which implies that

Varð½yt; . . . ; yt�pþ1�
0Þ has an inverse. Observe moreover that eyt�1 ¼

eAðLÞyt�1 ¼
eA0;p�1yt�1 þ � � � þ

eAp�1;p�1yt�p

is uncorrelated with vt;p since ApðLÞyt ¼ vt;p corresponds to the regression of yt on yt�1; . . . ; yt�p. Because
ApðLÞyt ¼ ð1� L=rÞ eApðLÞyt ¼ eyt � eyt�1=r ¼ vt;p, eyt � eyt�1=r ¼ vt;p is then the regression of eyt on eyt�1. But
1� 1=rp0 since r is in ð0; 1�. This contradicts Pð1Þ, so that Apð1Þ40 necessarily, and PðpÞ is true for any p41.

We now return to the proof of Lemma 1. Observe that rj ¼ rJ for all j in J by Definition 1. Let
bðlÞ ¼ E�1½x0tðlÞxtðlÞ�E½x0tðlÞDyt�. Split bðlÞ into bJðlÞ and b�JðlÞ such that xtðlÞbðlÞ ¼ xJtðlÞbJðlÞþ
x�JtðlÞb�JðlÞ, where xJtðlÞ and x�JtðlÞ are from Definition 1(ii). Note that rJ is one of the entries of bJðlÞ.
Let xt ¼ ½1; yt�1;Dyt�1; . . . ;Dyt�p� and b ¼ E�1½x0txt�E½xtDyt�, noticing that E½x

0
txt� has an inverse under H1. The

rest of the proof shows that limIJðlÞ!S bJðlÞ ¼ b so that limIJðlÞ!S rJðlÞ ¼ r ¼ �Apþ1ð1Þo0 by Pðpþ 1Þ,
which is the statement of Lemma 1. The Frish–Waugh Theorem yields

bJðlÞ ¼ ðE½x
0
JtðlÞxJtðlÞ� � E½x0JtðlÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞxJtðlÞ�Þ

�1

� ðE½x0JtðlÞDyt� � E½x0JtðlÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞDyt�Þ.

by Definition 1(ii), E½x0�JtðlÞzt� ¼ E½x0�JtðlÞztIðsteIJðlÞÞ�. We first show that

lim
IJðlÞ!S

E½x0JtðlÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞDyt� ¼ 0. (7.3)

Let a be a row vector. The Cauchy–Schwarz Inequality and (7.1) yields

jaE½x0JtðlÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞDyt�a
0j

p½aE½x0JtðlÞIðsteIJðlÞÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞxJtðlÞIðsteIJðlÞÞ�a0�1=2

� ½aE½DytIðsteIJðlÞÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞIðsteIJðlÞÞDyt�a
0�1=2

p½aE½x0JtðlÞxJtðlÞIðsteIJðlÞÞ�a0�1=2½aE½ðDy2
t ÞIðsteIJðlÞÞ�a0�1=2 ¼ oð1Þ when IJðlÞ ! S.

Definition 1(ii) gives, when IJðlÞ ! S,

0 � E½x0JtðlÞx�JtðlÞ�E�1½x0�JtðlÞx�JtðlÞ�E½x0�JtðlÞxJtðlÞ�

� E½x0JtðlÞxJtðlÞIðsteIJðlÞÞ� ! 0.
13If not yt ¼ b0 þ b1yt�1 þ � � � þ yt�p�1 so that, as a solution of such linear recurrence equation, yt is a product of polynomial and

exponential functions of t. Hence, under stationarity, yt must be a constant process, which is excluded by definition of H1.
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As well, limIJðlÞ!S E½x
0
JtðlÞxJtðlÞ� ¼ E½x0txt� and limIJðlÞ!S E½x

0
JtðlÞDyt� ¼ E½x0tDyt�. Therefore, the continuity

of M 7!M�1 at fM;DetðMÞa0g, the approximations above together with the expression of bJðlÞ show that
limIJðlÞ!S bJðlÞ ¼ b. &

Proof of Theorem 4. We give first a suitable expression of the Wald statistics WaldT ðlÞ and ADF2
T , and collect

important facts. Let bUðlÞ and bU0ðlÞ be the column vector of estimated residuals butðlÞ ¼ Dyt � xtðlÞbbT ðlÞ andbu0tðlÞ ¼ Dyt � xtðlÞbb0T ðlÞ, t ¼ 1; . . . ;T from the TAR model (3.2), where bb0T ðlÞ is the OLS estimator of bðlÞ
under the constraint r!ðlÞ ¼ 0. Let similarly bV and bV0 be the vector of estimated residuals of the linear model

(3.3), where bV0 is computed under the restriction r ¼ 0. The Wald statistics write (see e.g. Gouriéroux and
Monfort, 1995)

WaldT ðlÞ ¼ T 1�
bU 0ðlÞ bUðlÞbU 00ðlÞ bU0ðlÞ

 !
and ADF2

T ¼ T 1�
bV 0 bVbV 00 bV 0

 !
. (7.4)

Note that bV 0 bV and bV 00 bV 0 are continuous functions of sums of empirical covariance matrices. Therefore, under

H1, the Ergodic Law of Large Numbers yields bV 0 bV=T ¼ s2v þ oPð1Þ and bV 00 bV0=T ¼ s2v0 þ oPð1Þ where s2v and

s2v0 are the innovations variance of the general and constrained linear models (3.3). Under H1, s2v4s2v040

since ra0 as shown by Pðpþ 1Þ in the proof of Lemma 1, so that ADF 2
T diverges with the exact order T in

probability.
Let DY ¼ ½DyT ; . . . ;Dy1�

0, XJðlÞ ¼ ½x0JT ðlÞ; . . . ;x
0
J1ðlÞ�

0, X�JðlÞ ¼ ½x0�JT ðlÞ; . . . ;x
0
�J1ðlÞ�

0, and X ¼

½x0T ; . . . ; x
0
1�
0 with xt ¼ ½1; yt�1;Dyt�1; . . .Dyt�p�. Let

Pl ¼ Id� X�JðlÞðX 0�JðlÞX�JðlÞÞ
�1X 0�JðlÞ

be the orthogonal projection on the linear span orthogonal to the columns of X�JðlÞ. Let lT be the
deterministic sequence of Definition 2. Note that bUðlT Þ is DY minus its orthogonal projection on the linear
subspace spanned by ½XJðlT Þ;X�JðlT Þ�, which is also the space spanned by ½PlT

XJðlT Þ;X�JðlT Þ�. The
definition of PlT

gives X 0�JðlT ÞPlT
XJ ¼ 0 and then

bU 0ðlT Þ bUðlT Þ

T
¼

DY 0PlT
XJðlT Þ

T
ðX 0JðlT ÞPlT

XJðlT ÞÞ
�1

X 0JðlT ÞPlT
DY

T
ð7:5Þ

þ
DY 0X�JðlT Þ

T
ðX 0�JðlT ÞX�JðlT ÞÞ

�1
X 0�JðlT ÞDY

T
. ð7:6Þ

We first study (7.5) and begin by showing that T�1DY 0PlT
XJðlT Þ ¼ T�1DY 0X þ oPð1Þ. Note that

DY 0PlT
XJðlT Þ

T
¼

DY 0XJðlT Þ

T

þ
DY 0X�JðlT ÞðX

0
�JðlT ÞX�JðlT ÞÞ

�1X 0�JðlT ÞXJðlT Þ

T
.

We show that T�1DY 0XJðlT Þ ¼ T�1DY 0X þ oPð1Þ: We have by stationarity and Definition 1(ii)

E
DY 0ðXJðlT Þ � X Þ

T

���� ���� ¼ E
1

T

XT

t¼1

DytðxJtðlT Þ � xtÞ

�����
�����pE½jDytjkxJtðlT Þ � xtk�

pE1=2½ðDytÞ
2
� � E1=2½kxJtðlT Þ � xtk

2� ¼ oð1Þ. ð7:7Þ

Therefore, T�1DY 0XJðlT Þ ¼ T�1DY 0X þ oPð1Þ and we now show that the second item in T�1DY 0PlT
XJðlT Þ

can be neglected. Let a be a column vector of dimension pþ 2. Then the Cauchy–Schwarz Inequality,
Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of

Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011

dx.doi.org/10.1016/j.jeconom.2007.05.011


ARTICLE IN PRESS
F. Bec et al. / Journal of Econometrics ] (]]]]) ]]]–]]] 21
Definition 1(ii) and (7.1) yield

DY 0X�JðlT ÞðX
0
�JðlT ÞX�JðlT ÞÞ

�1X 0�JðlT ÞXJðlT Þa

T














p
DY 0X�JðlT ÞðX

0
�JðlT ÞX�JðlT ÞÞ

�1X 0�JðlT ÞDY

T













1=2

�
a0X 0JðlT ÞX�JðlT ÞðX

0
�JðlT ÞX�JðlT ÞÞ

�1X 0�JðlT ÞXJðlT Þa

T













1=2

¼
ð
PT

t¼1DytIðsteIJðlT ÞÞx�JðlT ÞÞðX
0
�JðlT ÞX�JðlT ÞÞ

�1
ð
PT

t¼1DytIðsteIJðlT ÞÞx
0
�JðlT ÞÞ

T













1=2

�
a0X 0JðlT ÞX�JðlT ÞðX

0
�JðlT ÞX�JðlT ÞÞ

�1X 0�JðlT ÞXJðlT Þa

T













1=2

p
1

T

XT

t¼1

ðDytÞ
2IðsteIJðlT ÞÞ

 !1=2 XT

t¼1

a0x0JtðlT ÞxJtðlT ÞIðsteIJðlT ÞÞa

 !1=2

.

As in (7.7),

E
1

T

XT

t¼1

ztIðsteIJðlT ÞÞ












pEjztIðsteIJðlT ÞÞj ¼ oð1Þ; zt ¼ ðDytÞ

2; a0x0JtðlT ÞxJta, (7.8)

for any a, so that the second item of T�1DY 0PlT
XJðlT Þ can be neglected, and T�1DY 0PlT

XJðlT Þ ¼

T�1DY 0X þ oPð1Þ. Arguing similarly with (7.7) and (7.8) yields T�1X 0JðlT ÞPlT
XJðlT Þ ¼ T�1X 0X þ oPð1Þ.

Note that T�1DY 0X ¼ E½Dytxt� þ oPð1Þ and T�1X 0X ¼ E½x0txt� þ oPð1Þ, E½x
0
txt� having an inverse, so that (7.5)

equals T�1DY 0X ðX 0X Þ�1X 0DY þ oPð1Þ, with T�1DY 0X ðX 0X Þ�1X 0DY ¼ T�1 bV 0 bV .Note that arguing as above

with (7.1) and (7.8) yields that (7.6) is oPð1Þ, so that T�1 bU 0ðlT Þ bUðlT Þ ¼ T�1 bV 0 bV þ oPð1Þ. Repeating the same

steps for the restricted models yields T�1 bU 00ðlT Þ bU0ðlT Þ ¼ T�1 bV 00 bV0 þ oPð1Þ. Substituting into (7.4) now yields

SupWaldT ðLT ÞXWaldT ðlT Þ þ oPð1Þ ¼ T 1�
T�1 bV 0 bV þ oPð1Þ

T�1 bV 00 bV0 þ oPð1Þ

 !
þ oPð1Þ ¼ ADF2

T ð1þ oPð1ÞÞ: &

7.3. Functional limit distribution for integrated processes

Theorems 5 and 6 will be derived from a functional version of Theorem 7 from Park and Phillips (2001).
Stating this more general result requires additional notations from Empirical Processes Theory that we
introduce now. For a collection of functions F and a functional zð�Þ over F (as for instance empirical sums),
kzkF ¼ supf2Fkzðf Þk is the uniform norm of zð�Þ over F. The functional space ‘1ðFÞ ¼ fzð�Þ; kzkFo1g is
the space of bounded functionals over F and is equipped with the norm k � kF. More specifically, let ZT ðf Þ be
a sum from Theorem 7 and F be the associated collection Fj, j ¼ 1; 2. fZT ðf Þgf2F can be viewed as a
stochastic process indexed by the function f ð�Þ. It is convenient to consider that F is a subset of a larger
collection E, as for instance the set of bounded measurable functions. An envelope of F is a function F ð�Þ such
that, for any f ð�Þ in F, jf ðwÞjpF ðwÞ for all w in R. Let k � k be a norm over E. For f ð�Þ andf 0ð�Þ in E, the
bracket ½f ; f 0� is a set of functions gð�Þ of E with f ðwÞpgðwÞpf 0ðwÞ for all w. An �-bracket is a bracket ½f ; f 0�
with kf � f 0kp�. The bracketing number N ½ �ð�;F; k:kÞ is the minimum number of �-brackets of E needed to
cover F. For vector-valued functions, envelope and brackets can be defined components by components. In
view of the form of the limits in Theorem 7, we use the L1 norm with respect to the Lebesgue measure,
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assuming that it also controls the Lq norm, q ¼ 2; 3; 4. Recall that the Lq norm k � kq with respect to Lebesgue
measure is kf kq ¼ ð

R
kf ðwÞkq dwÞ1=q, 1pqo1.

Theorem 8. Assume that Assumptions EðsÞ, s44, and L hold. Let F1 be a class of regular functions with a

continuous envelope, and F2 be a class of I-regular functions with a continuous envelope.
Assume that there exist some sets Ej with Fj � Ej, j ¼ 1; 2, and some constant Cq, q ¼ 2; 3; 4 such that, for

any f and f 0 in Ej, j ¼ 1; 2,

kf � f 0k22pC2kf � f 0k1; kf � f 0k33pC3kf � f 0k1 and kf � f 0k44pC4kf � f 0k1. (7.9)

Assume moreover that, for C540

N ½ �ð�;Fj ; k � k1ÞpC5�
�z for some z in ð0; 1� and any �40; j ¼ 1; 2. (7.10)

Then the convergence in distribution of Theorem 7 holds in ‘1ðF1Þ � ‘
1ðF2Þ.

Given the finite dimensional convergence in distribution stated in Theorem 7, proving Theorem 8 works by
showing asymptotic stochastic equicontinuity. Let ZT ðf Þ be a sum of Theorem 7 and F � E be the associated
collection Fj, j ¼ 1; 2. Asymptotic stochastic equicontinuity of fZT ðf Þgf2F means that, for every d0; d140,
there exists a finite covering F1; . . . ;Fn of F such that

lim sup
T!þ1

P sup
1pipn

sup
ðf ;f 0Þ2F2

i

jZT ðf
0
Þ � ZT ðf ÞjXd0

0@ 1Apd1.

see Theorem 18.14 in van der Vaart (1996), or Theorem 1.5.6 in van der Vaart and Wellner (1996). As
discussed by these authors, finding a covering F1; . . . ;Fn can be done through any arbitrary norm k � k on the
index set F. In what follows, we say that fZT ðf Þgf2F is asymptotically stochastically k � k-equicontinuous if for
any d0; d140 there is a d such that

lim sup
T!þ1

P sup
ðf ;f 0Þ2F2;kf 0�f kpd

jZT ðf
0
Þ � ZT ðf ÞjXd0

 !
pd1. (7.11)

We specifically have

Lemma 2. Assume that Assumptions Eð0Þ and L hold. Let E and F � E be some collections of functions such

that (7.9) holds over E, and that the bracketing entropy numbers of F satisfy (7.10). Then

1

T

XT

t¼1

f
yt�1ffiffiffiffi

T
p

� �( )
f2F

;
1ffiffiffiffi
T
p

XT

t¼1

f
yt�1ffiffiffiffi

T
p

� �
et

( )
f2F

,

1ffiffiffiffi
T
p

XT

t¼1

f ðyt�1Þ

( )
f2F

and
1

T1=4

XT

t¼1

f ðyt�1Þet

( )
f2F

are asymptotically stochastically k � k1-equicontinuous.
Assume moreover that EðsÞ holds with s414, and that, for q ¼ ðsþ 4Þ=ðsþ 1Þ; 2ðsþ 4Þ=ðsþ 1Þ;

3ðsþ 4Þ=ðsþ 1Þ, q ¼ 2ðsþ 4Þ=s; 4ðsþ 4Þ=s, there are some constants Cq such that for all f ð�Þ, f 0ð�Þ in E

kf � f 0kq
qpCqkf � f 0k1. (7.12)

Then, for any integer number kX1, f1=
ffiffiffiffi
T
p PT

t¼1Dyt�kf ðyt�1=
ffiffiffiffi
T
p
Þetgf2F is asymptotically stochastically

k � k1-equicontinuous.

Proof of Lemma 2. See Appendix.

Proof of Theorem 8. Let F be F1 or F2. The convergence statement of Theorem 8 follows from Theorem 7
and asymptotic stochastic equicontinuity given by Lemma 2, provided that each sums of the theorem are in
‘1ðFÞ. This is due to the fact that the theorem assumes that F1 and F2 have continuous envelopes which
give, respectively, finite norms k � kF1

or k � kF2
for each sums. &
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7.4. Proof of Theorems 5 and 6

We use here lemmas from the Appendix. The proofs of Theorems 5 and 6 are also based on the following
preliminary result.

Lemma 3. Let f ðw; yÞ be IðwpyÞ, IðwXyÞ, wIðwpyÞ, wIðwXyÞ, w2IðwpyÞ, w2IðwXyÞ. Then, under Assumptions

L and Eð0Þ, for any a40,

1

T

XT

t¼1

f
yt�1ffiffiffiffi

T
p ; y
� �( )

y2½�a;a�

;
1ffiffiffiffi
T
p

XT

t¼1

f
yt�1ffiffiffiffi

T
p ; y
� �

et

( )
y2½�a;a�

,

1ffiffiffiffi
T
p

XT

t¼1

f ðyt�1; yÞ

( )
y2½�a;a�

and
1

T1=4

XT

t¼1

f ðyt�1; yÞet

( )
y2½�a;a�

satisfy Conditions (7.9) and (7.10) of Theorem 8 and are asymptotically stochastically j � j-equicontinuous.
Assume in addition that EðsÞ holds for s414. Then, if f ðw; yÞ denotes IðwpyÞ or IðwXyÞ, fT�1=2

PT
t¼1Dyt�k

f ðyt�1=
ffiffiffiffi
T
p

; yÞetgy2½�a;a�, kX1, is asymptotically stochastically j � j-equicontinuous.

Proof of Lemma 3. To prove the first asymptotic stochastic equicontinuity result, we satisfy the conditions
(7.9) and (7.10) of Theorem 8 and apply Lemma 2. Take E ¼F ¼ ff ð�; yÞgy2½�a;a�. Writting f ðw; yÞ as
f ðwÞIðwpyÞ or f ðwÞIðwXyÞ, we have for any integer numbers q

kf ð�; y2Þ � f ð�; y1Þkq
q ¼

Z y1

y2

jf ðwÞjq dw














¼

jy2 � y1j if f ðwÞ ¼ 1;

jyqþ1
2 � yqþ1

1 j

qþ 1
¼
jyq

2 þ y1y
q�1
2 þ � � � þ yq

1j

qþ 1
jy2 � y1j if f ðwÞ ¼ w;

jy2qþ1
2 � y2qþ1

1 j

2qþ 1
¼
jy2q

2 þ y1y
2q�1
2 þ � � � þ y2q

1 j

2qþ 1
jy2 � y1j if f ðwÞ ¼ w2;

8>>>>>>><>>>>>>>:
ð7:13Þ

so that (7.9) holds with Cq ¼ 1 if f ðwÞ ¼ 1,

Cq ¼ max
ðy1;y2Þ2½�a;a�2

yq
2 þ y1y

q�1
2 þ � � � þ yq

1

qþ 1












; Cq ¼ max

ðy1;y2Þ2½�a;a�2

y2q
2 þ y1y

q�1
2 þ � � � þ y2q

1

2qþ 1












,

for f ðwÞ ¼ w, f ðwÞ ¼ w2, respectively. For f ðw; yÞ ¼ f ðwÞIðwpyÞ (the other case being symmetric) brackets can
be taken here as ½f ð�; yiÞ; f ð�; yiþ1Þ� ¼ ff ð�; yÞ; yipypyiþ1g. Eq. (7.13) yields that there is a C40 such that
kf ð�; y2Þ � f ð�; y1Þk1pCjy2 � y1j for all y1, y2 in the compact interval ½�a; a�, so that (7.10) holds with z ¼ 1.
Due to the latter inequality, asymptotic stochastic k � k1-equicontinuity implies here asymptotic stochastic
j � j-equicontinuity. The asymptotic stochastic equicontinuity of T�1=2

PT
t¼1 Dyt�kf ðT�1=2yt�1; yÞÞet on ½�a; a�

follows from Lemma 2 because, for f ðwÞ ¼ 1, (7.13) holds for any q40, implying (7.12) in Lemma 2. &

Proof of Theorem 5. Assume for brevity that sy ¼ 1. Observe that the processes of the theorem are in

‘1ð½�a; a�2Þ. Note that T�1=2
PT

t¼1Dyt�ket, kp1, is a centered martingale with EðDyt�ketÞ
2o1 (see Lemma A.2

in the Appendix), so that T�1=2
PT

t¼1Dyt�ket ¼ OPð1Þ.

We first show that supl2½�a;a�2k
PT

t¼1DX U
jt ðlÞetk ¼ OPð1Þ, j ¼ 1; 2; 3. Since DX U

1tðlÞ þ DX U
2tðlÞ þ DX U

3tðlÞ ¼

T�1=2½Dyt�1; . . . ;Dyt�k� and T�1=2
PT

t¼1Dyt�ket ¼ OPð1Þ, 1pkpp, it is sufficient to take j ¼ 1; 3, and to

prove the result for j ¼ 1 by symmetry. Because the entries T�1=2
PT

t¼1Dyt�kIðyt�1=
ffiffiffiffi
T
p

pl1Þet, 1pkpp, of
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follows from the asymptotic stochastic equicontinuity established in Lemma 3.
For the rest of the theorem, we firstly derive the finite-dimensional limit distribution. Note thatXT

t¼1

DX U
jt ðlÞ

0DX U
jt ðlÞ ¼

O
T

XT

t¼1

I
yt�1ffiffiffiffi

T
p 2 I jðlÞ
� �

þ
1

T

XT

t¼1

f½Dyt�kDyt�k0 �1pk;k0pp � OgI
yt�1ffiffiffiffi

T
p 2 I jðlÞ
� �

ð7:14Þ

and consider first the process
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( )
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. (7.15)

Let F ¼ f½1;w;w2�Iðw 2 I jðlÞÞ; j ¼ 1; 2; 3; l 2 ½�a; a�2g be the class of functions appearing in the process (7.15).
Observe that F is a class of regular functions, so that Theorem 7 yields that the finite dimensional limit
distribution of (7.15) is the limit distribution of the lemma. To check for the asymptotic stochastic
equicontinuity of (7.15), note that Iðw 2 I2ðlÞÞ ¼ 1� Iðw 2pl1Þ � IðwXl2Þ, so that Lemma 3 establishes that
(7.15) is asymptotic stochastic equicontinuity as sum of such processes. It follows that (7.15) converges in
distribution in ‘1ð½�a; a�2Þ to the limit of Theorem 5.

To complete the proof of the theorem, it remains to show that the remainder term (7.14) andPT
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0X U

jt ðlÞ are uniformly negligible over ½�a; a�. This is done in the next two steps which show
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jt ðlÞ and of the remainder term (7.14).
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does not depend upon l, it is sufficient to study j ¼ 1. The absolute values of entries of the increments ofPT
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,

k ¼ 1; . . . ; p, by the Cauchy–Schwarz Inequality and Lemma A.2. Then the asymptotic stochastic
equicontinuity of

PT
t¼1DX U

1tðlÞ
0X U

1tðlÞ follows from Lemma 3 and the definition (7.11) of asymptotic
stochastic equicontinuity.

For
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,

1pk; k0pp similarly gives asymptotic stochastic equicontinuity.
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Step 2:
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which can be made arbitrarily small taking I large enough. Therefore, it is sufficient to show that
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provided that C is taken large enough, see Lemma A.2. Reasoning on that event gives
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by Lemma A.2 for the first remainder term, which is due to the case f T ðyÞ ¼ y=
ffiffiffiffi
T
p

, and since
max1ptpT jf T ðyt�1Þj ¼ OPð1Þ. Now Lemma A.1 and arguing as in (A.11) yield
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Therefore, (7.18) with s44 and (7.19) shows that
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Observe now that the leading term is oPð1Þ since this sum is a martingale with a variance bounded by
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so that it is sufficient to show that T�1
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where the leading term is again an oPð1Þ martingale by definition of et�k;tþn�k. This ends the proof of
Theorem 5. &

Proof of Theorem 6. Assume that sy ¼ 1. That
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t¼1DX B0
t DX B

t ¼ Oþ oPð1Þ has been proven in Theorem 5

since DX B0
t DX B

t ¼ DX U
1tðlÞ

0DX U
1tðlÞ þ DX U

2tðlÞ
0DX U

2tðlÞ þ DX U
3tðlÞ

0DX U
3tðlÞ. Note that all the processes of the

lemma are in ‘1ð½�a; a�2Þ. The rest of the proof is divided in three steps.
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PT
t¼1X

B
jtðlÞ

0et,
PT

t¼1X B
jtðlÞ

0X B
jtðlÞ,

PT
t¼1DX B0

t X B
jtðlÞ, j ¼ 1; 2; 3.

Let

X jtðlÞ ¼
Iðyt�1 2 I jðlÞÞ

T1=4
½1; yt�1�; j ¼ 1; 3; X t ¼

1

T1=4
½1; yt�1�,

with X 1tðlÞ ¼ X 1tðl1Þ and X 3tðlÞ ¼ X 3tðl2Þ. The asymptotic stochastic equicontinuity over l1 or l2 in ½�a; a� ofPT
t¼1X

0
jtðlÞet and

PT
t¼1X

0
jtðlÞX

0
jt; j ¼ 1; 3, directly follows from Lemma 3. This gives the asymptotic stochastic

equicontinuity of
PT

t¼1X B
jtðlÞet,

PT
t¼1X

B
jtðlÞ

0X B
jtðlÞ, j ¼ 1; 3, which uses a higher standardization (

ffiffiffiffi
T
p

for 1 and

T for yt�1 instead of T1=4). For j ¼ 2, note that X B
2tðlÞ ¼ X t � X 1tðlÞ � X 3tðlÞ, X B

2tðlÞ
0X B

2tðlÞ ¼ X 0tX t �

X 01tðlÞX 1tðlÞ � X 03tðlÞX 3tðlÞ so that
PT

t¼1X B
2tðlÞ

0et,
PT

t¼1X
B
2tðlÞ

0X B
2tðlÞ are also asymptotically equicontinuous.
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The asymptotic stochastic equicontinuity of
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by the Cauchy–Schwartz Inequality and Lemma A.2. Then the asymptotic stochastic equicontinuity ofPT
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1tðlÞ follows from Lemma 3.
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This gives that
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Asymptotic equicontinuity and Theorem 7 yield the convergence in distribution of Theorem 6 for j ¼ 1; 3
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7.5. Proof of Corollaries 1 and 2, Theorems 2 and 3
Proof of Corollary 1. The proof is divided in three steps.
Step 1: Choice of the covariates and additional notations. Let X jtðlÞ ¼ X U
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r coefficient of the TAR specification, define now

gWaldT ðlÞ ¼
1es2T ðlÞ ðRebT ðlÞÞ

0 R r0
XT

t¼1

X 0tðlÞX tðlÞr

 !�1
R0

0@ 1A�1ðRebT ðlÞÞ

where

ebT ðlÞ ¼ r0
XT

t¼1

X 0tðlÞX tðlÞr

 !�1
r0
XT

t¼1

X 0tðlÞDyt; es2T ðlÞ ¼ 1

T

XT

t¼1

ðDyt � X tðlÞrebT ðlÞÞ
2.

Observe that the X tðl=ðsy

ffiffiffiffi
T
p
ÞÞ, t ¼ 1; . . . ;T and the xtðlÞ, t ¼ 1; . . . ;T in (3.2) generate the same linear span

by (3.6), so that regressing on the former or the latter gives the same residuals. Therefore, the residuals-based
formula (7.4) for the Wald statistic show that WaldT ðlÞ ¼ gWaldT ðl=ðsy

ffiffiffiffi
T
p
ÞÞ, and

SupWaldT ðLT Þ ¼ sup

l2eLT

gWaldT ðlÞ; eLT ¼
LT

sy

ffiffiffiffi
T
p ¼ l;

lT

sy

pl1pl2p
lT

sy

; l2 � l1X
nT

sy

� �
. (7.21)

Define also

WaldU ðlÞ ¼MU ðlÞ
0rðr0CU ðlÞrÞ

�1R0ðs2Rðr0CU ðlÞrÞ
�1R0Þ�1Rðr0CU ðlÞrÞ

�1r0MU ðlÞ.

We show that this statistic only depends upon the Brownian Motion W ð�Þ and not on sy, so that Waldð�Þ is
pivotal, showing that the limit variable supl2L=sy

has a pivotal distribution when the distribution of ½l; l; n�=sy

is pivotal under Assumption L. Let m0ðyt�1; lÞ and m1ðyt�1; lÞ be the linear functions of the Iðyt�1 2 I jðlÞÞ and
yt�1Iðyt�1 2 I jðlÞÞ, j ¼ 1; 2; 3, entering in the TAR specification, written in columns. Due to the choice of
covariate imposed in the corollary, the Partitioned Inverse Formula yields that

WaldU ðlÞ ¼ eM 0
1ðlÞð eC11ðlÞÞ�1 eM1ðlÞ

with, for eCijðlÞ ¼ siþj
y

Z 1

0

miðW ðvÞ; lÞm0jðW ðvÞ; lÞdv,

eM1ðlÞ ¼ eC10ðlÞ
Z 1

0

m0ðW ðvÞ; lÞdW ðvÞ þ eC11ðlÞsy

Z 1

0

m1ðW ðvÞ; lÞdW ðvÞ,

eC10ðlÞ ¼ �½ eC00ðlÞ � eC01ðlÞð eC11ðlÞÞ
�1 eC10ðlÞ��1 eC10ðlÞð eC11ðlÞÞ

�1,

eC11ðlÞ ¼ ½ eC11ðlÞ � eC10ðlÞð eC00ðlÞÞ
�1 eC11ðlÞ��1. (7.22)
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Since eM1ðlÞ is proportional to 1=sy and eC11ðlÞ to 1=s2y, sy cancels out from the expression of WaldU ðlÞ. Note
also that the inverse matrices are well defined for all l in L=sy under (3.9).

Step 2: A truncation of LT . Consider a40 and define

eLT ðaÞ ¼ fl; lT ðaÞpl1pl2plT ðaÞ; l2 � l1XnT ðaÞg with lT ðaÞ ¼ max
lT

sy

;�a

� �
; lT ðaÞ ¼ min

lT

sy

; a

� �
,

nT ðaÞ ¼ min
nT

sy

; lT ðaÞ � lT ðaÞ

� �
,

eLðaÞ ¼ fl; lðaÞpl1pl2plðaÞ; l2 � l1XnðaÞg with lðaÞ ¼ max
l
sy

;�a

� �
; lðaÞ ¼ min

l
sy

; a

� �
,

nðaÞ ¼ min
n
sy

; lðaÞ � lðaÞ
� �

.

Observe that eLT ðaÞ and eL ðaÞ are subsets of ½�a; a�2. Because l =syp lðaÞplðaÞpl=sy and nðaÞ=syX

minðn; 2aÞ, (3.9) yields that

inf
v2½0;1�

W ðvÞp lðaÞplðaÞp sup
v2½0;1�

W ðvÞ and nðaÞ40 a:s. (7.23)

Note that

P sup
l2L

WaldU

l
sy

� �
a sup

l2eLðaÞWaldU ðlÞ

 !
pP

l
sy

p� a or ap
l
sy

� �
�!
a!1

0.

Because ½lT ; lT ; nT �!
d
½l; l; n� by Assumption L, we similarly have

sup
TX1

P sup
l2eLT

gWaldT ðlÞa sup
l2eLT ðaÞ

gWaldT ðlÞ

 !
p sup

TX1

P
lT

sy

p� a or ap
lT

sy

� �
�!
a!1

0.

Therefore, (7.21) and noting that supl2eLðaÞWaldU ðlÞ converges by a.s. continuity to supl2L=sWaldU ðlÞ when

a! þ1 show that the limit result of Corollary 1 holds if, for all a,

sup
l2eLT ðaÞ

gWaldT ðlÞ!
d

sup
l2eLðaÞWaldU ðlÞ. (7.24)

Step 3: Proof of (7.24) and conclusion. Recall that ð
PT

t¼1X 0tðlÞX tðlÞÞ
�1 stands for the pseudo-inverse ofPT

t¼1X 0tðlÞX tðlÞ. We first show that, with a probability tending to 1,
PT

t¼1X
0
tðlÞX tðlÞ has an inverse for all l

in eLT ðaÞ, i.e. that limT!1Pðinfl2eLT ðaÞ
Detð

PT
t¼1X 0tðlÞX tðlÞÞ40Þ ¼ 1. Orthogonality of the regimes, Theorem

5 and Assumption L yield that

lT ðaÞ; lT ðaÞ; nT ðaÞ;
XT

t¼1

X 0tðlÞX tðlÞ

( )
l2½�a;a�2

24 35!d ½lðaÞ; lðaÞ; nðaÞ; fCU ðlÞgl2½�a;a�2 �

in R3 � ‘1ð½�a; a�2Þ, where CU ðlÞ is as in (3.8). Note that DetðOÞ40. It then follows by (7.23) and continuity
of fW ðvÞgv2½0;1� which, moreover, cannot be constant over any nonempty I jðlÞ, that DetðCU ðlÞÞ40 for

all l 2 eLðaÞ a.s. Moreover, l 7!DetðCU ðlÞÞ is a.s. continuous over eLðaÞ which is a.s. compact.

Therefore, infl2eLðaÞDetðCU ðlÞÞ40 a.s. In addition, because eLT ðaÞ � ½�a; a�2 and eLT ðaÞ � T ½�a; a�2, the

map from R3 � ‘1ð½�a; a�2Þ to R

lT ðaÞ; lT ðaÞ; nT ðaÞ;
XT

t¼1

X 0tðlÞX tðlÞ

( )
l2Tð�a;aÞ

24 35 7! inf
l2eLT ðaÞ

Det
XT

t¼1

X 0tðlÞX tðlÞ

 !
,
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is continuous at ½lðaÞ; lðaÞ; nðaÞ; fCU ðlÞgl2½�a;a�2 � by continuity of Detð�Þ and CU ð�Þ. Therefore, the Functional
Continuous Mapping Theorem (see e.g. van der Vaart and Wellner, 1996, Theorem 1.3.6) yields that

lim
T!1

P inf
l2eLT ðaÞ

Det
XT

t¼1

X 0tðlÞX tðlÞ

 !
40

 !
¼ P inf

l2eLðaÞDetðCU ðlÞÞ40

 !
¼ 1.

Hence
PT

t¼1X
0
tðlÞX tðlÞ has an inverse for all l in eLT ðaÞ with a probability tending to 1. Observe also that

es2T ðlÞ ¼ 1

T

XT

t¼1

e2t �
1

T

XT

t¼1

X tðlÞret

 !
r0
XT

t¼1

X 0tðlÞX tðlÞr

 !�1
r0
XT

t¼1

X 0tðlÞet

 !
þ �0T ðlÞ

¼ s2 þ �00T ðlÞ with sup
l2bLT ðaÞ

ðj�T ðlÞj þ j�0T
0
ðlÞjÞ ¼ oPð1Þ,

where the last approximation of es2T ðlÞ comes from Theorem 5 and the Law of Large Numbers. Then the
Functional Mapping Theorem yields that (7.24) is proved. &

Proof of Corollary 2. The proof follows the same steps than for Corollary 1, up to the choice of X tðlÞ ¼
½X B

1tðlÞ;X
B
2tðlÞ;X

B
3tðlÞ;DX B

t � from (3.12) in (7.20) and the use of Theorem 6 in place of Theorem 5. It remains
to show that the null limit distribution is pivotal. Due to the restriction on the choice of covariate imposed in
the corollary, this limit distribution decomposes as a sum of two independent terms. A first term comes from
the outer regimes and, as seen from (3.13) and (3.14), involves C1ð0Þ, C3ð0Þ, M1ð0Þ and M3ð0Þ in a quadratic
form similar to the variable WaldU ð0Þ from (7.22). The second is due to the inner regime and writes as
supl2Lz

2
2BðlÞ, where the expression of z2Bð�Þ depends upon the central regime variables retained in extðlÞ. If none

of these variables appear then z2BðlÞ ¼ 0, while if yt�1Iðyt�1 2 I2ðlÞÞ only or if Iðyt�1 2 I2ðlÞÞ and yt�1Iðyt�1 2

I2ðlÞÞ are retained, z2BðlÞ, respectively, writes asR l2
l1

wdBðwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl32 � l31Þ=3

q ;
ðl2 � l1Þ

R l2
l1

wdBðwÞ � ðl22 � l21Þ
R l2
l1

dBðwÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 � l1Þ

2
ðl32 � l31Þ=3� ðl2 � l1Þðl

2
2 � l21Þ

2=4
q .

Since Bðn�Þ ¼d
ffiffiffi
n
p

Bð�Þ, elementary algebra yields that z2Bðn�Þ ¼ z2Bð�Þ. Hence supl2L=sy
z22BðlÞ ¼

d
supl2L=nz

2
2BðlÞ

which has a pivotal distribution if the distribution of ½l =n; l=n� is pivotal. &

Proof of Theorems 2 and 3. Elementary manipulations based on Theorem 7 shows that the threshold sets used
in Theorems 2 and 3 satisfy Assumption L and the conditions for achieving a pivotal limit distribution of
Corollaries 1 and 2. Hence Theorem 2 directly follows from Corollary 1 and elementary algebra. Theorem 3
similarly follows from Corollary 2. &
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Appendix A. Proof of Lemma 2

We first introduce some additional notations and preliminary results. Assumption L yields that yt ¼ p0etþ

ðp0 þ p1Þet�1 þ � � � þ ðp0 þ � � � þ pt�1Þe1 þ
P1

i¼0ðpiþ1 þ � � � þ piþtÞe�i. Define

ci ¼
Xi

j¼0

pj so that yt ¼
Xt�1
i¼0

ciet�i þ
X1
i¼0

ðciþt � ciÞe�i,

eyt;i ¼
Xi

j¼tþ1

ci�jej and yt;i ¼ yi � eyt;i ¼
Xt

j¼1

ci�jej þ
X1
j¼0

ðcjþt � cjÞe�j for toi.

Let jtð�Þ and jt;ið�Þ be the densities of yt and eyt;i. The bound (3.7) in Akonom (1993) writes as

Lemma A.1 (Akonom, 1993). Under Assumptions L and EðsÞ with s4� 2, there exists a constant C40 such

that for all t, i with 1ptoi, supy2R jtðwÞpC=
ffiffiffiffiffiffiffiffiffiffi
tþ 1
p

and supw2R jt;iðwÞpC=
ffiffiffiffiffiffiffiffiffi
i � t
p

.

Lemma A.2. Under Assumptions L and EðsÞ with s4� 3, sup�pptEjDyt�1j
4þso1, max�pptpT jDyt�1j ¼

OPðT
1=ð4þsÞÞ and max1ptpT jetj ¼ OPðT

1=ð4þsÞÞ.

Proof of Lemma A.2. Recall that Dyt ¼ 0 for tp0. The Minkowski Inequality yields, for all t, E1=ð4þsÞj

Dyt�1j
4þsp

P1
i¼1jpijE

1=ð4þsÞjetj
4þspCo1.We have by the Markov Inequality

P max
�pptpT

jDyt�1jXMT1=ð4þsÞ

� �
p

1

MT
E max
�pptpT

jDyt�1j
ð4þsÞ

p
1

MT

XT

t¼�p

EjDyt�1j
4þsp

C

M

which can be made small by taking M large enough. The order of max1ptpT jetj is similarly obtained. &

Lemma A.3. Under Assumptions L and Eð0Þ, there exists a constant C40 such that, for any measurable map f ð�Þ

from R to R,

E1=2
1

T

XT

t¼1

f
yt�1ffiffiffiffi

T
p

� �" #2
pC

Z
jf ðwÞjdwþ 2

R
f 2
ðwÞdw

T

 !1=2
24 35, (A.1)

E1=3
1

T

XT

t¼1

f
yt�1ffiffiffiffi

T
p

� �











3

pC

Z
jf ðwÞjdw

� �3

þ

R
jf ðwÞjdw

R
f 2
ðwÞdw

T
þ

R
jf ðwÞj3 dw

T2

" #1=3
, ðA:2Þ

E1=2
1ffiffiffiffi
T
p

XT

t¼1

f ðyt�1Þ

 !2

pC

Z
jf ðwÞjdwþ 2

R
f 2
ðwÞdwffiffiffiffi

T
p

 !1=2
24 35, (A.3)

E1=3
1ffiffiffiffi
T
p

XT

t¼1

f ðyt�1Þ













3

pC

Z
jf ðwÞjdw

� �3

þ

R
jf ðwÞjdw

R
f 2
ðwÞdwffiffiffiffi

T
p þ

R
jf ðwÞj3 dw

T

" #1=3
, ðA:4Þ
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E1=4
1ffiffiffiffi
T
p

XT

t¼1

f
yt�1ffiffiffiffi

T
p

� �
et

" #4
pC

Z
f 2
ðwÞdwþ 2

R
f 4
ðwÞdw

T

 !1=2
24 351=2

, (A.5)

E1=4
1

T1=4

XT

t¼1

f ðyt�1Þet

" #4
pC

Z
f 2
ðwÞdwþ 2

R
f 4
ðwÞdyffiffiffiffi
T
p

 !1=2
24 351=2

. (A.6)

If EðsÞ holds with s40, then for any integer number kX1,

E1=3
1ffiffiffiffi
T
p

XT

t¼1

Dyt�kf
yt�1ffiffiffiffi

T
p

� �
et





 




" #3

pC
ffiffiffiffi
T
p

Z
jf ðwÞjðsþ4Þ=ðsþ1Þ dw

� �3

þ

R
jf ðwÞjðsþ4Þ=ðsþ1Þ dw

R
jf ðwÞj2ðsþ4Þ=ðsþ1Þ dw

T

"

þ

R
jf ðwÞj3ðsþ4Þ=ðsþ1Þ dw

T2

#ð1=3Þðsþ1Þ=ðsþ4Þ
, ðA:7Þ

E1=4
1ffiffiffiffi
T
p

XT

t¼1

Dyt�kf
yt�1ffiffiffiffi

T
p

� �
et

" #4

pC

Z
jf ðwÞj2ðsþ4Þ=s dwþ 2

R
jf ðwÞj4ðsþ4Þ=s dw

T

 !1=2
24 35ð1=2Þðs=ðsþ4ÞÞ. ðA:8Þ

Proof of Lemma A.3. We begin with (A.1) and (A.3). Let f T ðwÞ be, respectively, T�1=2f ðT�1=2wÞ or f ðwÞ, so
that we have to bound E1=2ðT�1=2

PT
t¼1f T ðyt�1ÞÞ

2. We have

E
1ffiffiffiffi
T
p

XT

t¼1

f T ðyt�1Þ

 !2

¼
1

T

XT

t¼1

Ef 2
T ðyt�1Þ ðA:9Þ

þ
2

T

XT�1
t¼1

E f T ðyt�1Þ
XT

i¼tþ1

f T ðyi�1Þ

" #
. ðA:10Þ

Lemma A.1 gives for any measurable gð�Þ from R to R,

1

T

XT

t¼1

Ejgðyt�1Þj

¼
1

T

XT

t¼1

Z
jgðwÞjjt�1ðwÞdyp

C

T

Z
jgðwÞjdw

XT

t¼1

1ffiffi
t
p

p
Cffiffiffiffi
T
p

Z
jgðwÞjdw since

XT

t¼1

1ffiffi
t
p p

XT

t¼1

Z t

t�1

dvffiffiffi
v
p ¼

Z T

0

dvffiffiffi
v
p ¼

ffiffiffiffi
T
p

2
. ðA:11Þ

Therefore, (A.9) is bounded by C
R

f 2
T ðwÞdw=

ffiffiffiffi
T
p

. For (A.10), write yi�1 ¼ eyt�1;i�1 þ yt�1;i�1 and note thateyt�1;i�1 is independent of the sigma-field Ft�1 ¼ sðet�1; et�2; . . .Þ, iXtþ 1. Observe also that yt�1, yt�1;i�1,
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iXtþ 1, are in F t�1. Therefore, Lemma A.1 yields

XT

i¼tþ1

E½jgðyi�1ÞjjFt�1� ¼
XT

i¼tþ1

Z
jgðeyþ yt�1;i�1Þjjt�1;i�1ðeyÞdey

p
XT

i¼tþ1

Cffiffiffiffiffiffiffiffiffi
i � t
p

Z
jgðeyþ yt�1;i�1Þjdey

¼ C

Z
jgðwÞjdw

XT

i¼tþ1

1ffiffiffiffiffiffiffiffiffi
i � t
p pC

ffiffiffiffi
T
p

Z
gðwÞdw ðA:12Þ

since
XT

i¼tþ1

1ffiffiffiffiffiffiffiffiffi
i � t
p p

Z T

t

dxffiffiffiffiffiffiffiffiffiffiffi
x� t
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

2
.

Applying (A.11) and (A.12) gives for (A.10)

1

T

XT�1
t¼1

E f T ðyt�1Þ
XT

i¼tþ1

f T ðyi�1Þ

" #












¼
1

T

XT�1
t¼1

E jf T ðyt�1Þj
XT

i¼tþ1

E jf T ðyi�1ÞjjFt

 �" #

pC

Z
jf T ðwÞjdw

1ffiffiffiffi
T
p

XT�1
t¼1

E½jf T ðyt�1Þj�pC

Z
jf T ðwÞjdw

� �2

.

It then follows that

E1=2
1ffiffiffiffi
T
p

XT

t¼1

f T ðyt�1Þ

 !2

p
Cffiffiffiffi
T
p

Z
f 2

T ðwÞdwþ 2C

Z
jf T ðwÞjdw

� �2
" #1=2

pð2CÞ1=2
Z
jf T ðwÞjdw

� �2

þ
4ffiffiffiffi
T
p

Z
f 2

T ðwÞdw

" #1=2

pC

Z
jf T ðwÞjdwþ 2

R
f 2

T ðwÞdwffiffiffiffi
T
p

 !1=2
24 35

since ðaþ bÞ1=2pa1=2 þ b1=2 for nonnegative a, b. Taking f T ð�Þ ¼ f ð�Þ yields that (A.3) is proven. For (A.1)

take f T ðwÞ ¼ T�1=2f ðT�1=2wÞ and note that T�1=2
R
jf ðT�1=2wÞjdw ¼

R
jf ðwÞjdw, T�1

R
f 2
ðT�1=2wÞdw ¼

T�1=2
R

f 2
ðwÞdw.

For (A.2) and (A.4), observe that

E
1ffiffiffiffi
T
p

XT

t¼1

f T ðyt�1Þ













3

p
1

T3=2

XT

t¼1

Ejf T ðyt�1Þj
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by (A.11) and (A.12), applied twice to bound the last sum. Computing each integrals for the corresponding
choice of f T ð�Þ yields (A.2) and (A.4).

We now turn to (A.5) and (A.6). Let f T ðwÞ be, respectively, T�1=4f ðT�1=2wÞ or f ðwÞ, so that we have to
bound E1=4ðT�1=4

PT
t¼1f T ðyt�1ÞetÞ

4. Note that
PT

t¼1f T ðyt�1Þet is a martingale with respect to F t. The
Burkholder Inequality (see e.g. Chow and Teicher, 1988, Theorem 1, p. 396) yields
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. ðA:14Þ

We first deal with the second item of (A.13). Applying the Cauchy–Schwarz Inequality twice yields
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since et and yt�1 are independent. Therefore, (A.11) yields for (A.13)
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For (A.14), (A.12) and (A.11) yield
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.

Combining the bounds above with (A.13) and (A.14) gives
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Taking f T ð�Þ ¼ f ð�Þ yields (A.6). For (A.5), take f T ðwÞ ¼ T�1=4f ðT�1=2wÞ and note that
R

T�1=2f 2

ðT�1=2wÞdw ¼
R

f 2
ðwÞdw,

R
T�1f 4

ðT�1=2wÞdw ¼ T�1=2
R

f 4
ðwÞdw.

For (A.7), let q1 ¼ ðsþ 4Þ=3 and q2 ¼ ðsþ 4Þ=ðsþ 1Þ so that 1=q1 þ 1=q2 ¼ 1. The Hölder and Minkowski
Inequalities together with Lemma A.2 and (A.2) yield
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For (A.8), let q3 ¼ ðsþ 4Þ=4, q4 ¼ ðsþ 4Þ=s so that 1=q3 þ 1=q4 ¼ 1. The Burkholder and Hölder Inequalities,
Lemma A.2 and (A.1) yield
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Proof of Lemma 2. Let us first recall a Maximal Inequality from Empirical Processes Theory, see van der
Vaart and Wellner (1996). Let G be a subset of E and consider a distance d over G. Let fZðgÞgg2G be a
stochastic process such that, for some qX1 and C40,

E1=qjZðgÞ � Zðg0ÞjqpCdðg; g0Þ.

Let Nð�;G; dÞ be the covering numbers of G, that is the minimal number of d-balls with radius � needed to
cover G. Then Theorem 2.2.4 in van der Vaart and Wellner (1996) gives, for any Z; d40,

E1=q sup
ðg;g0Þ2G:dðg;g0Þpd

jZðgÞ � Zðg0ÞjqpK

Z Z

0

N1=qð�=2;G; dÞd�þ dN2=qðZ=2;G; dÞ
� �

, (A.15)

where K depends on q and C only.
The proof will be divided in two parts devoted to the two kinds of sums. We first consider the case where the

et’s do not appear explicitly in the sum (ST -type sums hereafter) and the case where it does, yielding martingale
(MT -type sums hereafter). Let us now introduce some preliminary notations. Consider h ¼ hT40 and a
minimal covering of F with h-brackets ½f i; f iþ1�, i ¼ 1; . . . ;N ½ �ðh;F; k � k1Þ ¼ Nh. Choose a ef ið�Þ in
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½f i; f iþ1� \F, and for f ð�Þ 2 ½f i; f iþ1� \F, let Whðf Þ ¼ ef i. Let

Fh ¼ WhðFÞ ¼ fef i; i ¼ 1; . . . ;Nhg �F.

We use h ¼ 1=T for Donsker asymptotics and h ¼ 1=
ffiffiffiffi
T
p

for local time asymptotics (in short h ¼ 1=rT where
rT is defined below).

We begin with the sums ST ðf Þ which write as

1

rT

XT

t¼1

f T ðyt�1Þ with ðrT ; f T ðwÞÞ ¼ T ; f
wffiffiffiffi
T
p

� �� �
or ðrT ; f T ðwÞÞ ¼ ð

ffiffiffiffi
T
p

; f ðwÞÞ.

The condition (7.9) of Theorem 8 and inequalities (A.3) and (A.6) of Lemma A.3 imply that, since ST ðf Þ �

ST ðf
0
Þ ¼ ST ðf � f 0Þ

E1=2ðST ðf Þ � ST ðf
0
ÞÞ
2pC kf � f 0k1 þ 2

kf � f 0k1
rT

� �1=2
" #

. (A.16)

We now show the asymptotic stochastic k � k1-equicontinuity of fST ðWhðf ÞÞgf2F ¼ fST ðf Þgf2Fh
. Let k � k1T be

defined from (A.16), i.e.

kf k1T ¼ kf k1 þ 2
kf k1
rT
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¼ kf k
1=2
1 þ

1ffiffiffiffiffi
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�
1
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¼
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1=2
þ 1Þ2 � 1
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.

Because kf � f 0k
1=2
1 pðkf � f 00k1 þ kf

00
� f 0k1Þ

1=2pkf � f 00k
1=2
1 þ kf

00
� f 0k1=2, k � k1T satisfies the Triangular

Inequality and defines a distance. From the definition of k � k1T , we have

kf k1Tp� if and only if kf k1p
ððrT�þ 1Þ1=2 � 1Þ2

rT

. (A.17)

We now bound the covering number Nð�;Fh; k � k1T Þ. (A.17) yields

Nð�;Fh; k � k1T Þ ¼ N
ððrT�þ 1Þ1=2 � 1Þ2

rT

;Fh; k � k1

 !
.

We now relate Nð�;Fh; k � k1Þ and N ½ �ð�;Fh; k � k1Þ. If jf ðwÞjpjf
0
ðwÞj for all w, then kf k1pkf

0
k1. It then

follows that kf � ðf 1 þ f 2Þ=2k1pkf 2 � f 1k1=2 for f 2 ½f 1; f 2�, so that ½f 1; f 2� is a subset of the k � k1-ball of
radius kf 2 � f 1k1/2 and center ðf 1 þ f 2Þ=2. This gives NðFh; �; k � k1ÞpN ½ �ðFh; 2�; k � k1Þ and then, since
Fh �F,

Nð�;Fh; k � k1T ÞpN ½ �
2ððrT�þ 1Þ1=2 � 1Þ2
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;F; k � k1

 !
,

Nð�;Fh; k � k1T ÞpN ½ �ðh;F; k � k1Þ for �ph1T ¼
h

2
þ

ffiffiffiffiffi
2h

rT

s
, (A.18)

because, for the latter, Nð�;Fh; k � k1T ÞpNh for eph1T , where h1T is such that ff 2 E; kf k1Tp
h1T g ¼ ff 2 E; kf k1ph=2g, so that h1T is as in (A.18) by definition of k � k1T . Now (A.15) with Z ¼ d,
(A.16), (A.17) and (A.18) yield, for T large enough

E1=2 sup
ðf ;f 0Þ2F2;kf�f 0k1pd

jST ðWhðf ÞÞ � ST ðWhðf
0
ÞÞj2

¼ E1=2 sup
ðf ;f 0Þ2F2

h
;kf�f 0k1Tpdþ2

ffiffiffiffiffiffiffiffi
d=rT

p
jST ðf Þ � ST ðf

0
Þj2
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Therefore, (7.10) yields since zo1
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1
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v!1
v�z=2, ðA:19Þ

and rT h1TXrT h=2 ¼ 1=240.14 The Chebychev Inequality then gives

P sup
ðf ;f 0Þ2F2;kf�f 0k1pd

jST ðWhðf ÞÞ � ST ðWhðf
0
ÞÞjXd0

 !
p

Cðd1�z=2 þ d1�zÞ2 þ oð1Þ

d20

so that (7.11) yields that fST ðWhðf ÞÞgf2F is asymptotically stochastically equicontinuous. Showing that, for a
suitable choice of h, supf2FjST ðf Þ � ST ðWhðf ÞÞj ¼ oPð1Þ will give that fST ðf Þgf2F is asymptotically
stochastically equicontinuous. For f 2 ½f i; f iþ1�, ST ðf iÞpST ðf ÞpST ðf iþ1Þ, and since Whðf Þ 2 ½f i; f iþ1�,
supf2F jST ðf Þ � ST ðWhðf ÞÞjpmax1pipNh

jST ðf iþ1Þ � ST ðf iÞj. Repeating the steps leading to (A.19) with f i in
place of Whðf Þ yields that supf2FjST ðf Þ � ST ðWhðf ÞÞj ¼ oPð1Þ, ending the study of the ST ðf Þ-type sums.

We now consider the first martingale sums. Let MT ðf Þ and eMT ðf Þ be

MT ðf Þ ¼
1ffiffiffiffiffi
rT
p

XT

t¼1

f T ðyt�1Þet; eMT ðf Þ ¼
1ffiffiffiffiffi
rT
p

XT

t¼1

f T ðyt�1Þðjetj � EjetjÞ,

with ðrT ; f T ðwÞÞ ¼ ðT ; f ðw=
ffiffiffiffi
T
p
ÞÞ or ðrT ; f T ðwÞÞ ¼ ð

ffiffiffiffi
T
p

; f ðwÞÞ, so that (7.9), (A.5) or (A.6) in Lemma A.3 yield

E1=4ðMT ðf Þ �MT ðf
0
ÞÞ
4pC kf � f 0k1 þ 2

kf � f 0k1
rT

� �1=2
" #1=2

¼ Ckf � f 0k
1=2
1T ¼ Ckf � f 0k2T . ðA:20Þ
14Applying (A.15) directly to ST ðf Þ would give diverging integrals at 0. This justifies the introduction of ST ðWhðf ÞÞ. Note also that usual

tightness criterion based on increment bounds (see e.g. van der Vaart and Wellner, 1996, p. 104) does not apply here.
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Note that k � k2T defines a distance. Because Nð�;Fh; k � k2T Þ ¼ Nð�;Fh; k � k
1=2
1T Þ ¼ Nð�2;Fh; k � k1T Þ, we

obtain in place of (A.18)
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.

Therefore, (A.15) with Z ¼ d, (7.10), and the change of variables � ¼ 2v=
ffiffiffiffiffi
rT
p

yield here, arguing as in (A.19)
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35

!
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Cðdð1�z=2Þ=2 þ d1�zÞ since rT h is bounded away from 0.

It follows that fMT ðWhðf ÞÞgf2F is asymptotically stochastically equicontinuous, so that fMT ðf Þgf2F is
asymptotically stochastically equicontinuous if supf2FjMT ðf Þ �MT ðWhðf ÞÞj ¼ oPð1Þ. We have
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Observe that eMT ð�Þ satisfies (A.20), so that under (7.10) and by definition of the f i’s
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ST ðf iþ1 � f iÞ

� �3

pr
3=2
T

XNh

i¼1

EðST ðf iþ1 � f iÞÞ
3pCr

3=2
T Nh h3

þ
h2

rT

þ
h

r2T

� �
¼ ChN ½ �ðh;F; k � k1Þ½r

3=2
T h2

þ r
1=2
T hþ r

�1=2
T � ¼ oð1Þ.

The Markov Inequality yields supf2FjMT ðf Þ �MT ðWhðf ÞÞj ¼ oPð1Þ.
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We now consider the martingale sums in Lemma 2 depending upon the increments Dyt�k, kX1. We set
h ¼ 1=T . Define

MT ðf Þ ¼
1ffiffiffiffi
T
p

XT

t¼1

Dyt�kf
yt�1ffiffiffiffi

T
p

� �
et; ST ðf Þ ¼

1ffiffiffiffi
T
p

XT

t¼1

Dyt�kf
yt�1ffiffiffiffi

T
p

� �
et





 



.
Let q ¼ ðsþ 4Þ=so2 since s44. Then (A.8) of Lemma A.3 and (7.12) yields

E1=4ðMT ðf Þ �MT ðf
0
ÞÞ
4pC kf � f 0k1 þ 2

kf � f 0k1
T

� �1=2
" #1=2q

¼ Ckf � f 0k
1=2q
1T ¼ Ckf � f 0k3T ,

taking rT ¼ T in the definition of k � k1T . Note that k � k3T defines a distance with, in place of (A.18),

Nð�;Fh; k � k3T ÞpN ½ �
2ððT�2q þ 1Þ1=2 � 1Þ2

T
;F; k � k1

 !
,

Nð�;Fh; k � k3T ÞpN ½ �ðh;F; k � k1Þ for �ph3T ¼ h
1=2q
1T ¼

h

2
þ

ffiffiffiffiffi
2h

T

r !1=2q

.

Therefore (A.15) with Z ¼ d, (7.10) and the change of variables � ¼ 2v=T1=ð2qÞ yields here

E1=4 sup
ðf ;f 0Þ2F2;kf�f 0k1pd

jMT ðWhðf ÞÞ �MT ðWhðf
0
ÞÞj4

¼ E1=4 sup
ðf ;f 0Þ2F2

h
;kf�f 0k3Tpðdþ2

ffiffiffiffiffiffiffiffi
d=rT

p
Þ1=2q

jMT ðf Þ �MT ðf
0
Þj4

pC h1=2q�z=4
þ Tz=4�1=2q

Z ðTdþ2
ffiffiffiffiffi
Td
p
Þ1=2q=2

ðTh1T Þ
1=2q=2

dv

ððv2q þ 1Þ1=2 � 1Þz=2

24
þd

T

ððTd2q=4þ 1Þ1=2 � 1Þ2

 !z=2
35

!
T!þ1

Cðdð1=2qÞð1�qz=2Þ
þ d1�z=q

Þ.

It follows that fMT ðWhðf ÞÞgf2F is asymptotically stochastically equicontinuous, so that fMT ðf Þgf2F is if
supf2FjMT ðf Þ �MT ðWhðf ÞÞjpmax1pipNh

ST ðf iþ1 � f iÞ ¼ oPð1Þ. But (A.7), (7.12) and (7.10) yield

E max
1pipNh

ST ðf iþ1 � f iÞ

� �3

pT3=2
XNh

i¼1

EðST ðf iþ1 � f iÞÞ
3pCT3=2þz�3ððsþ1Þ=ðsþ4ÞÞ

pCT ð5=2Þ�3ððsþ1Þ=ðsþ4ÞÞ ¼ oð1Þ

since 3ððsþ 1Þ=ðsþ 4ÞÞ45
2
for s414. This ends the proof of the lemma. &
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