Available online at www.sciencedirect.com

. . JOURNAL OF
ScienceDirect Feonometrics

ELSEVIER Journal of Econometrics I (11EN) 1E-HNR

www.elsevier.com/locate/jeconom

Adaptive consistent unit-root tests based on autoregressive
threshold model

Frédérique Bec?, Alain Guay™, Emmanuel Guerre®*

YTHEMA, Université de Cergy-Pontoise, France and CREST-ENSAE, Timbre J120—3, av. Pierre Larousse, 92245 Malakoff Cedex, France
YCIRPEE, Université du Québec d Montréal, Canada
°CIREQ, Canada
dDepartment of Economics, Queen Mary, University of London, Mile End, EI 4NS London, UK

Received 12 February 2004; accepted 30 March 2007

Abstract

This paper proposes SupWald tests from a threshold autoregressive model computed with an adaptive set of thresholds.
Simple examples of adaptive threshold sets are given. A second contribution of the paper is a general asymptotic null limit
theory when the threshold variable is a level variable. We obtain a pivotal null limiting distribution under some simple
conditions for bounded or asymptotically unbounded thresholds. Our general approach is flexible enough to allow a choice
of the auxiliary threshold model or of the threshold set involved in the test specifically designed for nonlinear stationary
alternatives relevant for macroeconomic and financial topics involving arbitrage in presence of transaction costs. A Monte-
Carlo study and an application to the interest rates spread for French, German, New-Zealander and US post-1980
monthly data illustrate the ability of the adaptive SupWald tests to reject unit-root when the ADF does not.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A debate on the performance of linear unit-root tests to detect nonlinear stationary alternatives has recently
grown in the econometric literature. Indeed, the presence of fixed adjustment costs, transaction costs or
arbitrage boundaries can create nonlinear adjustments in economic variables quite close to nonstationarity.
Economic policy characterized by discrete intervention to manage exchange rate, target zone or
inflation—output targets could also induce such nonlinear dynamics. Empirical studies as Anderson (1997),
Michael et al. (1997), Obstfeld and Taylor (1997) or Sollis et al. (2002) also argued for nonlinear dynamics. On
the other hand, the simulation studies of Balke and Fomby (1997), Pippenger and Goering (1993) and Taylor
(2001) have risen doubts about the power of standard linear unit-root tests against nonlinear stationary
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alternatives. As a consequence, a fast developing branch of the econometric literature has proposed as a
remedy to use an auxiliary nonlinear dynamic model in place of a linear autoregression to build a unit-root
test. This includes among others a Threshold Autoregressive (TAR) specification as in Bec et al. (2004),
Berben and van Dijk (1999), Caner and Hansen (2001), Enders and Granger (1998), Gonzalez and Gonzalo
(1998), Kapetanios and Shin (2006), Seo (2003), Shin and Lee (2001, 2003), or a smooth transition
autoregressive specification as in Kapetanios et al. (2003). A substantial difficulty is then that the threshold
parameter is not identified under the null. Consequently, much attention has been focused on the null limiting
distribution of threshold unit-root tests but, as seen from the previous references, consistency studies are
limited to restricted classes of threshold alternatives. This contrasts with the augmented Dickey—Fuller (ADF)
test which is consistent against general ergodic alternatives and is somehow paradoxical in view of the claimed
power superiority of the nonlinear approach.

A first contribution of the present paper is to examine the construction of threshold unit root tests toward
consistency and power comparison issues. In place of the linear autoregression of the ADF statistic, a general
threshold specification is considered to serve as an auxiliary model to build a unit-root test. However, in such
model, the true threshold is unknown. Our unit-root testing strategy is based on an adaptive set of thresholds
which behaves differently under the null and the alternatives. As many of the references above, we propose a
SupWald test SupWald (A7) which maximizes the Wald statistic over a set of thresholds A7, T being the
sample size. In previous works, a quantile choice of /A7 ensuring a minimal percentage of observations in each
regime was considered, see e.g. Caner and Hansen (2001). But, due to this restrictive quantile choice, nothing
ensures consistency since such A7 does not necessarily contain a threshold associated with a diverging Wald
statistic. Therefore, a more general construction of A7 should be considered to achieve consistency. Under the
alternative, the set Ay should allow as many thresholds as possible, including diverging thresholds
corresponding to not identified regimes that should typically be avoided under the null. We refer to this
property as adaptation, a behavior that can be achieved by defining the boundaries of A7 as function of
consistent unit-root test statistics. The claimed benefits of adaptation are twofold. First, this gives consistency
against any (nonlinear) stationary ergodic alternatives. This finding clarifies in particular early critics on the
possible inconsistency of threshold unit-root tests, see e.g. Balke and Fomby (1997). As a by-product of
adaptation, we obtain bounds showing that the SupWald (A7) is asymptotically larger than the squared ADF
statistic under the alternative, indicating so potential power improvements. Second, reconsidering usual
quantile threshold sets can be useful to obtain test statistics with smaller critical values which would have
better power properties. We give examples of adaptive, asymptotically unbounded or bounded, sets of
thresholds A7 with boundaries depending upon the consistent ADF statistic. The unbounded example is a
modification of the quantile-based A7 while the bounded example is new.

A second contribution is a general asymptotic theory under the null. Such a theory must cope in particular
with random threshold sets A7 and give conditions ensuring a finite null pivotal limiting distribution. We
consider a general 3-regime TAR specification as a baseline model. Following Bec et al. (2004), Berben and
van Dijk (1999), Enders and Granger (1998), Kapetanios and Shin (2006) and Seo (2003), the lagged level
variable is chosen as the threshold variable, which is therefore nonstationary under the null. This differs from
the choice of Caner and Hansen (2001), Gonzalez and Gonzalo (1998) and Shin and Lee (2003) who consider
an ad hoc stationary threshold. By contrast, our approach is in line with many macroeconomic or financial
models involving arbitrage behavior in presence of transaction costs. Moreover, it yields a pivotal null limit
distribution which simplifies the implementation of the test. Finding the null limiting distribution of such a
SupWald test requires to establish a new functional version of the limit results of Park and Phillips (2001)
which can be useful for other nonlinear specifications.

Finally, we compare small sample properties of the existing unit-root tests with the ones proposed in
simulation experiments that illustrates the interest of adaptive SupWald tests compared to the linear ADF. An
application to the yield spread dynamics illustrates the ability of adaptive SupWald tests to detect stationarity
when the ADF does not.

The remainder of the paper is as follows. Section 2 introduces adaptation and provides examples of adaptive
threshold. The consistency and the null limiting distribution results of the SupWald tests for a simple
autoregression of order one is also presented. Section 3 extends those results to more general autoregression of
order p and to more general auxiliary models. Section 4 is devoted to simulation experiments and Section 5
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applies our proposed SupWald tests to the yield spread dynamics. Section 6 gives some final remarks and
proofs are gathered in Section 7 and in an Appendix.

2. Adaptation, consistency and null limit distributions

Consider first the basic case of a centered random walk null hypothesis given by
Ho: Ay, =y, =y =&,

where y, = 0 and {¢,} is a sequence of i.i.d. centered random variables with variance ¢>. Assume that T + 1
observations y,, ...,y are available to test Hy against

H, : {y,} is a nonconstant stationary ergodic process with a finite

nonvanishing variance.

A well-known example of a linear test of Hy against H; is the Dickey—Fuller (DF) test which uses the auxiliary
model

Ay, =pu+py,_i+ v (2.1

and the associated ¢ statistic DF for the null hypothesis p = 0. Indeed, for any alternative in Hy, the limit p of
the OLS estimate p captures a mean reverting effect which ensures that p <0 and yields consistency of the DF
test. Unfortunately, simulation studies by e.g. Pippenger and Goering (1993) or Taylor (2001) have shown that
although consistent, the DF test lacks power against nonlinear stationary alternatives. Hence, subsequent
research has focused on developing unit-root tests based on a nonlinear auxiliary model instead of the linear
one given by Eq. (2.1). Among the possible nonlinear candidates, the TAR specification aims to explicitly
account for mean reversion and to allow for local unit-root in a regime where asymptotic adjustment does not
hold. For instance, motivated by the type of nonlinear behavior generated by transaction costs in general
equilibrium models, an illustration is the following symmetric mirroring 3-regime TAR specification
previously considered in Taylor (2001) and Bec et al. (2004)

Hr 01 if y,_ € (—o0,]=11(4)
Ay, =u; +{ to+pyey iy €l l=0)  with h=—/ = (2.2)
=t + Py i Yy € (Ao, +00] = I3(4)

This specification may be rewritten as the dynamic linear regression model:

1y € 1i(A) — Wy € 13(4)
Vo1l € Li(A) + 1y € 13(2))
1v,—1 € 12(2)

Vol € Ix(2))

Ay, = X (AP + u, with X(1) = an

I
P1
H
%)

In such a setup, for a given value of the threshold 4, the OLS estimators of  and Var(u,) are given by

-1
T 1

T T
Br(i) = <Z %;u)%,(m) D _XDAy TR = Y By = X)),
=1 =1 t=1
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where k is the dimension of X,(4). Furthermore, the Wald statistic to test that there is a unit-root in each
regime, p, = p, = 0, writes

—1

r —1
Waldr(2) = (RB(2) | 67(H)R (Z 762(/1)70(/1)) R | (RBr(2), (2.3)
=1

where R is a selection matrix such that (RB) = [p;, p,]. A large Waldr() favors rejection of H,.!

In practice, an important issue in building such a Wald threshold unit-root test is the choice of a suitable
threshold level 4 when its true value is unknown. To overcome this issue, the most widespread approach (Bec
et al., 2004; Caner and Hansen, 2001; Gonzalez and Gonzalo, 1998; de Jong et al., 2005; Kapetanios and Shin,
2006; Park and Shintani, 2005; Seo, 2003; Shin and Lee, 2001, 2003) builds on the structural change literature,
see Andrews (1993) among others, and uses a SupWald test statistic of the form:

SupWald (A7) = sup Waldr(4).
reAT
This amounts to choose for the test the threshold value which maximizes Waldr(-) over Ar.

Following Andrews (1993), the common use in the papers cited above consists in considering a quantile-

based threshold set such as

Ar = [Wlry Via—nn) 7€ (0,1/2), (2.4)

where the |y|,, 1 =0,...,T — 1, are the ordered |y,_;| and, for x € R™ with integer part [x], |y|) = V(> SO
that y 7 is the empirical quantile of order n. For such thresholds /, the inequality |y|,) <4 ensures that the
proportion of observations in the inner regime 75(4) is at least =. Symmetrically, A<|y|(1_z) gives a minimal
proportion of © observations in the outer regime /;(41) U I3(4). As a consequence, the parameters of each
regime are correctly estimated and SupWald(A7) remains finite. Following Andrews’s (1993) suggestion, the
usual choice of m is 15%.

However, this SupWald approach does not really tackle the consistency issue. Under the stationary
alternative, a A7 as defined in (2.4) converges to [Q(n), O(1 — 7)], where Q(n) is the nth quantile of |y,| that
solves P(]y,| < Q(n)) = . But nothing ensures that there is a threshold in [Q(n), OQ(1 — 7)] that gives a diverging
Wald statistic, even in the case of a correctly specified TAR.?

2.1. Introducing adaptation to achieve consistency

The cornerstone of our strategy to build a consistent test is the choice of the threshold set A7. We argue that
the asymptotic behavior of A7 should differ accordingly to the hypotheses at hand. Such a suitable adaptation
property can be described in the following requirements:

RO. Under Hy, A7 should remain “as small as possible” so that the test statistic has a finite null limit
distribution, with moderate critical values if possible. Indeed, small critical values z, would increase the power
of the test which has a rejection region SupWald (A7) > z,.

R1. Under H;, A7 should be “as large as possible” so that the SupWald (A7) test would be more powerful
by considering many Waldz(2) statistics.’

In other words, it is desirable that the boundaries of the threshold set adapt to the hypothesis of interest,
making the threshold set wider under H; than under Hy. One intuitive way to achieve this feature is to index
these boundaries with a consistent unit-root test statistic. A natural candidate is the absolute value of the DF
statistic, hereafter denoted |DFr|. Roughly speaking, by defining the lower boundary of 4, say 4,, as a

'Observe that ET(A) and Waldr(4) may not be defined properly if Z,T:l&';(/lﬁ,(},) has no inverse, in particular if there is no observation

in a regime /;(4). In this case, the Wald statistic can be set to its infinite limit value or a Moore-Penrose pseudo-inverse can be used.
The consistency issue is hardly considered in the literature and existing consistency results often build on assumptions that are difficult
to check. For instance, Kapetanios and Shin (2006) and Park and Shintani (2005) assume that the true threshold value is in [Q(r), Q(1 —
n)] while de Jong et al. (2005) consider stationary alternatives with E[Ay,_(y,_, — m)l(y,_, >m)] <0 for all p where m is the median.
3Note that the usual threshold set (2.4) is asymptotically [Q(n), O(1 — )] and cannot be adaptive since 7>0. Actually, (2.4) also
contradicts RO and R1. Indeed, such a A7 has a length of order /7 under Hy and remains bounded under H;.
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decreasing function of [DF7| and the upper boundary of », say A7, as an increasing function of |DF 7|, the
desired type of threshold set A7 = [A7, A7] would obtain. Indeed, from the consistency property of the DF
statistic, it follows that |[DF 7| is bounded under Hy but diverges under H;. Consequently, under the null A,
(resp. Z7) would be relatively large (resp. relatively small), implying a narrow threshold set. By contrast, under
the alternative, the threshold set widens as |DF | diverges. The next theorem shows that fulfilling conditions
as R1 is sufficient to get consistency against ergodic alternatives.

Theorem 1. Consider the TAR specification (2.2). Assume that Ar is such that, for any {y,} in Hy, there is a Ar
converging to Q(1) which is in Ay with a probability tending to 1. Then, under H;, SupWald (A7) diverges in
probability, with

SupWald(A7)=DF%(1 + op(1)). (2.5)

Importantly, it follows from Theorem 1 that adaptation is a sufficient condition for consistency against any
ergodic stationary alternative. Then, the inequality (2.5) indicates that the SupWald test can be more powerful
than a DF test provided its critical values are close enough to the squared critical values of the DF 7 statistic.
The intuition behind (2.5) is that the TAR specification (2.2) is asymptotically equivalent to the autoregressive
linear model (2.1) when the threshold is A7 = |y|(7). In this case, the central regime diverges and Waldr(4r) is
asymptotically equivalent to DF7. 2

2.2. Examples of adaptive threshold sets and null limit distributions

Two examples of adaptive threshold sets will be considered here. The first one is an asymptotically
unbounded set directly derived from the usual threshold set (2.4). This adaptive set is asymptotically
unbounded in the sense that the boundaries grow with the sample size. More precisely, we show how the latter
may be amended to satisfy the adaptation property. As will be stressed below, this version of (2.4) is not
entirely satisfactory in that it does not match the requirement RO, since its length diverges with the sample size
under the null. The second example belongs to the bounded class of threshold sets and gives up any reference
to an arbitrary proportion of observations in the definition of the threshold set boundaries. It is shown to
match both RO and R1 requirements.

2.2.1. A class of asymptotically unbounded threshold sets

A first example of adaptive threshold set follows from a modification of the quantile-based threshold set
(2.4) that changes 1 — n into a random proportion of the sample. Let # and 6 >0 be proportion and length
parameters to be chosen by the econometrician, and define

AY = [WThp,VTar] with VT = Iz, and VTir = Y((1=np)T)> (2.6)

where

O|DF 7| T —2
l—nrzmin(l—n—l- |DF7 —)

JT ° T

which parallels (2.4). The introduction of the term (7" — 2)/T in the definition of 1 — 7 ensures that there is at
least two observations in the outer regime so that SupWald (A U) is finite. To describe the null behavior, recall
that the Donsker line {yz, INT T'}yep0,1) converges in distribution to {g W (v)} 0,1 Where W(-) is a standard
Brownian Motion. For any = in [0, 1], let Q,j,(r) be the random variable that solves fo (W ()| <Q)dv=n.
Since DF 7 is bounded under the null, =7 converges to n so that

- . d
(47> 4T1) _>((7Q|W|(75)» JQ\ W\(l — 7))
. . AY a
which gives \/—T_) A" =00y (1), 0 Q) (1 — 1)), 2.7
showing that A¥ has the same asymptotic behavior than the threshold set (2.4) and asymptotically contains
the same percentage (1 — 27)% of observations. Note the standardization of A? with +/7 implies that the

Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011



dx.doi.org/10.1016/j.jeconom.2007.05.011

6 F. Bec et al. | Journal of Econometrics 1 (11l1) 1111

thresholds of A7 are of order /T in what follows, (asymptotically) unbounded thresholds refer to thresholds
with this order. Under a fixed alternative, the DF 7 statistic diverges with the order T,4 so that 1 — 7 has the
limit of min(1 — 7 4 6+/7, (T — 2)/T) which goes to 1. Hence ~/T A7 converges to Q(1) in probability and Ag
is adaptive. The SupWaldT(Ag) thus inherits of the consistency of the DF; statistic against any ergodic
stationary alternative by Theorem 1.

The next theorem shows that SupWaldT(/lg) has a pivotal null limit distribution. Define, for each regime
j=1,2,3,

YW )y (W (v))d
[ W (W) dwe) 0O ) awe)
| Fummeyd
G = 72 ’ (2.8)

(o W)y (W (v)) dv)?
Y2 o), o (W (0)) dv — =2 ]
Jo W2@),0y(W () dv 7oy

' W)y, (W) d
Jo W@, o) (W (@) d W (v) - Jy i ”U) le(‘v;((v);lzz ! Jo @iy = Vi) (W () dW (v)
0 1130

Sou(d) = | (o W)y, 0y(W () dv)? . |
F W), oy (W () do — = e
Jo W2l 30 (W(v) dv Jo 1y s (W (@) do

where 113(4) = I11(2) U I3(4) and g ¢ is for the outer regimes 1 and 3.

Theorem 2. Consider the TAR specification (2.2). Let Ag and AY be as in (2.6) and (2.7) and assume that
Assumption E(s) given in Section 7 for s>4 holds. Then, under Hy, SupWald (A ‘T/) converges in distribution to
Sup)ngU(éﬁ),U(l/G) + é%’U(/l/a)), which has a pivotal distribution.

2.2.2. A class of bounded threshold sets

An alternative is to use bounded thresholds as also considered in Kapetanios and Shin (2006) and Seo
(2003).°> According to the asymptotic theory developed in Park and Phillips (1999), the number of thresholds
[¥,_;| in a bounded interval is of order +/T only, therefore yielding an asymptotically vanishing percentage of
observations in a bounded threshold set. Hence bounded threshold sets can be used to produce lower
SupWald critical values than asymptotically unbounded ones.

We now give an example of an adaptlve bounded threshold set AB The estimated variance of the noise {&,}
in the linear specification (2.1), o—{T = Z, O ==+ p)y,,l) /(T 2), is used as a scaling factor in A%,
where 1 and p are least-squares estimators. Let (3 be a length parameter to be chosen by the econometrician
and define the bounded set by

/\

Af =[Ap,27] with Ay = |ylo)+ ~~p— and g = Ay + 06,7|DFl. (2.9)

(5|DF |

The term [y|,) in the definition of the lower threshold 4; ensures that there are at least 2 observations in the
inner regime of (2.2) to allow for estimation of u, and p,. The artificial term &,7/(6|DF7|) in A has been
added to obtain more observations in the inner regime so as to avoid small values of the Wald statistics. The
null behavior of /1‘; depends on the limit in distribution of the DF 7 statistic:

_ i W) dW () — w(l) [y W(v)dv
Ly WA do— (fy W) do)?)Y?

(2.10)

“As formally established in the Proof section for any arbitrary ergodic alternative.

These authors consider 3-regime TAR specifications with u, = 0 and p, = 0. This considerably simplifies the derivation of the null
limits of the resulting test since the parameters of the central regime are not estimated. Note: however, that their test is not adaptive and
that they limit to detection of specific TAR alternatives.
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Define

AB = [1,7] with J = % and 7 = A+adll, @.11)

which is such that A’; —d> AB, showing that the thresholds of A?« are bounded under Hy. Under H;, the DF 1
statistic diverges, so that A, goes to the lower bound Q(0) of the support of the |y, ;|’s and /7 diverges. Hence

A? is adaptive, and we now turn to the null limit distribution of SupWald(A’%). Let B(-) be a standard
Brownian Motion independent of W (-). The contribution of the inner regime in the Wald statistic is given here

by Lap(D) = [7,(w — 1) dB(w) /1 /273 /3.

Theorem 3. Consider the TAR specification (2.2). Let A? and A® be as in (2.9) and (2.11) and assume that
Assumption E(s) given in Section 7 for s>4 holds. Then, under Hy, SupWaldT(/l?) converges in distribution to
¢o,u(0) +sup,_,8025(4), which has a pivotal distribution, and where ¢ y(-) is as in Theorem 2.

Compared to the null limit distribution of Theorem 2, the contribution of the outer regimes to the limit of
SupWaldT(AI;) is now given by & (0) corresponding to the fixed threshold 0, see Kapetanios and Shin (2006)
and Seo (2003) for similar results. This can be useful to achieve smaller critical values. The intuition is that the
order +/T of the y, ,’s in the outer regime dominates the thresholds. The contribution of the inner regime
sup,_,8(25(4) is given by the bounded values of the y, ’s and remains finite since 4 >0.

3. Extensions

In this section, the consistency and null limit distribution of the SupWald test are extended to the more
general case of an autoregression of order p, as well as to more general auxiliary models and threshold sets.
The considered null hypothesis is now

Ho(p): Ay, = a(L)Ay,_; + & for t=1, yy=---=y_,_; =0, where {¢} is a (strong) white noise sequence with
variance ¢°> and 1 —a(L) is of known order p>0 with roots outside the unit circle, so that
o} = limz_, o Var(ys/~/T)>0.

To account for the additional lagged polynomial term a(L)Ay,_,, we extend the TAR specification to include
lagged variables. We also allow for asymmetric regimes by considering a two dimensional threshold parameter
/! = [, 2] with 41 <A», noting that A; = A, gives a 2-regimes TAR as considered in Berben and van Dijk
(1999), Caner and Hansen (2001), Enders and Granger (1998) and Shin and Lee (2003).

Extensions of the results of the preceding section concerns first consistency. A general definition of
adaptation is given, which allow for a general threshold variable s, that does not need to be the level y,_,.
Second, under the null and for s, = y,_;, we derive the functional limit distribution of baseline variables
entering the SupWald test for a wide class of TAR specifications, using unbounded or bounded thresholds. We
then give general conditions on unbounded or bounded threshold sets that ensures a pivotal limit distribution
for the SupWald test.

3.1. Adaptation

Our baseline general TAR model of order p is
m+ Py +ai(DAy, if s € 1i(7),
Ay, =u + ta+ P2y +ax(D)Ay,_ if s, € I (), 3.1
t3 + p3yior +as(L)Ay,_y i s, € I3(2).
Bec et al. (2004), Berben and van Dijk (1999), Enders and Granger (1998), Kapetanios and Shin (2006) and
Seo (2003) consider a threshold variable s, = y,_, which is integrated under Hy(p) but stationary under Hy,

while Caner and Hansen (2001) and Shin and Lee (2003) use a stationary s, under Hy(p) and H; as for instance
s; = Ay,, see also Gonzalez and Gonzalo (1998). Our approach assumes that {y,, s;} is stationary under Hj,
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hence allowing for all the choices considered in the references above. Various restrictions of (3.1) have been
considered in the literature, as for instance the symmetric mirroring 3-regime TAR specification (2.2). These
restriction can be written as

Ay, = XD+, (4, p) € @; x RE with X(4) = x(A)r,

xi((2) = [(Ly,DU(s: € 1i(A)), (Ay, i -, Ay, ))U(s € Ti(2))], (3.2)

for j = 1,2,3 where r is a known selection matrix which is given by the restriction of (3.1) of interest. The
parameters set @, can include various constraints for the thresholds, as 4; = —4, which corresponds to a
symmetric inner regime as in (2.2). The Wald statistics combined in the SupWald test correspond to the
hypothesis p; = 0,/ = 1,2, 3, for a threshold 4, and can be computed as in (2.3), with a matrix R such that Rf
gives the p coefficients of the model. In what follows, r and R are assumed to be full-rank. As a benchmark, we
now consider the augmented Dickey—Fuller (4DF7) statistic, that is the z-statistic for the autoregressive
coefficient p of the linear specification

Ay, = ji+ pyiy +a(DAy,  + vy, (33)

An important feature of the symmetric mirroring TAR specification (2.2) was that a growing inner regime
I,(2) gives the dynamic linear model (2.1) as a limit, so that (2.2) asymptotically nests (2.1), as formalized in
the next definition.

Definition 1. Consider a restriction (3.2) of the 3-regime threshold autoregressive model (3.1) such that the
parameters (;, p; and a;(L) are constant across a subset # of regime indices. Let S be the support of the
stationary threshold variable s, and 1 4(4) = UjE Y i(A).

This restricted autoregressive threshold model nests the augmented linear autoregressive model (3.3)
through the subset of regimes ¢ if and only if

(1) There exists a sequence 4, € ©; such that I 4(4,) — S when n goes to infinity (i.e. lim,—, o P(s, ¢ 1 4 (4,)) = 0).

(i) The covariates x,(4) admit a partition x (1), x_ (1), with x,(D)I(s, € [ 4(1)#0 and x_, =
X_gil(s; €1 4(4)) (implying lim,f(i)ﬁgx_f,(/l) =0). In addition, with lim,f(i)ﬁgxf,()n) =[Ly,_
Ay,_1s- - Ay )

The introduction of the regime index set ¢ allows for strongly constrained symmetric TAR specification as
i+ ey +ai(L)Ay, if s, € (o0, —4] = 11(4),
Ay, =u +{ o+ p2yio +a(D)Ay,_ if s € (—4,4) = 1x(4),
t+ Py +ai(DAy,y if s € [4,400) = I5(7),
where / is in R here. In this specification I;(A) and I3(/) cannot diverge to R while I1(4) U I3(A) can, so that

this model asymptotically nests (3.3) through the inner regime j = 2 and the outer regime # = {1, 3}. The next
definition introduces adaptation.

Definition 2. Assume that the threshold variable s, is chosen such that {y,, s;} is stationary for any alternative
{y,}in H;. Let S be the support of the stationary s,. Consider a restriction (3.2) of the TAR model (3.1) which
nests the linear augmented autoregressive model (3.3) through the subset of regimes #. Then a random set A7
of admissible thresholds is #-adaptive if and only if

(i) The SupWald (A7) has a finite null limiting distribution.
(it) For any alternatives {y,} of Hj, there exists a deterministic sequence A7 in @; with limz7_, o/ s(Ar) = S,

and Ay is in Ay with a probability tending to 1.

The statistic SupWald (A7) is #-adaptive if and only if A7 is.

Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011



dx.doi.org/10.1016/j.jeconom.2007.05.011

F. Bec et al. | Journal of Econometrics 1 (11l1) 1111 9

This gives the following extension for Theorem 1 which similarly suggests that a SupWald;(Ar) can
improve on the ADF test.

Theorem 4. Assume that the threshold variable s, is chosen such that {y,,s,} is stationary for any alternative {y,}
in Hy. Consider a restriction (3.2) of the TAR model (3.1) which nests the linear augmented autoregressive model
(3.3) through the subset of regimes ¢ .

Then, if Ar satisfies Definition 2(ii), SupWald(Ar) diverges in probability for any {y,} in H, and

SupWald(A7)=ADF%(1 4 op(1)).

3.2. Pivotal null limit distributions for asymptotically unbounded thresholds

From now on, we consider a level threshold variable, that is s, = y,_;, so that (3.1) becomes
t+ oy raDAy,_ if y € Li(A),
Ay, =u+ { ta+poyig + DAy, iy € L(A), (3.4)
t3 + p3y— +as(DAy, if y,_y € I3(4).
We first focus on asymptotically unbounded thresholds
Ar =i =[i1,72] € O NThy<I1<la<NTir, o — i =Tvr}, (3.5)

where the inequalities /T Ar <A <y <+/TAr now control for the number of observations in the outer
regimes while 4, — 4; >+/Tvy deals with the inner regime. Finding the null limit distribution of the SupWald
statistic in this context necessitates to introduce a suitable standardization of the baseline covariate x,(4) in
(3.2). Consider X[} and AX (%) with,

Uy Vi1 . oy
th(@—n(%ﬁel,a)) 2.

Uriy Vi1 ” Ay, Ayt—P:|
Ath(/L)—ﬂ<6y\/T€I](/L)>{ﬁ e (3.6)
for j = 1,2,3. Recall that W(.) is a standard Brownian Motion and define
Mi(A)
M — Jo W @) € 1(2) dW () o | M) .
A= e e opawe | TP T oy | G
03p><1
[ WW(v) € Ii(2)) dv ay i WIW(v) € I;(2)dv
G2 = oy fy WUW (@) € L) dv [y WU () € [(2)dv |’
Cy(2) = Diag[C1(2), C2(4), C3(2), 03px3,] - (3-8)

The next theorem establishes functional convergence of sums related to the standardized x,(4)’s under Hy(p),
for any p> 1. Following van der Vaart (1996) and van der Vaart and Wellner (1996), we consider functional
convergence in distribution in £*([—a,a]*), the space of bounded functions over [—a,a]* equipped with the
supremum norm.

Theorem 5. Assume that Hy(p), Assumptions E(s) with s>4 and L given in Section 7 hold, and let
Q=Var[Ay, y,....Ap,,].

Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011



dx.doi.org/10.1016/j.jeconom.2007.05.011

10 F. Bec et al. | Journal of Econometrics 1 (11l1) 1111

Then, for any a>0,

[T T T

S KU Y KUK, AXEOAXY 0, = 1.2 3]
L =1 =1 =1

converges in distribution in t*(—a, al’) to

r 1
M), G2 /0 (W () € I())du,j = 1,2, 3}

and SUD, (_y a2 ||Z,T=1AX}[](/1)/X},](/I)|| =op(l), for j=1,2,3. Moreover, Z;T=1 Ay, ve./NT = Op(l) and if
s>14, sup,_, 2 I AX (el = Op(1), for j =1,2,3,

As seen from Bec et al. (2004), a result as Theorem 5 can be used to obtain the null limit distribution of
supremum of statistics as the Likelihood ratio, Score and Wald statistics. As shown in the proof section, the
fact that Theorem 5 holds for any real number a>0 is sufficient to allow for an asymptotically random
A7 /+/T in such statistics. The next corollary concerns more specifically the SupWald statistic. Let

A= =[l,40] € 0L < <Io<hiy— A=V}
be the limit in distribution of A7 /+/T. The next corollary extends Theorem 2 to a general TAR specification
and gives a simple condition on A ensuring that a SupWald(A7) has an asymptotic pivotal distribution.

Corollary 1. Assume that Assumption E(s) with s> 14 as in Section 7 holds. Assume that (Ag, A1, VvT), satisfying
Assumption A in Section 7, converges in distribution to (4, ,v) with

. LA
inf Wh)y<—=<—< sup W(v) and v>0. (3.9
vel0,1] gy ay vel0,1]

Consider a restriction of the TAR specification (3.4) with a covariate X,(A) = x,(A)r with entries taken from
vectors

U11(/1)(yt—1) Yi-1 ﬂll(i)(yz—l) Ay, s, Ayr—p]ﬂh(l)(%—l)
71 Ulz(/l)(ytfl) , | Ve ﬂlz(i)(ytfl) , I3 [Aytflﬁ EERE Aytfp]ﬂlz(i)(ytfl) S
lni-1) VeeitlyinWi-1) [Ay, s, Aytfp]ﬂlﬂﬂ.)(ytfl)

for some suitable 7\,72,73. Then, under Ho(p) and if Ar is as in (3.5), SupWald (A7) converges in distribution to

sup {My(2)r( Cuy(r) ™ R(a*R( Cy()r) ' R)Y 'R Cu(r) ™' ¥ My},

€A ]ay
which is finite and has a pivotal distribution provided that [A, 1, v]/ o, has a pivotal distribution.

The restrictions on the covariates imply in particular that the restricted TAR does not impose constraints
linking the autoregression coefficients p; with the mean parameters yx; or the lags coefficients, j = 1,2,3. The
condition (3.9) entails that each regimes are not empty asymptotically, ensuring that inverse matrix in the limit
exists so that the limit variable is finite.

3.3. Pivotal null limit distributions for bounded thresholds

We restrict here to the common dynamic TAR specification
t+ o iy € Li(A),
Ay, = u + a(L)Ay,_; + { ta+poyiy i yiy € Ix(2), (3.10)
t3+ o3y iy € 13(0),
and consider bounded threshold sets as

Ar ==, 0] € O hp <A <la<Ar,Jo— i =vr}. (3.11)
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To study this case, a specific standardization is needed for the inner regime of the baseline covariate x,(4)
in (3.2). Define

0 I,(2
xao =2y =100 e no)| 2 =1
AXE = L[AyH, LAY (3.12)

JT

The study of the inner regime builds here on local-time asymptotics as considered in Park and Phillips (2001).

For a Brownian Motion W(-) over the time interval [0, 1], the occupation time A+ fo I(W(v) € A)dv defines a
measure over the Borel subsets of R. This measure has a density Ly/(-) with respect to the Lebesgue measure
called local time, see Revuz and Yor (1999). In particular, the local time Ly (0) gives the limit distribution of
the number of observations in a central interval /»(1) standardized with (1, — 4;)v/T, see Park and Phillips
(2001). Consider a two-sided standard Brownian Motion B(-) independent of W(-).® Define, for M i(-) and
Ci(-) as in (3.7) and (3.8),

) M (0)
L1/2(0) fiz dB(w) ME(Q)
By _
MZ(/“) 1/2 f WdB(W) P MB(/I)_ M3(0) ) (313)
Opxl
g
Ar — ) 2 1
CB(;L) — LW(O) : M 2
2 o, |- B-i3
2 3
Cp(4) = Diag[C1(0), CF(2), C3(0), 0px,] - (3.14)

The next theorem establishes limit results relevant for the bounded case under Hy(p).

Theorem 6. Assume that Hy(p), Assumptions E(s) with s>4 and L given in Section 7 hold, and let Q =
Var[Ay,_y,...,Ay,_,].
Then, for any a>0,

T T T
[Z Xﬁ(.)/,g,,ZXS(.)’X/??(.)’ZAXB/AXB’] —1.2.3
=1 =1 =1

converges in distribution in {*(—a,al’) to [M;(-), Ci(-), Q2,7 = 1,2,3] and

T
sup ZAXB’XB(Z =op(1), > Ay,_4e/VT = O0p(1).
A€[— aa =1
forj=1,2,3.

Kapetanios and Shin (2006) and Seo (2003) implicitly used a similar result, but that did not include the
asymptotic of the inner regime because they impose a central unit root. The fact that the limit variables of the
outer regimes (j = 1, 3 in (3.13)) are random constant is in line with the results of these authors. As a corollary
we derive the limit distribution under Hy(p) of a SupWald test based on a restriction of the TAR specification.
As seen for the specific TAR specification used in Theorem 3, the local time Ly (0) can disappear from the
limit variable due to self-standardization of the Wald statistic. As stated below, the SupWald statistics is
asymptotically pivotal under conditions that differs from the one of the unbounded case. In particular, the

®Recall that a two-sided Brownian Motion is a Brownian Motion defined over R as B(w) = B..(w) for w0, B(w) = B_(—w) for w<0,
where {B; (W)}, cr+ and {B_(w)},cp+ are independent Brownian Motions over R*.
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parameters of the central regime cannot depend upon the parameters of the inner regime, but u, and p, can be
dependent.

Corollary 2. Assume that Assumption E(s) with s> 14 as in Section 7 holds. Assume that (A1, A1, VT), satisfying
Assumption A in Section 7, converges in distribution to (4,2,v) with v>0 almost surely.

Consider a restriction of the TAR specification (3.4) with a covariate x,(1) = x,(A)r with entries taken from
vectors

Ay,

Y AUR ) A yalmOo) ) oG, F i
r b r b A —_ b — ;L — 9 r : 9
w0 2\ valmoo) AOV-1h Veri@y-1), T4 A

Vi—p

for some suitable 7\,7>,73. Then, under Ho(p) and if Ar is as in (3.11), the SupWald (A7) statistic converges in
distribution to

sup{M () r(r’ Cp(2)r) "' R(a*R( Cp(Z)r) ™ R R(¥ Cp(2yr)™'r M (L)},
leA

which is finite and has a pivotal distribution provided that [A /2,v/2] has a pivotal distribution.
4. Simulation experiments

Comparing the adaptive quantile threshold set (2.6) with its nonadaptive counterpart (2.4) suggests that the
practical choice of an adaptive procedure may be more delicate due to a higher number of parameters. But
adaptation allows for drastically different behaviors under the null and the alternative as seen from
requirements RO and R1. Hence a possible practical benefit of adopting an adaptive approach is a better trade-
off between the length of A7 under the null and the alternatives as permitted by these additional parameters,
resulting in a more powerful test.”

In this section, we propose a practical methodology to devise adaptive threshold sets accordingly. As
suggested in Balke and Fomby (1997) and Taylor (2001), we use a set of stationary TAR alternatives
exhibiting various features for calibration of the adaptive sets (2.6) and (2.9), see Table 2 which reports the
behavior of the resulting test against some of the considered TAR alternatives. To ease calibration, we change
|DF 7| into max(1, |DF7|)in (2.6) and (2.9). As a result of the comparison of several values, the retained length
parameter in (2.9) is 6 = 6. For (2.6), we fix @ to .85 and retain 6 = 10. Because limiting to TAR alternative
would ignore that adaptive SupWald tests can detect a larger class of ergodic alternatives, we study the power
of the test against Autoregressive Conditional Root models (ACR, see Bec et al., 2005 and Gouriéroux and
Robert, 2006). As a benchmark for comparison, we consider the ADF 7 test and a nonlinear unit-root test N
introduced by Kapetanios et al. (2003).®

4.1. Critical values

Table 1 gives the critical values based on 40,000 simulations of different sample sizes. Note that these critical
values are much higher than the squared ones of ADF test, which is (—2.88)> = 8.2944 at the 5% level.
As shown later on in the simulation experiments, this will have some consequences on the relative power of
our tests with respect to the ADF test for close to linear DGPs. Note also that the critical values of the test
based upon unbounded ALT/ are larger in small and medium samples than the ones associated to bounded A2,

"Caner and Hansen (2001), in analogy with a discussion in Andrews (1993) concerning trimming in tests for a structural change, have
already argued that an ideal choice of a quantile threshold set (2.4) should be based on a trade-off between the null and the alternative: a
small proportion 7 decreases the power of the test by increasing its critical values while a large = limits the power by decreasing the set of
admissible thresholds. We extend this approach to the case of adaptive threshold sets.

8These last authors derived the model Ay, = py:_, + v, as an approximation of a smooth transition autoregressive model. The 7xy. test is
based on the Student statistic for p. For comparison sake with our TAR that includes mean parameters, we consider the demeaned version
of the #np, test. From 40,000 replications of simulations with 7" = 200 and 300, it follows that the critical value at the 5%-level is —2.94.
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Table 1
Critical values (40,000 simulations)

Sample size styp S

15% 10% 5% 1% % in AY 15% 10% 5% 1% % in A%
100 12.00 13.20 15.24 19.83 97.78 10.82 12.04 14.01 18.64 73.69
150 11.96 13.17 15.11 19.30 93.43 10.84 12.02 13.89 17.99 67.79
200 11.80 12.99 14.84 19.33 88.79 10.80 11.98 13.83 18.05 62.89
250 11.73 12.92 14.76 19.22 87.88 10.90 12.04 13.90 17.92 6191
300 11.57 12.77 14.74 19.27 82.61 10.90 12.01 13.82 18.14 56.21
500 11.41 12.58 14.54 18.67 71.56 11.05 12.22 14.13 18.09 48.31
1000 11.35 12.49 14.47 18.43 73.74 11.14 12.28 14.20 18.28 37.90

suggesting that the length of A7 is larger in mean than the one for the bounded A7. The last column for # 'le
and #~ %“p contains the percentage of y,_; € Ar and confirms this conjecture. For instance, with a sample size
of 200, the percentage of observations in AY is 20% greater than the one for A%. Moreover, as expected, the
percentage of y,_; in the inner regime for AI; decreases sharply with the sample size. The critical values of the
two tests become closer when 7' increases, suggesting that the maximum of the Wald (1) statistic is achieved
for moderate thresholds A.

4.2. TAR alternatives

In order to investigate the effect of the choice of the threshold values on the power of the test, we consider
the TAR alternatives with an integrated inner regime

”

pApye iy <=4
Ay, =aly,_ | +e&+ < PV if |y, _1<2
—m ey iy =4
with iy =13 x |p|| x4, p, =0.

and ¢; is an i.i.d. A47(0,1). The choice of the parameters values follows Bec et al. (2004) analysis of real
exchange rate data. Table 2 reports the 5%-level rejection rates of the ADF, % '%up and ¥~ SBup for T =200 and
300, using 1,000 replications.

The percentages of |y,| contained in A [T] and A2, given into brackets, are greater than the ones under the null
(see Table 1) especially for A?. This illustrates the adaptive behavior of ALT] and /11}. It can also be seen that the
percentage of data in the stationary regimes depends crucially on the thresholds size (see the third column of
Table 2).

As expected, the power of all the tests increases with the sample size. The tests based on %~ i,“p and %~ %up
generally outperform the standard ADF except for close to linear alternatives, that is when the percentage in
the stationary regimes is more important. However, for these cases the power of adaptive tests is close or equal
to the power of the standard ADF especially for #~ Zup. For processes characterized by a low percentage of
data in the stationary regimes, the gain of the adaptive tests can be as high as 70% compared to the ADF. The
power of ¢y is always dominated by both SupWald tests. Beyond the lack of adaptation, the relative failure of
the #np test may come from the fact that it is specifically devised for smooth transition threshold autoregressive
models under the alternative.

Finally, the test based on #~ %“p outperforms the one based on #~ %“p for all the cases. This gain in power by
the bounded interval compared to unbounded interval is due to the fact that the critical values of %3 are
relatively small since the percentage of observations in A? and AI; are quite close.
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Table 2
Empirical power of the unit-root tests against TAR alternatives

(4,a,py) T % ADF INL e wSP
(10,0, —0.1) 200 28 14.5 2.6 58.5 [91.9] 61.6 [93.6]
300 2.7 18.4 328 74.9 [86.4] 81.8 [95.8]
(10,0, —-0.3) 200 1.5 18.3 66.3 84.9 [93.5] 88.6 [97.8]
300 1.4 234 84.1 93.9 [88.7] 96.5 [98.5]
(10,0.3,—0.1) 200 39 17.1 38.3 82.2 [93.8] 84.5[97.0]
300 3.8 244 67.5 95.6 [88.9] 98.0 [98.8]
(10,0.3,-0.3) 200 2.1 36.4 94.2 98.3 [97.2] 98.6 [98.4]
300 2.0 77.3 98.3 99.8 [93.5] 100 [98.7]
(2,0.3,-0.1) 200 415 100 90.3 94.5 [98.5] 97.6 [98.3]
300 414 100 97.4 100 [99.0] 100 [98.7]
(2,03,-0.3) 200 23.9 100 100 100 [98.5] 100 [98.3]
300 23.8 100 100 100 [99.0] 100 [98.7]

Note: The column labeled % reports the percentage of data in the stationary regimes. The figures into brackets are percentages of |y,|
contained in AY and AZ.

4.3. Autoregressive conditional root alternatives

Let us now check consistency of our SupWald test against a broader set of stationary alternatives. We
consider here an ACR model proposed by Bec et al. (2005) and Gouriéroux and Robert (2006). This
alternative is given by

yo=0+p) "y, +aly, | +e,

where the transition variable s, is binomial given the past, and specified by its conditional probability
P(s, = 1y,_1, &) =11 +exp(—(oc+B|yt,1|1/2))]_1, p is a real number, f is non-negative and o« and f are
finite. In this model, ¢ is an ii.d. 4°(0,6%). The Markov ACR model exhibits local nonstationarity
when s, = 0, which is more likely to arise if & 4+ f|y,_;|'/? is small. When >0 as in our simulation experiment,
this source of local stationarity corresponds to a central regime, but with a less precise delimitation than
for the TAR model (2.2). Indeed, due to the randomness of s;, local nonstationarity may also hold
outside a central zone. Even though the degree of local nonstationarity of the ACR model is related to the
parameters (a, ff), it is worth computing the percentage of time spent in the stationary regime (column ‘%’ in
Table 3) for interpretation’s sake. The parameters values considered for this power analysis are motivated
by Bec et al. (2005). In line with their ACR estimates for real exchange rate data, ¢ is set to 0.009, and our
benchmark calibration sets a, o, f and p to 0.3, —10, 30 and —0.3, respectively. The results are reported
in Table 3.

Again, the ADF test slightly dominates the other tests in the case where the time spent in the stationary
regime (s, = 1) is important. In the other cases, the unit-root tests based on the threshold specification do
remarkably well while the ADF test has poor power. For instance, with the parameter values of the first DGP
reported in Table 3, the time spent in the stationary regime is equal to 4.4%, and the rejection rate of % SUP g
75.1% compared to 27.2% for the ADF test. Finally, the power of W5 slightly dominates the power of “W Sup
for 13 cases out of 16. The 7\ test slightly outperforms the WB P test in two cases.

5. The yield spread dynamics revisited

We propose here an application of our adaptive approach to the analysis of the yield spread dynamics.
Under costless and instantaneous portfolio adjustment assumption, arbitrage arguments often augmented by
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Table 3
Empirical power of the unit-root tests against ACR alternatives

(. p.a.p) T % ADF e e g
(—10,30,0.3, —0.3) 200 4.4 272 70.9 63.8 [96.5] 75.1 [98.4]
300 44 61.9 91.5 86.0 [92.2] 93.3 [98.8]
(—10,30,0.3, —0.1) 200 7.9 14.3 20.9 17.7 [93.7] 27.0 [94.9]
300 7.9 228 38.9 30.0 [88.5] 44.4[97.9]
(—15,30,0.3,—0.3) 200 13 11.6 274 36.6 [91.7] 29.8 [79.4]
300 1.2 14.4 37.0 39.8 [85.8] 41.0 [80.8]
(—15,30,0.3,—0.1) 200 2.1 8.1 13.8 11.9 [90.9] 10.7 [67.7]
300 2.1 12.8 15.1 13.5 [85.0] 13.1 [66.9]
(=20,120,0.3,—-0.3) 200 19.4 100 99.9 100 [98.5] 100 [98.4]
300 19.4 100 100 100 [99.0] 100 [98.7]
(=20,120,0.3,—0.1) 200 35.0 89.3 81.6 64.4 [98.4] 72.0 [98.4]
300 35.1 100 95.0 93.1 [98.1] 97.1 [98.8]
(—10,30,0,-0.3) 200 3.5 14.4 31.7 32.6 [93.5] 45.2[97.5]
300 3.5 24.4 53.4 47.6 [88.5] 68.2 [98.5]
(—10,30,0,-0.1) 200 6.3 10.0 11.2 10.4 [91.7] 14.6 [92.3]
300 6.2 15.8 17.2 16.0 [86.1] 24.0 [94.5]

Note: The column labeled % reports the percentage of data in the stationary regimes. The figures into brackets are percentages of |y,|
contained in AY and AZ.

risk considerations leads to a very general relationship between yields of different maturities, i.e.

k
R(k,t):% SRRt +j = D]| + Lik, 1), (5.1)
J=1

where R(k,t) denotes the k-period interest rate, E, is the expectation operator conditional on time ¢
information, and L(k, 7) represents the term premium, accounting for risk and liquidity premia.’ This in turn
implies the stationarity of the yield spread between longer-term and shorter-term interest rates. Indeed, by
rearranging (5.1), the spread which prevails may be expressed as

k=1 i
S*(k,1,1) = R(k, ) — R(1,1) = %Z > EJAR(L 1+ )] + L(k, 1), (5.2)

i=1 j=1

where the right-hand side is stationary as soon as interest rates are integrated of order one and the risk
premium is stationary. Hence, as noticed by Hall et al. (1992) and Anderson (1997), Eq. (5.2) acts as an
attractor as soon as the actual spread S(k, 1, ¢) differs from the equilibrium spread S*(k, 1, 7).

However, as pointed out by Anderson (1997), if one considers homogeneous transaction costs which reduce
the investor’s yield on a purchased bond by a constant amount A, then the investor will convert a portfolio
of one-period bonds to k-period bonds if and only if A<S(k,1,¢) — S*(k, 1, 1), or convert k-period bonds to
I-period bonds if and only if S(k,1,¢) — S*(k,1,7)< — A. Therefore, in presence of transaction costs, the
attraction toward Eq. (5.2) is inactive when

< Sk, 1,1) — S*(k, 1, )< J. (5.3)

For instance, the pure expectation hypothesis implies that L(k, ) is zero while some other versions of the expectations hypothesis assert
that the premia are constant over time.
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Table 4
ADF and KPSS tests

Stat. k,f SG k,f SUS k,f S]: k,f SNZ
ADF(k) 1 —1.889 4 —2.726 1 —2.672 4 -3.211
KPSS(¢) 3 1.671 4 0.602 2 0.101 4 1.691

The critical values at the 5% level are —2.88 for ADF and 0.463 for KPSS.

Table 5
SupWald unit-root tests

SupWald(4%) A A% AY

O @ (©) 4
Sk 10.96 1.98 [0.09;7.86] [0.29;2.77]
SG 15.42 1.03 [0.11;3.63] [0.55;2.54]
Snz 52.16 7.98 [0.06;11.76] [0.39;9.40]
Sus 30.07 1.69 [0.04;5.98] [0.29;2.68]

Note: See text.

Hence, there is no reason for the cointegration relation between long- and short-term rates to hold in this area,
or put in other words, for the spread to revert toward S*(k, 1, ). This arbitrage behavior clearly suggests a
stationary but nonlinear dynamics for the yield spread, which should be well captured by our parsimonious
auxiliary model. Moreover, recent empirical evidence—see e.g. Keim and Madhavan (1997) or Wagner
(1998)—displays transaction costs estimates ranging roughly from 0.5% to more than 2% depending on the
types of costs included in the calculation.

The interest rates data used in this study are monthly averages spanning from 1980:01 to 1998:12 for France
and Germany since the Euro was introduced in January 1999, and to 2001:08 for the US.'” For the New
Zealand,'! the available data span from 1985:01 to 2002:01. For France, Germany, the New Zealand and the
US, the short-term interest rate is, respectively, the 3-month PIBOR, the 3-month FIBOR, the 90-day Bank
Bill yield and the 3-month Treasury Bill rate, while the long term is the 10-year public and semi-public sector
bonds rate, the 9 to 10-year Bd listed federal securities rate, the 10-year secondary market government bond
yield and the 10-year treasury constant maturity rate. The yield spreads are defined as the difference between
the long and the short-term rates, and are denoted Sk, Sg, Snz and Sys.

As can be seen from Table 4, performing the standard ADF unit-root test and KPSS stationarity test'?
reveals that the US and German spreads are well characterized by a unit-root process, whereas no clear-cut
conclusion emerges for Sg and Snz.

Indeed, the KPSS statistics fails to reject the null of stationarity for the French spread while the ADF test
leads to reject the unit-root for Snz. The values obtained for the SupWald(Ar) statistics—and reported in
Table 5—have to be compared with the corresponding critical values given in Table 1. The lag order of the
a(L) polynomial in model (2.2) is chosen according to the BIC and Ljung-Box statistics which suggest p = 1
for the European spreads, and p = 4 for the remainders. For each series considered here, the same threshold
value maximizes both SupWald(4%) and SupWald(A4%)—see column (2) in Table 5. Hence, both test statistics
reach exactly the same value which is reported in column (1). However, the SupWald(A%) and SupWald(A4%)
statistics depart from each other by the set of thresholds considered, as can be seen from columns (3) and (4).

YEuropean and US data come, respectively, from Datastream and FRED databanks.

""These data come from the Reserve Bank of New Zealand.

2The lag length for the ADF(k) is chosen according to the Ljung-Box statistic. The size of the Bartlett windows for KPSS(¢) is obtained
following Andrews (1991).
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The SupWald(A4%) and SupWald(AY) statistics lead to the same conclusion in three cases out of four: the null
is rejected by both tests at the 1%-level for Sz and Sys and at the 5%-level for Sg. Nevertheless, the French
data provide an illustration of the potential discrepancy between the bounded and unbounded intervals
approaches. Whereas the null can be rejected for Sg at the 15%-level according to the SupWald(AI;) critical
values reported in Table 1, the unit root cannot be rejected at this level on the basis of the SupWald(4Y)
statistic. Hence, this empirical application confirms the gain in power implied by the bounded interval—which
has already been emphasized by the simulation experiments in the previous section. It is also worth noting that,
as expected, the SupWald(/llT?) test seems more adaptive that the SupWald(/l?) test, since there are always more
observations lying in AI; than in A?. The percentage of observations lying in A? ranges from 97.2 for the US
spread to 99.5 for German and New-Zealander data, whereas it never exceeds 86.2% for A? . Finally, this
empirical investigation of yield spread data provides support to the so-called expectations hypothesis, once the
transaction costs are accounted for—i.e. once the nonlinear feature of the stationary alternative is allowed for.

6. Conclusion

This paper develops adaptive threshold SupWald unit-root tests as an alternative to linear ones. Adaptive
threshold SupWald unit-root tests are consistent against stationary ergodic alternatives, therefore including a
large variety of nonlinear processes relevant in macroeconomic or financial applications. A power bound
indicates that these new unit-root tests can outperform linear ones, hence justifying the quite recent strand in
econometrics literature which searches for such an improvement through the use of a more complex nonlinear
specification to build a unit-root test. This theoretical finding is mostly confirmed by our simulation
experiment. It is also illustrated by an empirical analysis of yield spread data: when applied to post-1980
French, German, New-Zealander and US monthly data, our test rejects the null of unit root whereas ADF
and KPSS tests give mixed evidence at best. But the power bound suggests that the order of the improvement
crucially depends on the magnitude of the critical values of the SupWald test and our simulations reveal that
this is especially true for alternatives close to linearity, against which linear tests better perform. Regarding the
choice of a threshold set, the simulation experiments show that using bounded ones give a more powerful test,
by producing smaller critical values under the null, and because the retained choice of the bounded A7 is
larger under the alternative. In addition, considering such bounded set of thresholds may also improve the
accuracy of the null limiting distribution, because they are smaller under the null.

7. Main assumptions and proofs

The proof section is organized as follows. We first state our main assumptions. We then prove Theorem 4,
which implies Theorem 1 in Section 7.2. Section 7.3 contains a general functional extension of Park and
Phillips (2001) which is used in Section 7.4 to establish Theorems 5 and 6. Our main limit results for the
SupWald statistics (Theorems 2 and 3, Corollaries 1 and 2) are proved in Section 7.5, and an Appendix groups
some useful lemmas and the proof of and intermediate result.

P . o d e .

In what follows, — denotes convergence in probability, — stands for convergence in distribution and Lis
equality in distribution. Depending on the context, || - | denotes vector, matrix, or function norm, but in case
of a vector, ||z|| is the Euclidean norm of z. C is a generic constant that may vary from line to line.

7.1. Assumptions

Let us first introduce a limit theorem for sums of transformations of the y,_;’s due to Park and Phillips
(2001), see also Park and Phillips (1999). The next definitions are from Park and Phillips (2001). A map f(-)
from R to R is regular if it is continuous in a neighborhood of infinity, and, for any compact subset C of R,

there exist some continuous functions [ C(-) and f,(-) with lim,_ Ik f, — S/ z‘_)(w) dw =0, and J.>0 such that
f ;,(W,) <f(w)<f,(w) for all |w — w'| <5, on C. A finite-dimensional vector of functions is regular if each entry
is regular. Typical examples of such functions are the indicators I(w € I;(1)) j = 1,3, of the lower and upper
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regimes of the TAR model (3.4). A map f(-) from R to R is I-regular if it is integrable, square integrable, and
satisfies the Lipschitz condition |f(w)—f(w)|<K|w — w/| on its support. A finite-dimensional vector of
functions is I-regular if each entry is I-regular. A typical example of such functions is the indicator I(w € I5(1))
of the central regime of (3.4) Following Park and Phillips (2001), we shall assume that

Assumption E(s). The i.i.d. ¢’s are such that Fg, = 0 and Ele;|** < o00. The &’s have a bounded density and
lim,_, o y"Eexp(iye;) = 0 for some y>0.

Assumption L. For r>1y,—y,_, =Y 2 mi&; with yy = 0, and where np = 1, Y7 #0 and > i|m;| < co.

Note that Hy(p) is a special case of Assumption L. The next theorem combines Theorems 3.1 and 3.2 in Park
and Phillips (2001).

Theorem 7 (Park and Phillips (2001)). Let 6> = Var(s,), 0'}2, = 62(22071,-)2, {W(0)}eqo,1] and {B(W)},yer be two
independent standard Brownian Motions. Let | and %, be collections of regular maps and I-regular maps,
respectively. Then, under Assumptions L and E(s), s>4, the finite dimensional marginal distributions of the
process indexed by (f,f>),

() o 0 o]

(f1.f2) € F1 x F2, converge to the ones of

! ! Ly(0,1 oLy} (0,1
[ [ rewanans [Cremwonawo, 00 [rman D | faason)|.

We now give our main assumption on the boundaries A,, A7 and vy of A7p.

Assumption  A. Set 7| = {[L,w, W ]I(w< ), [1,w, w2 )12 <w<2o),[Lw, w2 ll(w=12), A € R*} and F,=
{[1,w, wz][l()]<w<42) J € R?}. Under Hy, the vector [/IT,)T,VT] converges in distribution to the finite
vector [Z,/,v] jointly with the convergence in distribution of Theorem 7. The random vector [Z,4,v]is
measurable with respect to the o field generated by the Brownian Motion { W(v)},¢p,1;- Moreover, v=0 and
A +v</ almost surely, i.e. A7 is nonempty asymptotically.

7.2. Proof of Theorem 4

We first introduce some related notations. M ~! denotes the Moore—Penrose pseudo-inverse of M. < denotes
the usual order of symmetric matrix, i.e. M| < M, if and only if M, — M, is nonnegative. We use the
following generalization of the Cauchy-Schwarz Inequality. Let Y and X be random column vectors and
Y = BX + U with B = E[YX'|E"![XX"]. Then E[X’U] = 0 and 0 < E[UU'] yields that

0 < E[YX'JE"'[XX']E[Y'X] < E[YY']. (7.1)

Changing expectations into empirical means yields an empirical version of (7.1).
Let us stack the autoregressive coefficients p;, j = 1,2, 3 of the TAR model into a vector 7. Under H, and
stationarity of {y,,s;}, the limit p,(4) of ﬁj(ﬂv) writes, for each A

7 (%) = R(E[X,(A)x,(A)]) ' E[x/(A)Ay,] where R is a selection matrix with Rf = 7. (7.2)
The next lemma studies the p;(4)’s under H; when a regime grows.

Lemma 1. Assume that the threshold variable s, is chosen such that {y,, s} is stationary for any alternative {y,} in
H;. Let S be the support of the stationary s,. Consider a restriction (3.2) of the TAR model (3.1) which nests the
linear augmented autoregressive model through regimes . Then, for any {y,} in H, and je 7,
lim, ()~ sp;(4)<0. Hence there exists a threshold parameter ¥ such that pj(/"u' )<0.
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Proof of Lemma 1. Denote Hy as Hj 1 to recall that p + 1 lags are used in the autoregressive model (3.3).
Write similarly v, = v;,41 and rewrite (3.3) as

Ap1 (LY, —m) = vipr1 =y, —p— (1 +p)y, g —a(l)Ay,; so that 4,11(1) =1 = (1 +p) = —p,

where 4, (L) =14+ 41,1 L+ + Aerl,,,JrleJrl is given by the linear regression of y, on y,_y,...,»,_,_y,
which is uniquely defined since Var([y,_,,. .. ,yt_p_l]’) has an inverse under Hj ;1 .13 In the equation above, m
is the mean of y, which can be set to 0 as done from now on, by changing y, into y, — m. We first show that, for
all p>1, the proposition Z(p): 4,(1)>0 for any {y,} in H ,. is true. We first show that (1) is true. For p = 1,
we have A\(L)y, =y, — A1,1y,_; = vy With

A = Cov(y,pi1) — Cov(yy, ¥,-1)
’ Var(y, ) Varl/z(yz)varl/z(yt—l)

by stationarity. The Cauchy—Schwarz Inequality then yields that

= Corr(y,,y,_1)

—1<A4,,<1 with |4, =1 ifand onlyif y, =y, ory,=—y,_,.
Note that 4, = 1 is impossible, since it would give y, = y, which is a process excluded by H;. Then 4,(1) =
1 — A, isin (0,2] and 2(1) is true.

We now show that Z(p) is true for any p>1 by a contradiction argument. Assume that 4,(1)<0. Then,
since 4,(0) =1, 4,(:) has a root r in (0, 1] by the Mean Value Theorem. Write 4,(L) = (1 — L/r)A4,(L) and
consider the stationary process y, = 4,(L)y,. Note that {y,} satisfies H;; because {y,} is in H;, and
Ve=AWL)y, = Aop-1y,+ -+ Ap-1p-1,_p41> 80 that Var[y,] = 0 would contradict H;, which implies that
Var([y,,...,y,_,1]) has an inverse. Observe moreover that y,_; = A(L)y,_; = Aop-1Y,—1 + -+ Ap_1p-1V1,
is uncorrelated with v, since 4,(L)y, = v, corresponds to the regression of y, on y,_y,...,y,_,. Because
A,(L)y, =1 - L/NA,(L)y, =y, —Y,_\/T = vsp, ¥, — Y,_1/T = v, is then the regression of y, on y,_;. But
1 — 1/r<0since ris in (0, 1]. This contradicts 2(1), so that 4,(1)> 0 necessarily, and Z(p) is true for any p>1.

We now return to the proof of Lemma 1. Observe that p; = p, for all j in # by Definition I. Let

By = E- X (A)x(D]E[X)(A)Ay,]. Split B(7) into B 4(2) and B_,(2) such that x(D)B(A) = x (L) ,(A)+
X_ g(MP_ 4(4), where x 4,(2) and x_ 4,(4) are from Definition 1(ii). Note that p , is one of the entries of § ,(4).
Letx, =[L,y,_1,Ayy,---, Ay, ] and f = [E’l[x;x,][E[x,Ayl], noticing that E[x)x,] has an inverse under H,;. The
rest of the proof shows that lim[/(/l)qg B ;(4) = B so that lim]j(,l)_>§ psA)=p=—A4,11(1)<0 by Z(p + 1),
which is the statement of Lemma 1. The Frish-Waugh Theorem yields

B (2) = (EIX'; (D)X (D] = Xy (D)X i DIE X (D s DIELY. (x5 o(A)])
X ([E[x’ft(i)Ay,] — [E[xiﬁ(},)x,f,()h)][E_l[xlf,(i)x,jt(i)][E[xlf,(i)Ay,]).
by Definition 1(ii), E[x_ ,(A)z/] = E[x_ ,(A)z,0(s: ¢ 1 4(2))]. We first show that

i LY i DI (L (D) = 0. (7.3)

Let a be a row vector. The Cauchy—Schwarz Inequality and (7.1) yields
L, (A o DNE Y (- s (DIELX. (DAY Jd|
<LAELY (s, £ 1y (DX s (DNE I () o OELY (D (Vs # 1 ()] 2
x [aE[AYU(s: ¢ 1y (D)x— puDE Xy (2)x_ s DIELX_ ()U(s: ¢ 1 4 (2)Ay 11
<[aE[X', (D)X s (DVsi 1 5 ()1 PlaE[(Ay])Nsi ¢ 1 4 (A)]a]/? = o(1) when I ,(}) — S.
Definition 1(ii) gives, when [ 4(1) — S,
0 < ELY, (- e E I (D s (DIEX. () 5o(D)]
< E[x'y (D)x g (DU(s: ¢ 1 #(2))] — 0.

B3If not Ye=bo+biy_;+---+y,_, so that, as a solution of such linear recurrence equation, y, is a product of polynomial and
exponential functions of ¢. Hence, under stationarity, y, must be a constant process, which is excluded by definition of H;.
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As well, 11m1 S-S [E[xjt(ﬂ)x;,(l)] = E[x/x,] and llm[f(ﬂ)ﬁg [E[xf,(A)Ay,] = E[x|Ay,]. Therefore, the continuity
of MM~ dt {M; Det(M)#0}, the approximations above together with the expression of 8 ,(4) show that
lim; ,)~sfy(A)=p. O

Proof of Theorem 4. We give first a suitable expression of the Wald statistics Wald (1) and ADF2., and collect
important facts. Let U (2) and U 0(4) be the column vector of estimated residuals #;(1) = Ay, — x,(/l)BT()v) and
(L) = Ay, — x,(i),/gOT(/l), t=1,...,T from the TAR model (3.2), where BOT()L) is the OLS estimator of S(A)
under the constraint 7(/1) = 0. Let similarly V and 170 be the vector of estimated residuals of the linear model

(3.3), where V) is computed under the restriction p = 0. The Wald statistics write (see e.g. Gouriéroux and
Monfort, 1995)

Waldy(A) =T 1-% and ADF, =T 1—K—K . (7.4)
Up(DUo(4) VoVo

Note that V'V and I//\{) 170 are continuous functions of sums of empirical covariance matrices. Therefore, under
H,, the Ergodic Law of Large Numbers yields V'V /T = o2 + op(1) and V,V/T = 6%, + op(1) where o2 and
2, are the innovations variance of the general and constrained linear models (3.3). Under Hy, ¢?>>0¢2,>0
since p#0 as shown by Z(p + 1) in the proof of Lemma 1, so that ADF 2T diverges with the exact order 7T in
probability.

Let AY =[Ayp,....,Ay), X,(4) = Xy r(4), ... ,x:ﬂ(ﬂh)]’, X_y () =[x 7(4),... ,ijl(i)]’, and X =
X7, ..., X4 with x; = [1,y,_1,Ay,_y,... Ap,_,]. Let

=1d = X_,(DWX_,(DX_,()"'X_,(2)

be the orthogonal projection on the linear span orthogonal to the columns of X_,(4). Let A7 be the
deterministic sequence of Definition 2. Note that U (A7) is AY minus its orthogonal projection on the linear
subspace spanned by [X s(47), X ;s(47)], which is also the space spanned by [P;. X (A1), X s(47)]. The
definition of P, gives X’_f(iT)PiTXf = 0 and then

U(r)U(hr) _ AY'Pi X ;(ir) X', (Ar)P; AY

/ -1
= SR X G)Pag X 5 Ui) - (7.5)
AY'X_ ;0 . o X ,nAY
FAYXSED r Gyx L2 (7.6
T ’ T
We first study (7.5) and begin by showing that 77'A Y'P, . X ;(r) = T-'AY'X + op(1). Note that
AY'Py X ;(Ar)  AY'X 4(ir)
T n T
N AY'X_,(Gr) X' ,G)X_yGr) ' X ,(Gr)X 4(r)
T .
We show that T'AY'X 4(Ar) = T"'AY'X + op(1). We have by stationarity and Definition 1(ii)
AY'(X ;(r) — X 1&
P = B2 i) — | <A i) =
<E[(A)* % EV{Ilx (2 = xlP] = o(1). (7.7)

Therefore, T-'AY'X ;(ir) = T"'AY’'X + op(1) and we now show that the second item in T_IAY/PATX/(/IT)
can be neglected. Let @ be a column vector of dimension p + 2. Then the Cauchy—Schwarz Inequality,
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Definition 1(ii) and (7.1) yield

AY'X_ U)X, 00X G X' ,Gn)X sUr)a
T

AY'X_,Or)X.,GnX_,Gr)) ' X, Gr)ay[

<
T

X X G X U)X )X G)X G i

T

_ ‘(ZLAy,Msw,«ur))x(,«(AVT))(X/_X(AT)Xf(zT»-l(ZLAy,ﬂ(st¢1/<AT))x/_NT>)

1/2

T

X )X U)X )X ) X )X Gl

T

12

| 2 /7
< (T Z(Ayt)zﬂ(stw(xr))) (Z a/x%(zr)xf,(xr)ﬂ(st¢1f(zT))a>
=1 =1

As in (7.7),

T

=D # 1)

t=1

E <Elzd(si ¢ 1,0 = o(1), 2= (Ay)hd 'y (ir)x ua, (7.8)

for any a, so that the second item of T7'A Y'P;. X s(r) can be neglected, and T_IAY/PATXO;(AT) =
T'AY'X + op(1). Arguing similarly with (7.7) and (7.8) yields 77' X', (ir)P;, X s(Ar) = T™'X'X + op(1).
Note that T 'AY'X = E[Ay,x,] + op(1) and T7'X'X = E[x/x,] + op(1), E[x,x,] having an inverse, so that (7.5)
equals T'AY' X (X'X) ' X’AY + op(1), with T 'AY'X(X'X)"' X'AY = T~' V'V Note that arguing as above
with (7.1) and (7.8) yields that (7.6) is op(1), so that T-'U'(.7)U(Ar) = T-' V'V + op(1). Repeating the same
steps for the restricted models yields 77! US()MT) U o(Ar)=T7! 176 Vo+ op(1). Substituting into (7.4) now yields

T-'V'V + op(1)
TV Vo + op(l)

SupWald (A7)>Waldr(17) 4 op(l) = T(l ) + op(1) = ADF%(1 + op(1)). O

7.3. Functional limit distribution for integrated processes

Theorems 5 and 6 will be derived from a functional version of Theorem 7 from Park and Phillips (2001).
Stating this more general result requires additional notations from Empirical Processes Theory that we
introduce now. For a collection of functions % and a functional z(-) over % (as for instance empirical sums),
|zl 7 = supye 7 z(f)l is the uniform norm of z(-) over #. The functional space ¢*(F) = {z(); ||z]| <00} is
the space of bounded functionals over % and is equipped with the norm || - || . More specifically, let Z7(f) be
a sum from Theorem 7 and # be the associated collection 7, j = 1,2. {Z7(f)};es can be viewed as a
stochastic process indexed by the function f(-). It is convenient to consider that % is a subset of a larger
collection &, as for instance the set of bounded measurable functions. An envelope of Z is a function F(-) such
that, for any () in &, |[f(w)|<F(w) for all w in R. Let | - | be a norm over &. For f(:) andf’(-) in &, the
bracket [f,f'] is a set of functions g(-) of & with f(w)<g(w)<f'(w) for all w. An e-bracket is a bracket [f, /]
with ||f — f'|| <e. The bracketing number Nyy(e, 7, ||.||) is the minimum number of e-brackets of & needed to
cover Z. For vector-valued functions, envelope and brackets can be defined components by components. In
view of the form of the limits in Theorem 7, we use the L; norm with respect to the Lebesgue measure,
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assuming that it also controls the L, norm, ¢ = 2,3,4. Recall that the L, norm || - ||, with respect to Lebesgue
measure is ||/, = (J If ()¢ dw) i , 1<g<oo.

Theorem 8. Assume that Assumptions E(s), s>4, and L hold. Let | be a class of regular functions with a
continuous envelope, and 7, be a class of I-regular functions with a continuous envelope.

Assume that there exist some sets &; with F; C &;, j = 1,2, and some constant Cy, q = 2,3,4 such that, for
any fand f'in &;,j = 1,2,
WV =SIB<Clf = W =SIRSC =Sl and |If = f15<Calf =1l (7.9)
Assume moreover that, for Cs>0
Npe, 75| - 1)< Cse™  for some { in (0,1] and any ¢>0, j=1,2. (7.10)

Then the convergence in distribution of Theorem 7 holds in £>°(F 1) x £>°(F ).

Given the finite dimensional convergence in distribution stated in Theorem 7, proving Theorem 8 works by
showing asymptotic stochastic equicontinuity. Let Zr(f) be a sum of Theorem 7 and # C & be the associated
collection 7, j = 1,2. Asymptotic stochastic equicontinuity of {Z7(f)};c» means that, for every 6y, >0,
there exists a finite covering Fy,...,F, of # such that

limsupP| sup sup |Z7(f)—Z7r(f)|=6 | <o1.

T—+00 léién(f-/‘/)elﬁ
* i

see Theorem 18.14 in van der Vaart (1996), or Theorem 1.5.6 in van der Vaart and Wellner (1996). As

discussed by these authors, finding a covering F1, ..., F, can be done through any arbitrary norm || - || on the
index set #. In what follows, we say that {Z7(f)}sc is asymptotically stochastically | - ||-equicontinuous if for
any dg, 01 >0 there is a J such that
lim suplP( sup |Z7(f) —Zr(f')|>50> <4y. (7.11)
T=oo ¢ e 2l -f1<d

We specifically have

Lemma 2. Assume that Assumptions E(0) and L hold. Let & and & C & be some collections of functions such
that (7.9) holds over &, and that the bracketing entropy numbers of 7 satisfy (7.10). Then

EC REEICIN

T
{%Zf(y,_l)} and {T1/4Zf(y’ 1).g,}
=1

feF feF

are asymptotically stochastically || - |||-equicontinuous.
Assume moreover that E(s) holds with s>14, and that, for q=(s+4)/(s+1),2(s+4)/(s+ 1),
3(s+4)/(s+ 1), g=2s+4)/s, 4(s+4)/s, there are some constants C, such that for all f(-), f'(:) in &

I = NES Cyllf =11l (7.12)

Then, for any integer number k=1, {1/\/TZITZIAy,_,(j'(yI_I/ﬁ)gt}f.w_ is asymptotically stochastically
Il - |I,-equicontinuous.

Proof of Lemma 2. See Appendix.

Proof of Theorem 8. Let & be % or ;. The convergence statement of Theorem 8 follows from Theorem 7
and asymptotic stochastic equicontinuity given by Lemma 2, provided that each sums of the theorem are in
£°(F). This is due to the fact that the theorem assumes that % and %, have continuous envelopes which
give, respectively, finite norms | - 7, orll-lz, for each sums. [
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7.4. Proof of Theorems 5 and 6

We use here lemmas from the Appendix. The proofs of Theorems 5 and 6 are also based on the following
preliminary result.

Lemma 3. Let f(w;0) be [(w<0), I(w=0), wl(w<0), wl(w=0), w?l(w<0), w?l(w=0). Then, under Assumptions
L and E(0), for any a>0,
; 9) sf} ,
0€[—a,a)

EIC N I G

T T
{Jlfzf(y"';())} and {L/Z (Vz_l;O)az}
=1 pa

0e[—a,a)

Oe[—a,a)

satisfy Conditions (7.9) and (7.10) of Theorem 8 and are asymptotically stochastically | - |-equicontinuous.
Assume in addition that E(s) holds for s> 14. Then, if f(w;0) denotes [(w<0) or I(w=0), {T‘WZIT:lAyH(
fO0,/VT; 0ertoe—aa» k=1, is asympiotically stochastically | - |-equicontinuous.

Proof of Lemma 3. To prove the first asymptotic stochastic equicontinuity result, we satisfy the conditions
(7.9) and (7.10) of Theorem 8 and apply Lemma 2. Take & = F = {f(:;0)}pe_qq- Writting f(w;0) as
FW)I(w<0) or f(w)l(w=0), we have for any integer numbers ¢

0
/(5 02) _f('§91)||g = ‘/0 lf(w)|?dw
2

10, — 0] r7m=1

gat! _ et 0l 0,097 .. gl

| L | _105+0, 2++1 0o, —0 i =, (7.13)
g2t! _ g2t 02 40,0247 ... 4% .

T T Tl ) =

so that (7.9) holds with C, =1 if f(w) =1,

034+ 0,07 + ..+ 07
2g+1

, C,= max
(01.0))el~a.a?

>

0+ 60,007 ... 407
Cq _ max 2 + 1Y, + + 1
01,02l -a.a? q+1

for f(w) = w, f(w) = w?, respectively. For f(w; 0) = f(w)I(w<0) (the other case being symmetric) brackets can
be taken here as [f(-;0,),f(-;0:01)] = {f(;0);0;<0<0,1,1}. Eq. (7.13) yields that there is a C>0 such that
(5 02) — f(G; 0D, < ClOy — 04] for all 0y, 0, in the compact interval [—a, a], so that (7.10) holds with { = 1.
Due to the latter inequality, asymptotic stochastic || - ||;-equicontinuity implies here asymptotic stochastic
| - |-equicontinuity. The asymptotic stochastic equicontinuity of 7"/ 2ZtT=1 Ay, _f (T 2y, _1:0))e; on [—a,d]
follows from Lemma 2 because, for f(w) = 1, (7.13) holds for any ¢>0, implying (7.12) in Lemma 2. [

Proof of Theorem 5. Assume for brevity that o, = 1. Observe that the processes of the theorem are in
{°([—a, al’). Note that T_I/ZZLIAy,_ks,, k<1, is a centered martingale with E(Ayl_ke,)2 < oo (see Lemma A.2
in the Appendix), so that T‘l/zthzlAy, & = Op(1).

We first show that SuPze[—a,aF”Zz lAXU(A)&,H = Op(1), j =1,2,3. Since AXg(A) + AX (A +AX (A) =
T'2[Ay,_y,....Ay,;) and T7'25°T Ay, e, = Op(l), 1<k<p, it is sufficient to take j=1,3, and to
prove the result for j = 1 by symmetry. Because the entries T“/ZZ,T:,Ayt,kﬂ(yt,l/ﬁg}tl)s,, 1<k<p, of
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EITZIAXE(A)S, are centered martingales with a variance bounded by [E(Ay,_ks,)z, T‘1/2Z,T:1
Ay, I, /NT<iy)e; = Op(1) for all 4. That

T
sup | T2 " Ay, 1 1oy [NT <a)er| = Op(1)
t=1

A1 €[—a.a

follows from the asymptotic stochastic equicontinuity established in Lemma 3.
For the rest of the theorem, we firstly derive the finite-dimensional limit distribution. Note that

T
;AXU())AX (2) = TZ ( eI(i))

N (T Q}n( ﬁezw) (7.14)

t_l

and consider first the process

T T
{Z XYen > XYY XY ().~ - Z I (@T el (;)) j=12, 3} . (7.15)

=1 =1 =1 re[—a.a?

Let 7 = {[1,w,w?]l(w € 1}(2),j=1,2,3,4 € [—a, a]?} be the class of functions appearing in the process (7.15).
Observe that % is a class of regular functions, so that Theorem 7 yields that the finite dimensional limit
distribution of (7.15) is the limit distribution of the lemma. To check for the asymptotic stochastic
equicontinuity of (7.15), note that l(w € I,(1)) =1 — l(w € <4;) — [(w=1,), so that Lemma 3 establishes that
(7.15) is asymptotic stochastic equicontinuity as sum of such processes. It follows that (7.15) converges in
distribution in £*([—a, a]*) to the limit of Theorem 5.

To complete the proof of the theorem, it remains to show that the remainder term (7.14) and

Zl_ AX U(A) Y(2) are uniformly negligible over [—a,a]. This is done in the next two steps which show
(1) the asymptotic stochastic equicontinuity of Zl 1AX; U(A) (i) and Zr 1AX; U()L) AX '(,/()L) (since,
QT‘IZ,T: A/ VT el i(4)) is asymptotically stochastically equlcontinuous as shown above); (2) pointwise
convergence in probability to 0 of ZtTZIAX j(,/(/l)/X j(,]()v) and of the remainder term (7.14).

Step 1: Asymptotic stochastic equicontinuity. We begin with Z[T:IAX ]5‘/(/1)/)( jlt](i). Because

AXT() XT() + AX5,() X5,(2) + AX 5,0 X§5,(2) = — [Ayf_l,-. Ay [ f}%]

does not depend upon 4, it is sufficient to study j = 1. The absolute values of entries of the increments of
Zt_ AXY(21) X (A1) are such that, with f7(w) = 1 or f(w) = w/v/T,

1z 172 1/2 | } 1/2
<<;;<A}v,4c>2) (TZfTo, 1)ﬂ<m\ﬁ<i)> :opu)(?;f%omﬂ(ﬂ-i i )) :

1 - t 2
TZ ), I(J‘T()z l)ﬂ</\-l<f7£</u]>

=1

k=1,...,p, by the Cauchy Schwarz Inequality and Lemma A.2. Then the asymptotic stochastic
equicontinuity of Zt (AX ﬁ(/l)X (1) follows from Lemma 3 and the definition (7.11) of asymptotic
stochastic equicontinuity.

For ZITZIAXJQ(X)’AXJQJ(A), it is also sufficient to restrict to j = 1, and the bound

- 1/2 - 1/2 1/2
1< 1< 1 &

<<TZ(Ay,kAy,k,)2> <T2n<z,<§’7‘<;>> =op(1)< Z( <y’—‘<m> ,
=1 =1 =1

1 <k, k' <p similarly gives asymptotic stochastic equicontinuity.

1 & ¥,
= Ay Ayl <AL <
T,Z; Vi—kBY -k <’“1 ﬁ </L]>
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Step 2: 3 AXY (Y XY(2) = op(1) and T"Y" (A, 1Ay, — E[AY, 1Ay, DI, /NT € 1;(2) = op(1)
for all A, 1<k, k'<p,j=1,2,3. Since, for 1<k, k' <p,

1< T Vi 1 <&
=D AV A [1,”” =o0p(D). 7> (Av4Av_p — EHAY, AV, /D) = 0p(1)
=1 t=1

as seen from Hamilton (1994), it is again sufficient to study j = 1. We begin with ZLIAXIU[(A)’XE(A) = op(l).
The entries of this matrix write, for k =1,...,p,

1 T
TZAy,_kam_l)u(y’—\/—T' <ﬂ.l) with £7() = 1 or £70) = y/N'T.
=1

Note that maxj<,<7|f7(y,_;)| = Op(1), using the Donsker Theorem if f(y)=y/+/T. Since Ay, , =
> eoig—k—i» we have for any integer I,

1 1 y +o00 1 T
- Ay, — 7Ti8tki>fT(J’x1)” (t—_l <11> <Op(1) 7l = > ler—k—il

400 1 T +00
with E| > |l D leiil | <Eladd ) Il (7.16)
=1

i=1+1 i=1+1

which can be made arbitrarily small taking [ large enough. Therefore, it is sufficient to show that
T“Z,Tzlet_ka(y,_l)I](y,_l <iv/T) = op(1), for any k> 1. For that purpose, note that

G SAVT) = 10, <AVT
<y, 1 >NVDIW, o <AV + 1y, <UVDIY, 4 >mNT)
=00 1 — V1 <Viko1— MNT<0)+ 10<y, 1 — i1\/7<yz—k—1 — V1)

<I ('yt—k—l —VTh|< max |Ay,_y + -+ AJ/z—k|)

<if

provided that C is taken large enough, see Lemma A.2. Reasoning on that event gives

y’_—\/‘_]:l — ‘ <T@+ 2) with an arbitrary large probability (7.17)

1 T
7D ek TG DI SANVT) =10 Dy SAVT))
=1

1 T
<7 ot B 101) = 10040

Yick—1

T

ma

n Xlsts;VTO’rl)|Z|8z_k|U< a
=1

< CT!/@4+9-1 /z>

T1/@+s) Op(1) & y
=0 + ep |l [l — ‘<CT1/<4“>1/2), 7.18
() + S et (P = (1.19)
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by Lemma A.2 for the first remainder term, which is due to the case f(y)=y/+/T, and since
max|<,<7lf 7(7,—1)| = Op(1). Now Lemma A.l and arguing as in (A.11) yield

1 <& [
k|- epll| [Pl — 4 <CT1/(4+X)—1/2>
T;' t k| ( \/T 1
Eley| T ).1\/7+CT1/(4+A') le/(4+s) T]/(4+S) T 1
-T @1 () dv<C +
I VT—CT!/(4+s) T T t:k+2m
= O(T"/4+971/2) = o(1) since 5>4. (7.19)

Therefore, (7.18) with s>4 and (7.19) shows that

N , 1 & o
?;Sz—ka(ytfl)ﬂ (J:I/Tl </L1> = ?;fT(}/,,k,l)ﬂ (y«/_le </11)8,_k + Op(l).

Observe now that the leading term is op(l) since this sum is a martingale with a variance bounded by
AT 'S Ef2(y,_i_1) = o(1). Therefore, T-'S°0 & 1f 7 I, </i/T) = op(1) as desired and then
T N/ .
Z,zlAXj‘,/(A) Xﬁ’(i) =op(l),j=1,2,3.
We now show that T’IZLI(Ay,_kAy,_k/ — FHAy, 1Ay, DI, /YT € I1(2) = op(1) for all 4, 1 <k, k' <p.
Let &,y = &8 — Eler—ke,_r] s0 that Ay, Ay, — E[Ay, Ay, 1] = D 0<iv < 400MiTi&r—k—ig—i/—¢- This
gives, as in (7.16), for any integer I,

1 <& V.
7; (AyrkAyrk’ — EHAy, 1Ay, = Z ﬂini’erki,rk’i/> [ <t771 </11)

0< i’ <I+1
T

1
< Z |7l | T Z & k—is—t' -7

I+1<i,i’ <oo =1
1 r o0 Iaoo
with E| ) |7I,<||ni/|?z|8,_k_,~,,_k/_,-/| <2 D Iml| =0,
T+1<i,i’ <oo t=1 i=1+1

so that it is sufficient to show that T‘lzles,fk’,fk/U(y,,l/ﬁgil) = op(1) for all k,k'>1. Assume that
k' =k — n<k. Then arguing as in (7.18) and (7.19) gives

1 & _ 1 & .
?th—k,z—k/“ (y,_\/% <’11> = nglfk,ﬂrnfkﬂ (y'ﬁl <A1> +op(1),
p)

t=1

where the leading term is again an op(l) martingale by definition of &_4 +,—t. This ends the proof of
Theorem 5. [

Proof of Theorem 6. Assume that o, = 1. That ZITI XB’AXB @2+ op(1) has been proven in Theorem 5
since AXPAXE = AX IU,(/L) AXT(2) +AXEOYAXT () + AX () AXY(2). Note that all the processes of the

lemma are in (*([—a, a]?). The rest of the proof is divided in three steps
Step 1: Asymptotic stochastic equicontinuity of S| X O SEX X3, SE WAXPXE(2), ) =1,2,3.
Let

Xuy =Py =13 X = ﬁ[l,ym],
with X,(1) = X,(/1) and X3,(4) = X3,(42). The asymptotic stochastic equicontinuity over 4; or 4 in [—a, a] of
SLox (2)e, and s X, (W)X}, j= 1,3, directly follows from Lemma 3. This gives the asymptotic stochastic
equicontinuity of Y-, X5(A)e,, Y, X5(2)Y X 5(4). j = 1,3, which uses a higher standardization (v/T for 1 and
T for y,, instead of T‘/4) For j =2, note that X5(1) = X, — X1,() — X3,(7), XB()X50) =X/ X, -
X1,(DX1(2) — X5,(A)X3(4) so thatzf:]X 5 () e, Z,:IX S()X 2,(A) are also asymptotically equicontinuous.
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The asymptotic stochastic equicontinuity of 327 AX?X B()) j=1,2,3 similarly follows from the one of

ZIT:IAX f’X i(4), j=1,3, that we establish now. Consider j =1, j =3 being similar. The entries of the
increments of Z[LAXIB’XI,(A) between A; </}, are such that, with f(w)=1orf(w)=w, k=1,...,p

1 T 1/2 | T
< (7 Z(Ayz—k)2> (ﬁ ;fz(yt—l)ﬂ(il <Y1 <)“/1)>

t=1

12

1 & .

WZ Ay DI <y <4)
=

T 1/2
= 0@0)(%2]”20’:1)”@%%1<i/1)> 5
=1

by the Cauchy-Schwartz Inequality and Lemma A.2. Then the asymptotic stochastic equicontinuity of
S AXEXE () follows from Lemma 3.

Step 2: IXF, AXPXFDI = op(1) for all J, j=1,2,3. For j=2, the absolute value of the entries of
SSL AXE XB(3) write as, with f(w) =1 or f(w)=wand k = 1,...,p,

max<,;<rl|Ay,_| 1

T
7 }jthmuh<%1<M>_0MTW““”ﬁomu—omn

1 & . ;
7w 2 A DU <y <o) <
JTTY
=1

because s>0 and by Lemma A.2, and since T’I/ZZ,T:I O )I(A <y,_; <42) converges in distribution to
Ly(0,1) fjlz [f(w)ldw/a, by Theorem 7, f(w)I(1; <w<1,) being I-regular.
Consider now j =1, j =3 being similar. The entries of ZfT:] XBxB(J) write, with f(w)=1 or

Sr(w) = W/ﬁ»

1 T
72 A 100 <), k=1p
t=1

Up to A; changed into /T4, this is exactly the items studied in Step 2 of Theorem 5. Changing +/T'4; into A,
in Egs. (7.16), (7.17), (7.18) and (7.19) give that these items are op(1).

Step 3. Convergence of the finite dimensional distributions and conclusion. Because, for j=1,2,3,
ZIT: AXB X B()) =op(1) and from asymptotic stochastic equicontinuity of these processes, we get that

sup, M]2||Zt AXG B x B())II = op(l). Asymptotic stochastic equicontinuity of Step 1 and Theorem 7 yield

the convergence in distribution of =7, X5(2Y X5(2) and 3.7, X2 (2)&,, [1, w, w]I(21 <w < 1,) being I-regular.
For j = 1 (the case j = 3 being 51m11ar) note that the entries of Z, 1X Ay X (A1) and Z, 1X (M) e, write

T;f (%) U()/,_l Sil)’ﬁ;f <{;—Tl) H(yr—l <A)es,

with f(w) = 1, f(w) = w, or f(w) = w?. Therefore, (A.3) and (A.6) in Lemma A.3 yield

2
[El/leZfC/t 1) 1o <A) = 1y <0))

. 1/2
/021 [f W/~ T)| dw| + lfz(%ﬁ)d‘v / _ o(l).
T 4
[E1/4< Z (y, 1)(”0}; <A =1y, 1<0))sz>
C 2 1 1/ i 1/4
<o | roman] [ o] ] e
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This gives that S0 XBYXE(2) = S X20)X2(0) + op(1) and =7 X2 (1), = 327, X2(0)e, 4 op(1).
Asymptotic equicontinuity and Theorem 7 yield the convergence in distribution of Theorem 6 for j = 1,3
because 1(y,_; <0) = I(y,_, /(+/T <0) and because the functions I(w<0)[1, w, w?] are regular. [

7.5. Proof of Corollaries 1 and 2, Theorems 2 and 3

Proof of Corollary 1. The proof is divided in three steps.

Step 1: Choice of the covariates and additional notations. Let X;(1) =X j',](i), AX;(A) =AX jlt/(/l) be as
in (3.6), and X,(1) =[X,(4), X2/(A), X3,(4), AX (1), AX2,(2),AX3,(A)]. Since the p’s and p’s coefficients
in (3.2) vanish under the null, the definition (3.6) of the covariates X, (1) shows that the TAR specification (3.2)
writes as

Ay, = X (DrPor + & with Bor = ~Thy, (7.20)

where r is from (3.2) and f, is given by the coefficients of a(L) in (3.3). For the matrix R such that Rf gives the
p coefficient of the TAR specification, define now

Waldr(4) = 1 (RBr(2)) (R <r’ X (DX M)V) R’) (Rf7(4)
t=1

o7 (2)

where

. T
Br(7) = (r’ > XL(A)X;(A)r)
t=1

Observe that the X,()L/(oyﬁ)), t=1,...,T and the x,(4), t = 1,..., T in (3.2) generate the same linear span
by (3.6), so that regressing on the former or the latter gives the same residuals. Therefore, the residuals-based
formula (7.4) for the Wald statistic show that Waldz(1) = WaldT()v/(o‘y\/T )), and

T

1 T B
¢S XA, FH0) = 2> Ay, XiDBr (Y
=1

=1

— ~ A ) .
SupWald (A7) = sup Waldp(l), Ar=—"r= {i;i Sh<h<ZL i—h> V—T}. (7.21)
iedp oV T Oy Ty Oy

Define also
Waldy (1) = My r(¥ Cu(A)r) 'R (> R(¥ Cy(A)r) ' RY 'R Cy()r) ™'Y M y(h).

We show that this statistic only depends upon the Brownian Motion W(:) and not on ¢, so that Wald(-) is
pivotal, showing that the limit variable sup,., Joy has a pivotal distribution when the distribution of [Z, 4, v]/ ay
is pivotal under Assumption A. Let my(y,_;, 4) and m;(y,_;, /) be the linear functions of the I(y,_; € /;(4)) and
Vi ly,_y € I)(A)), j=1,2,3, entering in the TAR specification, written in columns. Due to the choice of
covariate imposed in the corollary, the Partitioned Inverse Formula yields that

Waldy(2) = M{()(C" ()™ M1(2)
1
with, for Cy(2) = o'/ / mi(W (v), Ay (W (v), 2) dv,
0
_ - 1 - 1
() = 600 / mo(W (), AW () + C" (D, / (W (0), 2) dW (),
0 0

C'"°(2) = —[Coo(H) — Co(N(C1i () Cro] ™ Cro(NCri() 7,

C"'(2) = [C1i(A) = Cro(NCoo() (™" (7.22)
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Since MI(X) is proportional to 1/g, and C“(A) to l/oy, ay cancels out from the expression of Waldy(4). Note
also that the inverse matrices are well defined for all 4 in 4/a, under (3.9).
Step 2: A truncation of Ar. Consider a>0 and define

- _ ) _ 7
Ar(a) = {4 p(a) < <y <Ar(a), Ay — A =vp(a)} with Ap(a) = max (iT , —a), Ar(a) = min (J—T,a>,
y y

vr(a) = min (;—T,IT(a) - iﬂa)),

y

Aa) = {3 Ma) <ha <Ia<Ma), Jg — 4 >v(@)} with A(a) = max (é, —a>, (@) = min (i,a),
g gy

¥y

v(a) = min (GV ) — /l(a)) .

Y

Observe that Ar(a) and A (a) are subsets of [—a,a]*. Because i/o,< Aa)<Aa)<i/a, and w(a)/c,>
min(v, 2a), (3.9) yields that

1r})f]] W) < Ma)<(a)< sup W(v) and v(a)>0 a.s. (7.23)

Note that

“ jv 2 a— oo
P (sup WaldU( ) # sup WaldU(A)> (; < —aora< i) —%0o.

Jed gy /LEA((I) gy gy

Because [Ar, A1, V7] —d>[i, J,v] by Assumption A, we similarly have

7»4 a—
sup P sup Waldr(/l);aé sup WaldT(A) < sup IP( < —aora< —T) —20.
=1 \edr iedr(a) =1 \Oy Oy

Therefore, (7.21) and noting that sup,_5 Waldy(4) converges by a.s. continuity to sup,.,,,Waldy(4) when

AEA (a)
a — +oo show that the limit result of Corollary 1 holds if, for all a,

sup Waldy(1)— sup Waldy(2). (7.24)
Jedq(a) Jed(a)

Step 3: Proof of (7.24) and conclusion. Recall that (ZthlX’r(}v)Xt()L))*l stands for the pseudo-inverse of
ZITZIX;()L)X,(/I). We first show that, with a probability tending to 1, Z,TZIX;()»)X,(/I) has an inverse for all A
in /TT(a), i.e. that limT_mO[P’(inf;ﬂTT(a)Det(ZtrzlX;(i)X,(i))>0) = 1. Orthogonality of the regimes, Theorem
5 and Assumption A yield that

T
iT(a)’ IT(a)7 VT(a)’ {Z X;(/‘L)Xf(;{)} :| _d) [i(a)’ Z(a):v v(a), {CU(;L)}}LE[fu,a]Q]
=1 L€[—a a]2

in R3 x £%°([—a, a]?), where Cy(J) is as in (3.8). Note that Det(2)> 0. It then follows by (7.23) and continuity
of {W(v)}yep,1; Which, moreover, cannot be constant over any nonempty /;(4), that Det(Cy(4))>0 for
all 4 E/T(a) a.s. Moreover, A—Det(Cy(4)) is a.s. continuous over /T(a) which is a.s. compact.

Therefore, i fiGA( )Det(CU()))>O a.s. In addition, because A7(a) C [~a,a]* and Ar(a) C T[—a,al’, the

map from R x £*([—a,a]’) to R

T
[/lr(a),}q(a), vr(a), {ZX;(A)X,(/I)} ]I—) inf Det (ZX DX, (A))
=1 JeT(—a,a)

Jedy(a) =1

Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011



dx.doi.org/10.1016/j.jeconom.2007.05.011

30 F. Bec et al. | Journal of Econometrics 1 (11l1) 1111

is continuous at [A(a), A(a), v(a), {C v}, e[—a,a]z] by continuity of Det(-) and Cy(-). Therefore, the Functional
Continuous Mapping Theorem (see e.g. van der Vaart and Wellner, 1996, Theorem 1.3.6) yields that

T
lim P| inf Det{ Y X/()X/(2)]>0]=P[ inf Det(Cy(2)>0) = 1.
T—o0 Jedr(a) A€A(a)

t=1

Hence Z,TZIX ()X ((2) has an inverse for all 4 in /~17(a) with a probability tending to 1. Observe also that

T T T -1 T
52(0) = %Zs? —% (Z X,(/l)rgt) (,/ 3 XQ(X)X,(A)r) (/ X/,(i)s,> + €p(0)
t=1 t=1 t=1 =1

=’ +&7(2) with sup (Jer(A)] + le7 (D) = op(D),
j.EAT((l)

where the last approximation of (1) comes from Theorem 5 and the Law of Large Numbers. Then the
Functional Mapping Theorem yields that (7.24) is proved. [

Proof of Corollary 2. The proof follows the same steps than for Corollary 1, up to the choice of X (1) =
[X2.(2), X5.(7), X2(2), AX?] from (3.12) in (7.20) and the use of Theorem 6 in place of Theorem 5. It remains
to show that the null limit distribution is pivotal. Due to the restriction on the choice of covariate imposed in
the corollary, this limit distribution decomposes as a sum of two independent terms. A first term comes from
the outer regimes and, as seen from (3.13) and (3.14), involves C;(0), C5(0), M(0) and M3(0) in a quadratic
form similar to the variable Waldy(0) from (7.22). The second is due to the inner regime and writes as
sup; AC% (1), where the expression of {»(-) depends upon the central regime variables retained in X,(4). If none
of these variables appear then {,5(4) = 0, while if y,_;1(y,_; € I2(4)) only or if I(y,_; € I2(4)) and y,_1(y,_, €
I,(2)) are retained, {,p(4), respectively, writes as

J2wdBow) (2 = 4) [{2 wdBOw) — (13 = 27) [;? dB(w)/2 |
VO =3 \Ja = 210203 = AD/3 — G — )3 — 37 /4

Since B(v~)g\/§B(-), elementary algebra yields that {,p(v-) = (55(-). Hence sup,leA/U},CgB(/l)gsup;veA/végB(A)
which has a pivotal distribution if the distribution of [4 /v, A/v] is pivotal. O

Proof of Theorems 2 and 3. Elementary manipulations based on Theorem 7 shows that the threshold sets used
in Theorems 2 and 3 satisfy Assumption A and the conditions for achieving a pivotal limit distribution of
Corollaries 1 and 2. Hence Theorem 2 directly follows from Corollary 1 and elementary algebra. Theorem 3
similarly follows from Corollary 2. [
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Appendix A. Proof of Lemma 2

We first introduce some additional notations and preliminary results. Assumption L yields that y, = moe,+
(mo + ey + -+ (w0 + -+ e + 3 2g(Tip1 + - - + 7)o Define

i t—1 00
v = Z m; so that y, = Z Yiei + Z(‘/b’ﬂ —Y)e—is
j=0 i=0 i=0

i ! o0
Vi = Z Ve and Y=y -y, = Z Vi + Z(wj+r —y))e-; for t<i.
J=1 Jj=0

j=t+1

Let ¢,(-) and ¢,,(-) be the densities of y, and y,;. The bound (3.7) in Akonom (1993) writes as

Lemma A.1 (Akonom, 1993). Under Assumptions L and E(s) with s> — 2, there exists a constant C >0 such
that for all t, i with 1 <t<i, sup,cp @, (W)< C//t+ 1 and sup,cg @, (W) < C/~i—1t.

Lemma A.2. Under Assumptions L and E(s) with s> — 3, sup,p<[E|Ay,_1|4+s<oo, max_,<;<7|Ay,_(| =
Op(TV4) and max, <,<7le;| = Op(T/E).

Proof of Lemma A.2. Recall that Ay, =0 for ¢<0. The Minkowski Inequality yields, for all ¢, E'/4+9)
Ay, , |4+‘Y<Z§§] 7| EY449) g, |*T < C < 00.We have by the Markov Inequality

1
S s\ « =~ (4+s)
[P>< ma}xT|Ayt71|/MT >\MT[E maxT|Ay,,1|

—PSIS A IES

< 1 S FIA 4+s<C
\mz [Ay,_il S

t=—p

which can be made small by taking M large enough. The order of max;<,;<rl|¢/] is similarly obtained. [

Lemma A.3. Under Assumptions L and E(0), there exists a constant C >0 such that, for any measurable map f(-)
from R to R,

(35 ()

2 200 d 12
<C /U’(W)Idw+2<ff(‘—;)w> : (A1)

3

1 T
i)
72\ 7
3 ) 3 1/3
<c|( [ora) o LA L0, ] AU (A2)
1 ’ [2mdw)'”
[El/2<ﬁ;f(y’_l)> <C /V(l/V)|d1V+2<T> N (A3)
1 & }
130 1
E ﬁ;fcv,,o
3 ~ 2 T IN RV
<C < / U‘(w)ldw) W V(Wﬂd%f (wydw [ V(WT)| dw) (A.4)
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4 sonrdi) 2 1/2
SC{/f'z(\v)dvv—i-Z(M) ] ,

4 i ff4(W)dy 1/2 1/2
<C /f (w)dw+2<T>

1 L
E'/ WZf(ytfl)St
=1

If E(s) holds with s> 0, then for any integer number k=1,

1 & y
[El/3 § A ( t1>
vV T t=1 ytikf v T §
3 (s+4)/(s+1) 2(s+4)/(s+1)
<CJT (/ l}l‘(W)|(s+4)/(S+l)dW) + fIf(W)| dw][ A dw

S f (w) [P+ gy
+ 72

b}

~| (1/3)(s+1)/(s+4)

4
El/4

1 <& Yi—1
ﬁ ; Ay, <ﬁ> &t

T

[ )| ¥+ dy 1727 (1/2)(6/(5+4))
<C / IF )25 dy 4 2 ( > |

(A.5)

(A.6)

(A7)

(A.8)

Proof of Lemma A.3. We begin with (A.1) and (A.3). Let f-(w) be, respectively, T~'/2f(T~'/?w) or f(w), so

that we have to bound EV2(T~'2S2" f,.(v,_1))*. We have

1 & g
E(TT;fT(Vzl)> = ?; [Efzr()’zﬂ)

5 T-1 T
+ ?Z E [fr(yz—l) Z fT(yi—l)] .

t=1 i=t+1

Lemma A.1 gives for any measurable g(-) from R to R,

1 T
72 Elg0,0)l
t=1

g T
:;IZI:/W(W)VPI1(“’)dy<;:/Ig(wﬂdwtzl:;E

; / i ! ET fdv T dv
< lg(w)|dw  since § — < / v _ [T dv '
VT =1 Vi =1 Jt—1 NG 0o AU 2

vT

(A.9)

(A.10)

(A.11)

Therefore, (A.9) is bounded by Cfsz(w) dw//T. For (A.10), write y, | = Vi—1i-1 +¥i—1;,-1 and note that
V1,1 is independent of the sigma-field F;_| = o(¢;_1,&-2,...), i=t+ 1. Observe also that y, |, ¥,_;; i,
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i=zt+ 1, are in F,_;. Therefore, Lemma A.l yields

T

S Ellg,)IIF 1] = /|q(y+y, DI () dF
i=t+1 i=t+1
— 9 + V1m0 dy
i= l+l / b
=C / lg(w)] dw Z <cf / g(w) dw (A.12)
i= t+1
T —1¢
smce .
> / :

Applying (A.11) and (A.12) gives for (A.10)

1 -1 T
L [fﬂy,_l) > fr(y,»_l)] ’

i=t+1

7—-1 T
=%Z[E[lf'r(yz_1)l Z E[lf 7 (i )IIF ]

t=1 i=t+1

—1 2
<C / 7 (0)] dw le E[V'T(yf_l)u«( / vr(wndw) .

It then follows that

1/2

= [ rman+ 2C< e dwﬂ
< e dw>2 g dw] N

<C /V (w)|dw +2 M "2
X T ﬁ

since (a + 13)1/2<al/2 +b'72 for nonnegative a, b. Taking f(-) = f(-) yields that (A.3) is proven. For (A.1)
take f7(w) = T~V2((T7?w) and note that TV2 [|f(T~2w)dw = [|f(w)|dw, T7' [fA(T~?w)dw =
T2 [£2(w)dw.

For (A.2) and (A.4), observe that

E!/2 <foT@t 1))

<(2C)1/2

1 & :
TTZfT@,_1>
=1

thy=t1+1

T3/2Z[ElfT(yt l)l +T3/2Z[E[fT(ytl l) Z lfT(yrz l)|]

T3/ZZ[E[U[T()}II DI Z I/IT(yzz DI Z VT(VQ 1)|]

ty=t;+1 3=+l
C fVT(;i)' Yy I/ M:/ITVT(W)' S (/ lfT(w)ldw) ]
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by (A.11) and (A.12), applied twice to bound the last sum. Computing each integrals for the corresponding
choice of f,(-) yields (A.2) and (A.4).

We now turn to (A.5) and (A.6). Let f(w) be, respectively, T-Y4(T="?w) or f(w), so that we have to
bound [E1/4(T_1“Z,T:]fT(y,,l)s,)“. Note that Z,T:]fT(yt,l)s, is a martingale with respect to F,. The
Burkholder Inequality (see e.g. Chow and Teicher, 1988, Theorem 1, p. 396) yields

1 & !
E (W ZfT(yt—l)St>
=1
1 & ?
<CE (TT Zlf%"(ytl)sf)

C T T-1
== (Z SEURICIREDD [E[f%(y,_1>a?f%@,>s?+1]> (A.13)
Z[E[frcy, Der Zf Vi )é; |- (A.14)

i=t+2

We first deal with the second item of (A.13). Applying the Cauchy—Schwarz Inequality twice yields

1 T—1 . 1 T—1 , ,
=Y H 0 e 70D 1< = Y BP0 DEE I 1 ()ed ]
T =1 T =1

| 7] 1/2 | 7=
< (TZ [E[/AT(VH)S?]> <TZ [E[f“T(y[),ng])
P
[E 4 T+1

< EL/ 7l

=1

1/2

since ¢ and y,_; are independent. Therefore, (A.11) yields for (A.13)

1 T -1 c )
0< = <Z ELf 7 )e]+ 2 ; E[f %@,_l)affé(y,)ggl]) < i / FAw)dw.

t=1

For (A.14), (A.12) and (A.11) yield

72
0< ;Z [fT()’z De; ZfT(V: 1)?1

=1 i=t+2

g2 T +T

tz [/{T(yt 1)8 Z [E[fZT(J’i—l)|Ft+1]
=1 i=t+2

2 2
/ £2)dy ; Z[E[fm )l

2
<C( / sz(w)dw) )

Combining the bounds above with (A.13) and (A.14) gives

| 1/4
(TmeT(yt oe,) <c|([rma) + [ f“T(wmw]

<C /fz(w)dw+2 M "
~ T ﬁ .
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Taking /() =f() yields (A.6). For (A.5), take fT(w) T-Y4%(T~'?w) and note that [T~!/%f?
(T7'2wydw = [fAw)dw, [TUHTV2w)ydw = T2 [£4(w)dw.

For (A.7),let ¢, = (s+4)/3 and ¢, = (s + 4)/(s + 1) so that 1/¢q, + 1/q, = 1. The Hélder and Minkowski
Inequalities together with Lemma A.2 and (A.2) yield

R il (Y=t 3
E lﬁ;my,_kfu(ﬁ)’]

3
1/3 I ¢ q . . Vi1
SVTEP 2D 1Ay el Z
t=1 t=1

612)3/(]2}
1 & ’ 1
<VTEVB || = E o |41 13q; | [
TE (T - |Ayt—k‘or| ) x E ( —

3
f(y)‘1> 2
JT
< Cﬁ[[El/3|st|3’” [E1/3|Ay,,k|3q‘]1/‘”

8 [(/ o) dw>3 N [ 1f ()22 dwj[ [f (w)] %42 dw N JIf (w2 dw} 1/3(]2.

T2

For (A.8), let g5 = (s +4)/4, ¢4 = (s +4)/s so that 1/¢g; + 1 /g, = 1. The Burkholder and Hé6lder Inequalities,
Lemma A.2 and (A.1) yield

T 4 T
e (] < [r o ()
=1 ‘=
vl (1 & 2 s d Iz Haa
<€V (7;(Ayt_ksz> ‘f—*) (7223 (2 ))
1/44;3 l - 243 ’ 12 b . 2q4 J/z 1 ’
<E 72 By e x |E Z

t=1

2

N |

1/2q4

'ﬂ

S CIE e D E 2| Ay, |*6]'/205

1/271/244

Proof of Lemma 2. Let us first recall a Maximal Inequality from Empirical Processes Theory, see van der
Vaart and Wellner (1996). Let % be a subset of & and consider a distance d over 4. Let {Z(g)},cy be a
stochastic process such that, for some ¢>1 and C>0,

EV4Z(g) — Z(g) < Cd(g, ).

Let N(&,9,d) be the covering numbers of ¥, that is the minimal number of d-balls with radius ¢ needed to
cover 4. Then Theorem 2.2.4 in van der Vaart and Wellner (1996) gives, for any 7,0 >0,

n
EV4  sup |Z(g)—Z<g’>|q<K{ / N'Y4(e/2,%,d)de + SN (n/2,%,d)|, (A.15)
(9,9")€%:d(g9,9") <0 0

where K depends on g and C only.

The proof will be divided in two parts devoted to the two kinds of sums. We first consider the case where the
& s do not appear explicitly in the sum (S7-type sums hereafter) and the case where it does, yielding martingale
(M 7-type sums hereafter). Let us now introduce some preliminary notations. Consider 4 = A7 >0 and a
minimal covering of % with h-brackets [f;,f 1], i=1,....,Ny(h, Z,| - |l;) = Ny. Choose a f(-) in
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[finf 1] N 7, and for £() € [f 1o/ 1] N F, let 8(f) = f;. Let
Fn=%9(F)=1{fni=1,....N)}C F

We use & = 1/T for Donsker asymptotics and & = 1/+/T for local time asymptotics (in short 4 = 1/ry where
rr 1s defined below).
We begin with the sums S7(f) which write as

T
S with (70 = (TfQVT)) or (rr.f 1(9) = (VT.f())
=1

The condition (7.9) of Theorem 8 and inequalities (A.3) and (A.6) of Lemma A.3 imply that, since S7(f) —

o) = St —1')
o 1/2
Tar +2(%) ] (A.16)

We now show the asymptotic stochastic || - [|;-equicontinuity of {S7(9(/)}rcr = {ST()}res,- Let || - ll17 be
defined from (A.106), i.c.

172 2 12 12
|tf||1T—|vn1+z<'V”l> (Ilfll”z 1)_%=((Vr|lf||1) 1P

EV2(S7(f) — Sr(f)*< C

ST T rr
Because [If — /I < —f"lh + 1" =/ IO W =171V + 1" =/ 1Y% - Ly satisfies the Triangular
Inequality and defines a distance. From the definition of | - ||;7, we have

((rre + D% — 1)?
rr ’

(A.17)

IfIlhr<e if and only if [|fl; <

We now bound the covering number N(e, Z, || - |l17). (A.17) yields

((rre + DY? = 1)?
N Z - lhir) =N ( a rr Tl ).

We now relate N(-, 7, || - |I}) and Npj(-, Z, |- ). IE [fw)I<|f'(w)| for all w, then |f|l;<I|lf"|l;. It then
follows that ||f — (f; +/5)/21 <Ilf> —f1l1/2 for f € [f|,f,], so that [f|,f,] is a subset of the || - ||;-ball of
radius ||f, —f,Il;/2 and center (f| +f,)/2. This gives N(Fj,¢,| - II))<N[j(F 4,26 - |I;) and then, since
Fn,CF,

rre+ DY2 = 1)
N(B,?hall'lllr)<N[]< (rr rr) D T s
_ _ Y
NG, Zp - lip)SNpth, 7,1 - 1I,)  for 8<h1T=§+ - (A.18)

because, for the latter, N(e, 7, || - |ip)<N; for e<hir, where hr is such that {f € & |fllir<
hry={fe€&|fl<h/2}, so that hir is as in (A.18) by definition of | - ||;7- Now (A.15) with n =9,
(A.16), (A.17) and (A.18) yield, for T large enough

E!/2 sup IST(95()) — ST(In(f )
(ST ~f"1l <6

= [E1/2 Sup |ST(f) _ ST(f,)|2
FIVeT BN~ 7 <o+24/5/rr
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o0+2 5/}'7" 2VS2+11/2—12
sK[mTN;{z(h,f,||~||1>+/ N[I]/2<((T/ = e e

hr

2((rr0/2 + DY — 1)
+5N[1<((T/ rT) AR

Therefore, (7.10) yields since { <1

E'/? sup IST(94()) — ST((F )
(FSeF LI 11l <0

wee 54257 . (2
VT g (rre/2+ D'V — 1)

<C W7 4

5 T g
Qo /2 + 1)2 = 1)
JAYERIg: 2t /(rT(5+2. [r79)/2 1
r

e=2v/rp 1-¢/2
el ) A e -
NV r s (04 D)2 — 1)

0
dv+—(1+0o(1))
rr 0°

1/2-¢)2

=C h“C/2+7hW + 24551+ o(1))
T

(r7o4+24/r70)/2 1
using / ﬁ do
rrhr/2 (v+ 177 =1y
N(VT5/2)]_4/2 . 1 U000 v_:/z

since ————— , A.19
-2 (v+ D2 =1y (A1)
and rrhir=rrh/2 = 1/2>0.14 The Chebychev Inequality then gives

+ 075 + o(1)
5

) C(5175/2
P sup [ST30() = ST NI=00 | <
(ST 2N—f 1l <6

so that (7.11) yields that {S7(34(f))}se is asymptotically stochastically equicontinuous. Showing that, for a
suitable choice of &, supscz|S7(f) — Sr(I:(f)| = op(l) will give that {Sr(f)};cr is asymptotically
stochastically equicontinuous. For f e [f;,fi1], St(f)<Sr(f)<Sr(fiy1), and since H(f) € [f .. fip1)s
supse IST(f) — ST(h(M)I<maxi<i<n, |ST(f 1) — S(f;)|. Repeating the steps leading to (A.19) with f; in
place of 9,(f) yields that supsc #|S7(f) — Sr(3(f))] = op(1), ending the study of the S7(f)-type sums.

We now consider the first martingale sums. Let M 7(f) and M 7(f) be

1 & . 1 &
Mr(f) = \/—r—T;fT(ytfl)gts Mr(f) = \/—r—T;fT(thl)ﬂSd — Elef),

with (r7,f (W) = (T, f(w/~T)) or (rr,f+(w)) = (+T,f(w)), so that (7.9), (A.5) or (A.6) in Lemma A.3 yield

, ="
Hf—f||1+2<rr> 1

=Clf =/'11F = CUf —f"llar- (A.20)

EV4(Mr(f) — Mr(f)*<C

“Applying (A.15) directly to S7(f) would give diverging integrals at 0. This justifies the introduction of S7(9,(f)). Note also that usual
tightness criterion based on increment bounds (see e.g. van der Vaart and Wellner, 1996, p. 104) does not apply here.
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Note that | - |,y defines a distance. Because N(e, Z, || - |2r) = N(&, Fp, || - 1/2)—N(8 Tl - lir), we
obtain in place of (A.18)

2(rre? + DHV2 = 1) .
N(e,%,||-||zr)<N[]< Cre D=0 ),

rr
1/2

h 2h
N Zn L o) SNph, 7,11 - 1) for e<hor = /iy = <—+ —)

2 rr
Therefore, (A.15) with n = 6, (7.10), and the change of variables ¢ = 2v/,/r7 yield here, arguing as in (A.19)

E'/4 sup | M 7(95(F) — Mr(3n(f NI
(SHeF 2N =111 <6
— /4 sup IM1(f) — Mr(f)*
(ST N~ o <@0+24/5/rp)1 /2

1/2
s /C(5+24 /5)rp)V/ Vi (2((r732/4+ 1)1/2 _ 1)2
-l
h

[1

<K [hzTN]/ Y, F
rr

2 12
NP (2«w5 AEDE-? Hlﬂ

I |I1>d8

2T

rr
1-¢/2 R3¢ v (j4—1/2 (r76+24/r79)' 22 dv
<C||h2 4+ 7 + 1 / BTN
rr Nrrhir/2 ((*+ D7 =1

{2
rr
+5 (((VT52/4+ 1)]/2 _ 1)2)

T2geo c"- 212 +6'7%) since rrh is bounded away from 0.

It follows that {Mr7(94(f))};er is asymptotically stochastically equicontinuous, so that {M7(f)};cz is
asymptotically stochastically equicontinuous if sup,c 7| M 7(f) — M 7(34(f))| = op(1). We have

supIM7(f) = M7/ < max, TZ(A,H)T@, D =)l
<U5|8r|”T 12}?]‘\% Sr(fip1 =/ + 12}23(% Mr(fipy = 1)
Observe that A7IT(-) satisfies (A.20), so that under (7.10) and by definition of the f’s
12 2
h+ (—) ]
rr

= ChNy(h 7, || - IIDIR'? + 7' PP = o(1).

4 Ny, _
[E( max Mr(f, fi)) <D EMr(fiuy — /) <CN,,

I<i<Ny

i=1

For rlT/ maxi<i<n, ST(fi11 —f1), (A.4) and (A.2) of Lemma A.3, (7.9) and (7.10) yield
1/2 ’ 32 il 32 Wooh
[E(rT max S7(f,, f,-)> < S BT — ) <O [lf Wy }

I<i<Ny P, T

= ChN((h, || - IDIE R + P2k + 17 = o(1).

The Markov Inequality yields sup,cz|M7(f) — M7(3(f))| = op(1).
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We now consider the martingale sums in Lemma 2 depending upon the increments Ay,_;, k>1. We set

h=1/T. Define
Mr(f) = LXT:A)/ J(Jﬂ)ez, Sr(f) =—= - Ay kf<y’_1>8, )
VT4 TV \IT T<| " ¥\JT

Let ¢ = (s +4)/s<2 since s>4. Then (A.8) of Lemma A.3 and (7.12) yields

W =71 +2<”f S ”‘)l/zl

= CIIf = /'I77" = CIf = f N3z
taking ry = T in the definition of || - ||;7. Note that || - |37 defines a distance with, in place of (A.18),

2(Ted + )2 =1
« ) ) 0]

EV4Mr(f) - Mr(f)'<C

T >

1/2q
h 2h
N, Fn, - ) SN, 7,01 - 1) for e<hsr = h}/Tzq = <§+ \/7> :

Therefore (A.15) with n = 9, (7.10) and the change of variables ¢ = 2v/ T'/C9 yields here

N, Fp, |l - ||3T)<N[]<

E4 sup (M) = M)
(ST ~f'1l <6
= [El/4 Sup |MT(f) _ MT(}(‘/)|4
(ST BN~ I3 <@+24/0]rp) /24
(T5+24T8)1/24 /2 dv

<C h1/2q—§/4_’_T'§/471/2q/ _
(2 (@ D= 1)

v {2
5(((T52q/4+ 1)1/2 _ 1)2)

T*)JrOO

C(5(1/2f1)(1 /2 4 5l- L/q)

It follows that {M r(In(f)}sez 1s asymptotically stochastically equicontinuous, so that (M 7(Nper is if
supsez | Mr(f) — Mr(9(f)) Smaxi<i<n, St(fi1y —f7) = op(1). But (A.7), (7.12) and (7.10) yield

3 Npy
E( may Sr(/i —£)) ST ESrfiny — ) < CTRCH0

i=1

< CT(S/Z)—3((S+1)/(s+4)) — 0(1)

since 3((s + 1)/(s + 4))>§ for s> 14. This ends the proof of the lemma. [

References

Akonom, J., 1993. Comportement asymptotique du temps d’occupation du processus des sommes partielles. Annales de I'Institut Henri
Poincaré - Probabilitiés et Statistiques 29, 57-81.

Anderson, H., 1997. Transaction costs and non-linear adjustment towards equilibrium in the U.S. treasury bill market. Oxford Bulletin of
Economics and Statistics 59 (4), 465-484.

Andrews, D.W.K., 1991. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 (3), 817-858.

Andrews, D.W.K., 1993. Tests for parameter instability and structural change with unknown change point. Econometrica 61 (4), 821-856.

Balke, N.S., Fomby, T.B., 1997. Threshold cointegration. International Economic Review 38, 627-645.

Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011



dx.doi.org/10.1016/j.jeconom.2007.05.011

40 F. Bec et al. | Journal of Econometrics 1 (11l1) 1111

Bec, F., Ben Salem, M., Carrasco, M., 2004. Test for unit-root versus threshold specification with an application to the PPP. Journal of
Business and Economic Statistics 22, 382-395.

Bec, F., Rahbek, A., Shephard, N., 2005. Autoregressive conditional root model. Manuscript, Nuffield College, Oxford University.

Berben, R.P., van Dijk, D., 1999. Unit root tests and asymmetric adjustment: a reassessment. Research Report EI-9902/A, Econometric
Institute.

Caner, M., Hansen, B., 2001. Threshold autoregression with a unit root. Econometrica 69, 1555-1596.

Chow, Y.S., Teicher, H., 1988. Probability Theory. Independence, Interchangeability, Martingales, second ed. Springer, Berlin.

de Jong, R.M., Wang, C.H., Bae, Y., 2005. Correlation robust threshold unit root tests. Mimeo.

Enders, W., Granger, C.W.J., 1998. Unit-root tests and asymmetric adjustment with an example using the term structure of interest rates.
Journal of Business and Economic Statistics 16 (3), 304-311.

Gonzalez, M., Gonzalo, J., 1998. Threshold Unit Root Models. Working Paper, U. Carlos III.

Gouriéroux, C., Monfort, A., 1995. Statistics and Econometric Models. Cambridge University Press, Cambridge, MA.

Gouriéroux, C., Robert, C., 2006. Stochastic unit root models. Econometric Theory 22 (6), 1052-1090.

Hall, A., Anderson, H., Granger, C., 1992. A cointegration analysis of treasury bill yields. The Review of Economics and Statistics
LXXIV, 116-126.

Hamilton, J., 1994. Time Series Analysis. Princeton University Press, Princeton, NJ.

Kapetanios, G., Shin, Y., 2006. Unit root tests in three-regime SETAR models. The Econometrics Journal 9, 252-278.

Kapetanios, G., Shin, Y., Snell, A., 2003. Testing for a unit root in the nonlinear framework. Journal of Econometrics 112, 359-379.

Keim, D., Madhavan, A., 1997. Transaction costs and investment style: an inter-exchange analysis of institutional equity trades. Journal
of Financial Economics 46, 265-292.

Michael, P., Nobay, A., Peel, D., 1997. Transactions costs and nonlinear adjustment in real exchange rates: an empirical investigation.
Journal of Political Economy 105 (4), 862-879.

Obstfeld, M., Taylor, A., 1997. Nonlinear aspects of goods—market arbitrage and adjustment: Heckscher’s commodity points revisited.
Journal of the Japanese and International Economies 11, 441-479.

Park, J.Y., Phillips, P.C.B., 1999. Asymptotics for nonlinear transformations of integrated time series. Econometric Theory 15, 269-298.

Park, J.Y., Phillips, P.C.B., 2001. Nonlinear regressions with integrated time series. Econometrica 69, 117-161.

Park, J.Y., Shintani, M., 2005. Testing for a unit root against transitional autoregressive model. Mimeo, Vanderbilt University.

Pippenger, M.K., Goering, G.E., 1993. A note on the empirical power of unit root tests under threshold processes. Oxford Bulletin of
Economics and Statistics 55 (4), 473—481.

Revuz, D., Yor, M., 1999. Continuous Martingales and Brownian Motion. Springer, Berlin.

Seo, M., 2003. Unit root test in a threshold autoregression: asymptotic theory and residual based block bootstrap. Manuscript, University
of Wisconsin-Madison.

Shin, D.W., Lee, O., 2001. Tests for asymmetry in possibly nonstationary time series data. Journal of Business and Economic Statistics 19
(2), 233-244.

Shin, D.W., Lee, O., 2003. An instrumental variable approach for tests of unit-roots and seasonal unit roots in asymmetric time series
models. Journal of Econometrics 115, 29-52.

Sollis, R., Leybourne, S., Newbold, P., 2002. Tests for symmetric and asymmetric nonlinear mean reversion in real exchange rates. Journal
of Money, Credit and Banking 34 (3), 686-700.

Taylor, A., 2001. Potential pitfalls for the PPP Puzzle? Sampling and specification biases in mean-reversion tests of the LOOP.
Econometrica 69, 473-498.

van der Vaart, A.W., 1996. Asymptotic Statistics. Cambridge University Press, Cambridge, MA.

van der Vaart, A.W., Wellner, J.A., 1996. Weak Convergence and Empirical Processes with Applications to Statistics. Springer, Berlin.

Wagner, W., 1998. The official icebergs of transaction costs. Commentary 54, Plexus Group.

Please cite this article as: Bec, F., et al., Adaptive consistent unit-root tests based on autoregressive threshold model. Journal of
Econometrics (2007), doi:10.1016/j.jeconom.2007.05.011



dx.doi.org/10.1016/j.jeconom.2007.05.011

	Adaptive consistent unit-root tests based on autoregressive threshold model
	Introduction
	Adaptation, consistency and null limit distributions
	Introducing adaptation to achieve consistency
	Examples of adaptive threshold sets and null limit distributions
	A class of asymptotically unbounded threshold sets
	A class of bounded threshold sets


	Extensions
	Adaptation
	Pivotal null limit distributions for asymptotically unbounded thresholds
	Pivotal null limit distributions for bounded thresholds

	Simulation experiments
	Critical values
	TAR alternatives
	Autoregressive conditional root alternatives

	The yield spread dynamics revisited
	Conclusion
	Main assumptions and proofs
	Assumptions
	Proof of Theorem 4
	Functional limit distribution for integrated processes
	Proof of Theorems 5 and 6
	Proof of Corollaries 1 and 2, Theorems 2 and 3

	Acknowledgment
	Proof of Lemma 2
	References


