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Abstract

This paper proposes a joint methodology for the identification and inference of structural vector autore-

gressive models in the frequency domain. We show that identifying restrictions can be written naturally

as an asymptotic least squares problem (Gouriéroux et al., 1985) in which there is a continuum of

nonlinear estimating equations. Following Carrasco and Florens (2000), we then propose a continuum

asymptotic least squares estimator (C-ALS) that efficiently exploits the continuum of estimating equa-

tions, thereby allowing to obtain optimal consistent estimates of impulse responses and reliable confidence

intervals. Moreover, the identifying restrictions can be formally tested using an appropriate J-stat, and

the frequency band can be selected using a data-driven procedure. Finally, we provide some Monte Carlo

simulations and an application regarding the hours–productivity debate.
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1 Introduction

While the ability of vector autoregressive models (VAR) models as descriptive and/or forecasting tools is well

established, structural interpretation of VAR models is still subject to lively debates. Following the seminal

works of Sims (1980a, 1980b), moving from atheoretical VAR models to structural VAR models requires

identifying assumptions that rest on economic theory (among others); VAR results cannot be interpreted

independently of a more structural macroeconomic model (Cooley and Leroy, 1985; Bernanke, 1986). This

paper highlights the relevance of identifying restrictions in the frequency domain and proposes a general

framework and its practical inference implementation for structural VAR models.

Our starting point is that identifying restrictions in the frequency domain can be particularly appealing

in various contexts and can be motivated by economic intuition and some statistical arguments.1 Imposing

identifying restrictions at a given frequency has a long tradition in macroeconomics: a long-run identifying

restriction à la Blanchard-Quah (1989) is nothing more than a low-frequency restriction at the frequency

ω = 0, or seasonal business cycles can be identified by imposing a frequency-identifying restriction, say at

ω = π
2 for quarterly data (Wen, 2001; 2002). Similarly, imposing restrictions on a frequency interval can be

justified in many interesting contexts. Indeed, it is widely recognized that most macroeconomic series are

generally considered to reflect both business cycle forces and lower-frequency forces unrelated to business

cycles (demographic factors, trend growth, etc). For instance, Francis and Ramey (2009) convincingly argue

that the conflicting results regarding the effect of a technological shock on hours worked can be explained by

the fact that demographic trends and sectoral allocation are important sources of low-frequency movements

in hours worked and labor productivity, and not only at ω = 0, thereby suggesting to impose restrictions

on a frequency interval around ω = 0. Meanwhile, the recent literature on the identification of a news

shock (e.g., Barsky and Sims, 2011; Kurmann and Sims, 2021) has emphasized the importance of isolating

short-term and business cycle fluctuations from medium- and long-term effects to support the view that a

news shock is the only shock driving productivity growth. Provided that one can define or test the relevant

ranges of periodicities, that is, cycle length, to focus on, it makes sense to assume that some structural shocks

are sources of medium- or low-frequency movements. This leads to imposing identifying restrictions on a

frequency band and, possibly, to testing their empirical relevance and selecting the frequency band of interest.

Such a frequency-based identification is also consistent with the recent bulk of the literature (Angeletos

et al., 2020) that aims at identifying a single structural shock explaining the fluctuations of a wide set of

macroeconomic variables in a given range of periodicities, say 6–32 quarters, in the frequency domain. In-

deed, it can be shown that common features (e.g., common business cycle components) can be identified,

inferred, and evaluated using SVAR models in the frequency domain.2 Meanwhile, our analysis is motivated

by the seminal contributions of Watson (1993) and King and Watson (1996), which suggest plotting the

1Note that imposing frequency identifying restrictions is not mutually exclusive to other exclusion restrictions (e.g., short-run

restrictions).
2See Section 8 of the online Appendix.
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model and data spectra as one of the most informative diagnostics. Given that the macro variables of in-

terest have a vector moving average representation in terms of structural shocks, reproducing and capturing

characteristics of the spectral density matrix presuppose that (some of) these structural shocks have infor-

mative content to explain peak ranges arising at some frequency intervals.

As a last, but not least argument, imposing identifying restrictions on low frequency intervals offers an

alternative to the so-called unreliability of long-run restrictions (Sims, 1971, 1972; Faust and Leeper, 1997;

Faust, 1998) due to the sampling uncertainty of long-run multipliers irrespective of the sample size. The

fact that confidence intervals for the structural impulse responses are generally too wide, thus making it

difficult to reject misspecified models, is directly inherited from the zero Lebesgue measure of the long-run

identifying restriction at ω = 0 (Faust, 1996). Accordingly, our approach is fully consistent with the propo-

sitions of Faust and Leeper (1997), Faust (1998, 1999), Hauser et al. (1999) and Pötscher (2002), that is,

to impose restrictions on a frequency interval around zero, but not too small relative to the sample size.3

Moreover, restrictions based on a frequency interval surrounding zero is probably more robust to a structural

change in the deterministic components of the series in the VAR than in the case of long-run restrictions.4

To summarize, all these arguments underline the relevance of imposing some identifying restrictions in the

frequency domain, testing their empirical plausibility, and selecting the frequency interval of interest. This

is precisely what our methodological framework allows us to do.

In this respect, our starting point is to view the mapping between the structural and the reduced-form

representation of the VAR model as a system of nonlinear estimating equations in which the structural pa-

rameters of interest depend on auxiliary parameters, those of the reduced-form representation. Capitalizing

on Gouriéroux et al. (1985), we first cast the identification and estimation of structural VAR models into

an appropriate asymptotic least squares (ALS) problem in the time or frequency domain.5 While the ALS

framework has already been used by Pesendorfer and Schmidt-Dengler (2008) for dynamic games with finite

actions, it has not yet been considered for the identification, estimation, and evaluation of macro models in

the frequency or time domain. Moreover, it turns out that our ALS-based procedure embeds the method-

of-moment estimator and the estimation by a nonlinear equation solver discussed by Kilian and Lütkepohl

(2017, chapters 11 and 12) or the sequential two-step GMM procedure of Bernanke and Mihov (1998) in the

presence of short-run restrictions.

Defining the frequency identifying restrictions like a Fourier transform on a frequency interval, say ω ∈ (ω, ω),

one can fully exploit the fact that these restrictions are now defined by some functional equations and thus

there exists a continuum of nonlinear estimating equations on (ω, ω). Building on the results of Carrasco

3Note that our approach is different from the alternative nonparametric estimators of the spectral density matrix at ω = 0

suggested by Christiano et al. (2006a, 2006b). The comparison with Christiano et al. (2006a, 2006b) is further discussed in

the online Appendix.
4Simulation results available upon request corroborate this conjecture.
5See also Szroeter (1983).
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and Florens (2000) and Carrasco et al. (2007a), namely the continuum-generalized method of moments

(C-GMM), we then propose an efficient two-step continuum-ALS (C-ALS) estimator.6 Importantly, our

approach is optimal compared to an alternative strategy based on the selection of a sufficiently refined grid

through a discretization of the frequency band.

One key feature of our procedure is that (structural) identifying restrictions are not written as a gener-

alized method of moments problem. This stems from the fact that, in general, identifying restrictions, that

is, nonlinear (functional) estimating equations in our framework, do not necessarily involve any (conditional)

expectation operator. We instead set the inference problem as a well-posed minimum distance one that rests

on some (functional) estimating equations. As shown in Section 3, such a departure from the continuum-

GMM approach (Carrasco and Florens, 2000; Carrasco et al., 2007a) has substantial implications regarding

the properties of the covariance (kernel) operators, the identification of the structural parameters, and the

asymptotic theory.

Our new methodology for the identification and inference of structural VAR models has appealing features.

On the estimation side, Monte-Carlo simulations highlight that the C-ALS estimator has very interesting

finite sample properties and performs better than traditional alternatives in terms of bias and (root) mean

squared error irrespective of the impulse response function (IRF) horizon. On the inference side, our frame-

work offers the opportunity to implement testing procedures and thus to provide new insights on the validity

of both the identifying restrictions and the frequency band of interest. In particular, we show that the

derivation of the overidentification J-based tests and their corresponding asymptotic distributions are dif-

ferent from the results of Carrasco and Florens (2000) and Amengual et al. (2020). The modified J-stat

allows for selecting the frequency band, thereby permitting us to conduct a data-driven procedure to evaluate

frequency intervals on which the imposed restrictions might be satisfied. We illustrate the usefulness of the

overidentification test and the interval selection in an application regarding the identification of a technology

shock.

The remainder of the paper is organized as follows. Section 2 reviews some notations and illustrates the idea

of our approach in a simple setting, namely a bivariate structural VAR model. Section 3 presents the (opti-

mal) C-ALS estimator while Section 4 applies these results in the case of any N-dimensional structural VAR

model. Section 5 proposes a comparative study of competing identification schemes using some Monte-Carlo

simulations. Section 6 revisits the empirical evidence of the productivity–hours debate. Section 7 contains

concluding comments and possible future extensions. Proofs are given in the Appendix.

6Note that Pesendorfer and Schmidt-Dengler (2008, p. 917) mention a continuum ALS procedure as a possible extension of

their work but do not derive it.
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2 Identification of SVAR models and ALS

2.1 Notations

We first introduce some preliminary notations and the structural VAR models. Suppose an N -dimensional

multiple time series X1, X2, · · · , XT with Xt = (X1t, · · · , XNt)
′ is available and that these variables are

second-order stationary. The vector Xt can include level stationary variables, integrated variables in first-

difference or stationary linear combinations of integrated variables. To simplify the notation, presample

values for each variable are assumed to be available. Xt is assumed to be approximated as the sum of a

deterministic part ϑt and by a stationary, stable, reduced-form VAR(p) process:

Xt = ϑt + φ1Xt−1 + · · ·+ φpXt−p + ut, (2.1)

where the φi are fixed (N ×N) coefficient matrices for lag i, Φp = [φ1 φ2 . . . φp] is a (N × (pN)) matrix of

all autoregressive coefficients, and ut = (u1t, · · · , uNt)′ is the vector of innovations such that E(ut) = 0N×1,

E(utu
′
t) = Σu is nonsingular and E(utu

′
s) = 0N×N for s 6= t.

The corresponding vector moving average representation in terms of innovations is defined by:

Xt = ϑ∗t +

∞∑
i=0

Ciut−i = ϑ∗t + C(L)ut, (2.2)

where C(L) =
∑∞
i=0 CiL

i, C0 = C(0) = IN , C(1) =
∑∞
i=0 Ci, Ci =

∑i
j=1 Ci−jφj and ϑ∗t is the corresponding

deterministic part. Notably, when ϑt is a vector of intercepts, then ϑt = ϑ and ϑ∗t = C(1)ϑ. Meanwhile, the

moving average representation in terms of structural shocks is written as:

Xt = ϑ∗t +

∞∑
i=0

Aiεt−i = ϑ∗t +A(L)εt, (2.3)

where A(L) =
∑∞
i=0AiL

i, A0 ≡ A(0), and εt is an N × 1 random vector of structural shocks with E(εt) = 0

and E(εtε
′
t) = IN (normalization assumption).

Taking equations (2.2) and (2.3), the error terms of the reduced-form model are related to the structural

shocks as follows:7

ut = A(0)εt, (2.4)

with C(L)A(0) = A(L) and Σ = A(0)A(0)′. In general, for an argument z, we have the following mapping

between the reduced-form moving average matrix C(z) and the structural moving average matrices A(0) and

A(z):

C(z)A(0) = A(z), (2.5)

which implies C(z)ΣC(z)′ = A(z)A(z)′. The central question is then how to recover the elements of A(0)

from consistent estimates of the reduced-form parameters. In so doing, one generally needs to impose some

identifying restrictions on equation (2.5).

7For a more general presentation, see Lütkepohl (2007), Kilian (2013), and Kilian and Lütkepohl (2017).
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2.2 Identifying restrictions and asymptotic least squares

We now discuss standard identifying restrictions as being the estimating equations of the ALS procedure

proposed by Gouriéroux et al. (1985). We then turn to their generalization in the frequency domain. In

particular, to illustrate the intuition of our approach in a simple setting, our starting point is the bivariate

VAR specification of Beaudry and Portier (2006) that describes the joint behavior of stock prices and

measured total factor productivity. Let Xt = (∆tfpt,∆spt)
′
, where tfpt is the log of total factor productivity,

and spt is the log of an index of stock market value. For the sake of simplicity, we assume that the two

log-level variables are not cointegrated. The vector of structural shocks is εt = (ε1t, ε2t)
′.

(a) Identification scheme In the absence of further information, recovering the vector moving average

representation in terms of structural shocks requires finding the matrix A(0) = A0 that solves the following

system of (estimating) equations:

vech (Σu −A(0)A(0)′) = 0, (2.6)

where vech is the half-vectorization operator. We then must compute the remaining structural matrices:

Ak = CkA(0) for k > 0. (2.7)

Looking at the system of estimating equations (2.6), there is one more structural parameter than independent

(estimating) nonlinear equations. Therefore, it is necessary to add one (respectively, at least two) identifying

restriction to get a just-identified (respectively, an overidentified) system of estimating equations. In this

respect, one can impose that only the second shock ε2t has a long-run effect on the log-level of total factor

productivity (Assumption 1), and this shock has no contemporaneous impact on ∆tfpt (Assumption 2). As

shown by Beaudry and Portier (2006), the two assumptions are compatible with a model in which a per-

manent technology shock is characterized by a diffusion process having no immediate impact on productive

capacity. This is what they called a news shock. While Beaudry and Portier (2006) sequentially consider

the two (long-run and short-run) identifying restrictions, we merge them with the aim of illustrating our

approach in the case of overidentification.

Assumption 1 implies that the (1,1) element of the matrix of long-run cumulative effects of the structural

shocks, A(1), is zero and Assumption 2 that the (1,2) element of A(0) is zero: a11(1) = 0

a12(0) = 0
⇔

 c11(1)a11(0) + c12(1)a21(0) = 0

a12(0) = 0

because a11(1) = [C(1)A(0)]11. Therefore, the system of estimating equations is overidentified:

a2
11(0) + a2

12(0) = σ11

a11(0)a21(0) + a12(0)a22(0) = σ12

a2
21(0) + a2

22(0) = σ22

c11(1)a11(0) + c12(1)a21(0) = 0

a12(0) = 0,

(2.8)
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where σij = [Σu]ij is the (i,j) element of Σu. However, in the absence of Assumption 2, the system of

estimating equations is given by the first four equations of (2.8), and there are as many unknowns as

equations. In both cases, the system of estimating equations can be written as:

g(a(0), β0) = 0, (2.9)

where β0 = (vec(Φp)
′, vech(Σu)′)

′
is the vector of true autoregressive parameters and covariance parameters—

the so-called vector of auxiliary parameters (equation 2.1).

(b) Asymptotic least squares procedure in the time domain Following Gouriéroux et al. (1985)

and Gouriéroux and Monfort (1995), the starting point of the ALS procedure is to pass through the auxiliary

parameters, which can be easily estimated, to solve the estimation problem of the parameters of interest

a(0). More specifically, replacing β0 by some consistent and asymptotically normally distributed estimate

β̂T , the core principle consists of estimating the parameters of interest a(0) by forcing the constraints (2.9)

to be as close as possible to zero.

Then, an ALS estimator associated with the symmetric positive definite matrix ST is a solution âT (0)

to the minimization problem:

min
a(0)∈A

g(a(0), β̂T )′ST g(a(0), β̂T ).

The ALS estimator âT (0) brings the constraints closest to zero using the metric associated with the scalar

product defined by the weighting matrix ST . Under suitable regularity conditions, there exists an optimal

choice for the sequence of matrices ST (Gouriéroux et al., 1985).

In the context of SVAR, the ALS estimator can be implemented as a two-step procedure. Given a con-

sistent estimator β̂T of the auxiliary parameters vector β0 = (vec(Φp)
′, vech(Σu)′)

′
of the reduced-form

VAR(p) model, the optimal ALS estimator of the parameters of interest a(0) is obtained as follows. In a

first step, a consistent estimate of a(0), denoted by â1
T , is usually obtained by minimizing the square norm

of the vector of estimating equations; that is, the weighting matrix is the identity matrix. In a second

step, a consistent and efficient estimate of a(0), denoted by âT , minimizes a quadratic form with the use of

a consistent estimate of the optimal weighting matrix evaluated at â1
T and β̂T =

(
vec
(

Φ̂p,T

)′
, vech

(
Ω̂T

)′)′
.

As a final remark, note that the first set of estimating equations (equation 2.6), which describes the map-

ping between the variance-covariance matrix of the innovations and of the structural shocks and possibly

some short-run restrictions, can be written as moment conditions. It is also the case when imposing only

long-run restrictions such that the matrix of long-run cumulative effects of the structural shocks, A(1), is

lower triangular and the system of estimating equations is just-identified. However, it is no longer true for

general long-run identifying restrictions or for combinations of short, long, and any other zero identifying

restrictions.8 Instead, it can be written as a system of nonlinear equations with some equations that do not

8See Bernanke and Mihov (1998) and Kilian and Lütkepohl (2017), Sections 11.2.1 and 11.3.
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involve any expectation operator. This corresponds to a minimum distance problem, which can be embedded

into an ALS framework. This is particularly the case when considering overidentifying frequency restrictions.

(c) Identifying restrictions on a frequency interval Taking the just-identified case from now on, a

credible alternative to the long-run restriction a11(1) = 0 is to impose frequency restrictions at ω = 0 but also

its neighborhood in order to better capture the lower-frequency forces unrelated to medium-term fluctuations

and business cycles.9 The identifying restriction is then given by a11(e−iω) = 0, for all ω ∈ Iω = [−ω;ω], or

equivalently:

c11(e−iω)a11(0) + c12(e−iω)a21(0) = 0. (2.10)

This identifying restriction is similar to a Fourier transform of the standard long-run identification restriction

on a (symmetric) frequency interval around ω = 0. Consequently, there is now a continuum of identifying

restrictions defined on Iω. It turns out that the functional estimating equation (2.10) leads now to a case of

overidentification. This point is all the more important as it opens up the possibility of testing the relevance

of identifying restrictions and selecting the frequency band (see Section 3).

Finally, such a continuum of identifying restrictions can also be justified in this simple example by looking at

the marginal spectral density of the first variable (∆tfpt), denoted by fX,11(ω). Indeed, it is straightforward

to show that:

fX,11(ω) =
1

2π

{∣∣c11(e−iω)a11(0) + c12(e−iω)a21(0)
∣∣2 +

∣∣c11(e−iω)a12(0) + c12(e−iω)a22(0)
∣∣2} ,

where |Ψ(ω)|2 is the modulus of the complex-valued function Ψ. Accordingly, the first (respectively, second)

right-hand side term captures the contribution of the first (respectively, second) structural shock to the

(marginal) spectral density of ∆tfpt at frequency ω. Therefore, imposing the identifying restriction on the

frequency interval [−ω;ω] is equivalent to minimizing the contribution of the first structural shock to the

marginal spectral density fX,11(ω) for all ω ∈ [−ω;ω].

In this respect, the inference of a(0) can be solved in two ways. On the one hand, one can proceed with

a discretization of the frequency interval and make use of the standard ALS estimator on a system of dis-

cretized estimating equations. On the other hand, instead of selecting a finite number of grid points of the

frequency band, a continuum ALS procedure that efficiently exploits the functional estimating equation is

proposed in this paper. Building on Carrasco and Florens (2000), we show that the presence of a continuum

of estimating equations naturally leads to proposing a continuum ALS estimator that closely mimics the

efficient two-step ALS of Gouriéroux et al. (1985).

9See Hamilton (1994) for a comprehensive overview of spectral analysis and the online Appendix.
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3 Asymptotic Least Squares in the frequency domain

In this section, we propose a general ALS estimator in the presence of a continuum of identifying restrictions

(C-ALS estimator). First, we define the class of C-ALS estimators for every sequence of random bounded

linear operators. Second, the optimal C-ALS estimator is presented. Finally, a test of overidentification and

a data-driven procedure for the choice of the frequency interval are discussed.

3.1 The class of C-ALS estimators

The stochastic process Zt is an N × 1 vector of random variables that belongs to a family of true unknown

probability distributions, denoted by P0, and is a second-order stationary and weakly dependent process.

We first suppose that:

A.1 There exists a consistent and asymptotically normally distributed estimator of the true q-vector of

auxiliary parameters β0, denoted by βT , that is, β̂T
p→ β0 and

√
T
(
β̂T − β0

)
d→ N (0,Ω).

We consider a system of J constraints, which is function of a r-vector of structural parameters α, defined on

a continuum of frequencies such that:

g(α0, β̂T , ω) = 0, (3.11)

where g(·, ·, ω) takes its values in H = (L2(I))J , a Hilbert space with the inner product < ., . > and the norm

‖ · ‖ with α = α0 under P0.10 L2(I, ϕ) ≡ L2(ϕ) is the space of complex valued functions that are uniformly

square integrable with respect to the interval I for ω.11 Let S denote a bounded linear operator defined

on H or a subspace of H and g(·, ·, ω) denote the complex conjugate of g(·, ·, ω). Let ST be a sequence of

random bounded linear operators converging in probability to S. The C-ALS estimator is defined by:

α̂T (ST ) = arg min
α∈A

∥∥∥ST g(α, β̂T , ω)
∥∥∥2

.

Therefore, the C-ALS estimator forces the constraints, g(α, β̂T , ω) = 0 for ω ∈ [ω, ω], to be as close as

possible to zero by using the metric associated with the inner product defined by ST on the interval [−π, π].

We now present the other assumptions for the asymptotic properties of the C-ALS estimator.

A.2 The J-vector of functions g(α0, β0, ω) = 0 ∀ω ∈ I has a unique solution α0, which is an interior

point of a compact set A, and α0 and β0 denote the unknown values under P0.

A.3 Let N(S) denote the null space of S, N(S) = {f ∈ H|Sf = 0}. We have that g ∈ N(S) implies

g(α0, β0, ω) = 0.

10Alternatively, the J constraint functions can be rewritten as a scalar function g̃(α0, β̂T , ω̃j) with ω̃j = (ω, j) where ω ∈
[−π, π] and j ∈ {1, 2, . . . , J}, which takes its value in a suitably defined Hilbert space of a scalar function (see Kailath, 1971

and Carrasco et al., 2007a, p.534).
11See Assumption A.2 and Definition A.1 of Carrasco et al. (2007a) for Hilbert space of complex-valued functions.
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Assumption A.3 is an identification condition similar to the one in Carrasco and Florens (2000). In contrast

to Carrasco et al. (2007a), we cannot suppose that the null space N(S) reduces to {0} as it will be clear

hereafter because the optimal operator is of finite range, which implies that the null space of the optimal

operator is a non-trivial closed subspace of H.

A.4 (i) g(α, β, ω) is continuously differentiable with respect to α and β and g(α, β, ω) ∈ (L∞(I ⊗ P0))
J

where L∞(I ⊗ P0) is the set of measurable bounded functions of (ω,Zt).

(ii) supα∈A ‖g(α, β, ω)− g(α0, β, ω)‖ = Op
(

1√
T

)
for all β ∈ B and ω ∈ I.

(iii) supα∈A0
‖∂g(α, β, ω)/∂α′ − ∂g(α0, β, ω)/∂α′‖ = Op

(
1√
T

)
for all β ∈ B and ω ∈ I where A0 is some

neighborhood about α0.

(iv) supβ∈B0
‖∂g(α, β, ω)/∂β′ − ∂g(α, β0, ω)/∂β′‖ = Op

(
1√
T

)
for all α ∈ A and ω ∈ I where B0 is some

neighborhood about β0.

In the context of structural VAR models, g(α, β, ω) is bounded (Assumption A.4 (i)) for any interval under

the assumption of weakly stationary processes. Note that this assumption is not satisfied in the case of

nonstationary (integrated of order one) processes when ω = 0 belongs to the frequency interval. We can

also easily show that Assumption A.4 ii), iii), and iv) hold for the continuum of estimating equations (3.11)

in the case of weakly stationary processes. Indeed, as shown in Section 4, the function g(α, β, ω) and its

derivatives depend on the estimates of the moving average representation in terms of innovations, which

converge in probability for weakly stationary processes (see Phillips, 1998).

The following Lemma establishes the asymptotic normality of the functional

∂g

∂β′
(α0, β̂T , ω)

√
T (β̂T − β0),

which is necessary to obtain the asymptotic normality of C-ALS estimators.

Lemma 3.1. Under Assumptions A.1, A.2 and A.4 we have

∂g

∂β′
(α0, β̂T , ω)

√
T (β̂T − β0)⇒ ξ ∼ N (0,K)

as T →∞ in H, where N(0,K) is the Gaussian random vector of H with the covariance operator K : H → H

satisfying for all f in H:

(Kf) (ω1) =

∫
I
k(ω1, ω2)f(ω2)dω2

where, under P0, the kernel of K, denoted by k, is:

k(ω1, ω2) =
∂g

∂β′
(α0, β0, ω1)Ω

∂g′

∂β
(α0, β0, ω2)

with
∫
I
∫
I k(ω1, ω2)dω1dω2 < ∞. Moreover, K is a compact Hilbert–Schmidt operator, is self-adjoint (K =

K∗), and ξ ∈ H(K) where H(K) ⊂ H is the so-called reproducing kernel Hilbert space (RKHS).12

12See Carrasco et al. (2007b) for definitions and properties of RKHS. See Wahba (1990) for RKHS of vector-valued functions.
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Lemma 3.1 results directly from Theorem 2.47 in Carrasco et al. (2007b) under the assumption of convergence

in probability of the random bounded linear operator ∂g
∂β′ (α0, β̂T , ω) to ∂g

∂β′ (α0, β0, ω) (Assumption A.4 (iv))

and
√
T
(
β̂T − β0

)
d→ N (0,Ω). Here, the Hilbert–Schmidt operator K has a finite dimensional closed range

equal to q, the dimension of the (asymptotic) covariance matrix of the parameter vector β. Indeed the

operator K, which depends on the first step estimation β̂T , is degenerate and thus can be written as a finite

sum of products of functions depending on ω1 and ω2 (see Groetsch, 1984, p.8). Accordingly, the range of

K, denoted by R(K), is finite dimensional. This is different from the framework of Carrasco and Florens

(2000) and Carrasco et al. (2007a) in which the inverse of K is not bounded because the range of K is not

closed.13 Since the dimension of the range of K is q, the number of its eigenvalues different from zero is

finite and, according to the Mercer’s Theorem, K admits the following spectral decomposition:

k(ω1, ω2) =

q∑
i=1

λiγi(ω1)γi(ω2)′,

where λi, i = 1, . . . , q denote the q eigenvalues of K different from zero and γi(ω1) the corresponding vector

of orthonormalized eigenfunctions, that is, Kγi(ω1) = λiγi(ω1) for i = 1, . . . , q.14 It follows that

(Kf) (ω1) =

q∑
i=1

λiγi(ω1) 〈f, γi〉 .

The choice of the optimal C-ALS estimator is related to the inverse of the covariance operator K. Inverting

K is equivalent to find the solution φ to a Fredholm equation of the first kind Kφ = f for a given f ∈ H.

With R(K) of finite dimension and thereby closed, the uniqueness of the inverse of K is achieved by the

solution of minimal norm for the equation of the first kind.15 In addition to the assumptions A.2 and A.3,

the identification of α thus requires the following assumption in the case of the optimal C-ALS estimator.

A.5 i) g(α, β̂T , ω) ∈ R(K), ∀α ∈ A under P0, ii) Prob(rank(KT ) = q) → 1 as T → ∞ where KT is a

consistent estimator of K and iii) ∂g(α, β̂T , ω)/∂α ∈ H(K) for all α ∈ A0 under P0.

Assumption A.5 i) means that g(·, ·, ω) is well-specified on the closed range of K∗ = K and R(K) =

N(K)⊥.16 This implies that a unique minimal norm solution exists for the equation of the first kind and

the solution is given by the following Moore-Penrose inverse denoted K†:

(
K†f

)
(ω1) =

q∑
i=1

1

λi
γi(ω1) 〈f, γi〉 . (3.12)

Thus, by Assumption A.5 i), we have ‖(K†)1/2g(α, β, ω)‖ = 0 under P0 implies g(α0, β0, ω) = 0 ∀ω ∈ I has

a unique solution α = α0. Assumption A.5 ii) implies that the asymptotic rank of a consistent estimator KT

of K is the same as K with probability one. This is a sufficient condition to ensure that the Moore-Penrose

13For a general discussion of linear inverse problems in econometrics, see Carrasco et al. (2007b).
14The derivation of the explicit expressions for the eigenvalues λi and the eigenfunctions γi(ω) is given in the online Appendix.
15See Proposition 3.3 in Carrasco et al. (2007b).
16See Luenberger, 1997, p.156, Theorem 2 and Babii and Florens (2021).
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inverse estimator K†T is consistent for K† for a consistent estimator KT of K.17 However, the stability of

the Moore-Penrose inverse depends on the rate of decay of the eigenvalues and thus a regularization method

cannot be precluded in finite samples in the presence of tiny eigenvalues. In particular, the severity of rank

deficiency in finite samples can give a useful indication as to whether the information contained in a certain

interval is sufficient to implement the optimal estimation and the corresponding testing procedure presented

below. Assumptions A.5 iii) guarantees that the partial derivatives of the function g(α, β̂T , ω) with respect

to α are in the RKHS of the covariance operator K. Finally, the following full-rank assumptions are also

needed to derive the asymptotic distribution.

A.6 The matrices
〈
S ∂g
∂α′ (α0, β0, ω), S ∂g

∂α′ (α0, β0, ω)
〉

and
〈

(K†)1/2 ∂g
∂α′ (α0, β0, ω), (K†)1/2 ∂g

∂α′ (α0, β0, ω)
〉

are

positive definite and symmetric, which implies that dim(α) ≤ dim(β) (r ≤ q) where K−1/2 = (K†)1/2.

The following proposition shows that the C-ALS estimator is consistent and asymptotically normally dis-

tributed.

Proposition 3.1. Suppose that Assumptions A.1 to A.6 are satisfied, that ST denotes a sequence of random

bounded linear operators converging to S, and that the C-ALS estimator associated with ST is a solution

α̂T (ST ) to the problem:

α̂T (ST ) = arg min
α∈A
‖ST g(α, β̂T , ω)‖2. (3.13)

The C-ALS estimator exists, and α̂T
p→ α0. Moreover, it is asymptotically normally distributed:

√
T (α̂T (ST )− α0)

d→ N(0, Q(S))

with

Q(S) =

〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1〈
S
∂g

∂α′
(α0, β0, ω), (SK(S?)S

∂g

∂α′
(α0, β0, ω)

〉
×
〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1

and among all admissible operators S, S = K−1/2 yields the optimal estimator, i.e. with minimal variance,

where K−1/2 = (K†)−1/2.

The results follow from Carrasco and Florens (2000) but are applied to a continuum of estimating equations.18

Proposition 3.1 implies that the asymptotic variance of an alternative estimator of α based on a discretized

ALS is necessarily greater or equal to the lower bound achieved with the optimal C-ALS estimator. Conse-

quently, the optimal C-ALS achieves asymptotic efficiency by exploiting all the information available in the

frequency interval. Moreover, the integrals appearing in the asymptotic expressions can be solved analyti-

cally without carrying out numerical integration, thereby avoiding approximation errors.

17See Andrews (1987) and Tyler (1981).
18A detailed derivation of the proof is given in the online Appendix.
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As in Carrasco et al. (2007a), we propose a simple expression of the objective function, which permits

to write the objective function in terms of finite dimensional vectors and matrices. This requires a first-step

consistent C-ALS estimator, denoted by α̂1
T , defined by (using the identity operator as a kernel operator):

α̂1
T = arg min

α∈A

∫
I
g(α, β̂T , ω)′g(α, β̂T , ω)dω.

Proposition 3.2. A simplified expression for the objective function of the optimal C-ALS problem is given

by:

α̂T = arg min
α∈A

s(α, β̂T )′W̃ 2
T s(α, β̂T ),

where W̃T is a generalized inverse of WT and

WT =

∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω)

∂g

∂β′
(α̂1
T , β̂T , ω)Ω

1/2
T dω

is a q × q-matrix and

s(α, β̂T ) =

∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω)g(α, β̂T , ω)dω

is a q-vector. When the matrix WT is of full rank, then W̃T = W−1
T .

Proof: See the Appendix.

The transformed system of estimating equations, s(α, β̂T ), is thus defined by an inner product condi-

tion in a Hilbert space, which is the projection of g(α, β̂T , ω) on the subspace spanned by β̂T given by
∂g
∂β′ (α̂

1
T , β̂T , ω)Ω̂

1/2
T .

As explained before, the matrix WT might not be of full rank q as the frequency interval shrinks toward a

point (e.g., the zero frequency). As proposed by Carrasco and Florens (2000) in a C-GMM context, a gener-

alized inverse of WT might be obtained through a Tikhonov’s regularization. Thus, a simplified expression

for the regularized objective function of the second-step C-ALS problem is given by:

α̂T = arg min
α∈A

s(α, β̂T )′[ηT Iq +W 2
T ]−1s(α, β̂T ),

where the regularization parameter ηT goes to zero at a suitable rate (see Carrasco et al., 2007a; Carrasco,

2012).

3.2 Test of overidentification

A specification test can be performed using the J−test of overidentifying restrictions (Hansen, 1982).
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Proposition 3.3. Under Assumptions A.1 to A.6, the following JT -statistic is asymptotically distributed

as a sum of weighted χ2-distributed random variables with 1 degree of freedom:

JT = ‖
√
TST g(α̂, β̂T , ω)‖2 →

m∑
j=1

λjχ
2
j (1), (3.14)

where m is the dimension of the range of (SK̃S∗), K̃ is a covariance operator defined in the Appendix, and

λj , j = 1, . . .m are the eigenvalues of SK̃S∗ ordered in decreasing order and m ≤ q − r.

Proof: See the Appendix.

When ST = I, the λj terms are the eigenvalues of the covariance operator K̃ with a range of dimension q−r.
For the optimal C-ALS obtained with a consistent estimator of S = (K†)1/2, the JT -statistic is Chi-square

distributed with q − r degrees of freedom. In contrast to Carrasco and Florens (2000) and Amengual et

al. (2020), we obtain a finite Chi-square as limiting distribution since K is degenerate and the number of

eigenvalues of K is finite.

In the presence of a rank-order deficiency, Proposition 3.2 can be used to define a regularized version of

the test statistic. More specifically, for a fixed value of η, the JT statistic converges to the following distri-

bution:

Ts(α̂T , β̂T )′[ηIq +W 2
T ]−1s(α̂T , β̂T )

d−→
q−r∑
j=1

λ2
j

λ2
j + η

χ2
j (1). (3.15)

Critical values of the limiting distribution (3.14) and (3.15) can be obtained either by implementing the

numerical inversion of the characteristic function proposed by Imhof (1961) or by simulating independent

Chi-squared distributions (Robin and Smith, 2000) using consistent estimators of the eigenvalues.

3.3 Data-driven procedure for the frequency interval

The next question to address is the determination of the interval Iω = [ω, ω] on which one might impose

and assess the reliability of the identifying restrictions. For the sake of simplicity, we consider the class of

symmetric intervals of ω around zero, that is, Iω = [−ω, ω]. Then we use the information criteria-based

methodology of Hall et al. (2012) to select the largest interval Iω that might guarantee consistent estimation

of α̂T . In so doing, ω̂T is obtained by minimizing the valid interval selection criterion (VISC) defined by:

ω̂T = argmin
ω∈C(ω)

VISCT (ω),

where C(ω) is the class of symmetric intervals around zero and

VISCT (ω) = JT (ω)− h(|w|)κT , (3.16)

where h(|w|)κT is a deterministic penalty, which is an increasing function of the length of the interval.

Proposition 3.4 shows that ω̂T converges in probability to the unique ω0 under P0 that chooses the maximal

bound for a valid consistent estimation of α̂T .
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Proposition 3.4. Suppose that (1) there exists a lower bound ωlb such that the restrictions are respected for

the interval [−ωlb, ωlb], (2) there exists a maximal interval given by Iω0
= [−ω0, ω0], and (3) h(·) is strictly

increasing and κT → ∞ as T → ∞ with κT = o(T ). Then the estimator ω̂T defined as the solution of the

criterion (3.16) converges in probability to ω0.

Note that the first assumption imposes that the restrictions are valid for at least an interval with minimal

length characterized by the lower bound ωlb. The second assumption ensures that the interval [−ω, ω] is

uniquely identified. The last one imposes restrictions on the penalty terms that guarantee the validity of

the criterion. The SIC-type penalty term ((h|ω|) = 2ω and κT = ln(T )) and the Hannan–Quinn-type

penalty term ((h|ω|) = 2ω and κT = ln(ln(T ))) satisfy this assumption, while the AIC-type penalty term

((h|ω|) = 2ω and κT = 2), does not.

4 The C-ALS estimator for structural VAR models

In this section, we apply the general results of Section 3 to identify structural VAR models with frequency-

based restrictions.19 Suppose an N -dimensional vector Xt = (X1t, · · · , XNt)
′ follows a (reduced-form)

VAR(p) specification (2.1). Without loss of generality, we assume that the (functional) system of estimating

equations can be decomposed as follows:

g(a(0), β0, ω) =

 g1(a(0), β0)

g2(a(0), β0, ω)

 , (4.17)

where the estimating equations g1(a(0), β0) = 0 result from vech (Σ−A(0)A(0)′) and the q2 (functional)

estimating equations g2(a(0), β0, ω) = 0, which stem from the frequency identifying restrictions, can be

written as:

Hvec
(
A(e−iω)− C(e−iω)A(0)

)
= 0q2×1 (4.18)

or

H
(
IN ⊗ C(e−iω)

)
a(0) = b(e−iω),

where H is an q2 ×N2 selection matrix, a(0) = vec(A(0)), and b(e−iω) = Hvec(A(e−iω)).

Starting from the (functional) system of estimating equations (4.17), the first-step C-ALS estimator with

the identity operator is given by the following minimization problem:

â1
T = arg min

a

[
g1(a(0), β̂T )′g1(a(0), β̂T ) +

∫ ω

ω

g2(a(0), β̂T , ω)′g2(a(0), β̂T , ω)dω

]
.

Proposition 4.1 establishes the main results irrespective of the selection of the estimating equations, H.

19An online technical appendix shows how these results can be applied in the case of the identification of a single structural

shock in any N-variate VAR model. We also provide more detailed results in the bivariate case.
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Proposition 4.1. Consider the reduced-form VAR(p) given by equation (2.1) and the vector of estimating

equations defined by equation (4.17) for a given frequency interval ω ∈ [ω, ω]. Suppose that the moments

of order three of ut are zero. Let β = (vec(Φp)
′, vech(Σu)′)

′ ≡ (Φ′, σ′)
′

denote the vector of reduced-form

parameters, and ΩT =

 ΩΦ 0

0 Ωσ

 the corresponding partitioning of the asymptotic variance–covariance

matrix of the OLS estimator of β. Then,

• The first-step C-ALS estimator of a(0), denoted by â1
T , solves:∫ ω

ω

(
IN ⊗ C?(e−iω)

)
H′H

(
IN ⊗ C(e−iω)

)
dωvec(A(0))− 2

(
D+
N (A(0)⊗ IN )

)′
vech

(
Σ̂T −A(0)A(0)′

)
= 0,

where D+
N = (D′NDN )−1D′N and DN is the N2 × 1

2N(N + 1) duplication matrix such that vec(X) =

DNvech(X).

• The vector of estimating equations in the second step is given by:

s(a(0), β̂T ) =

 g1(a(0), β̂T )

Ω
1/2
Φ

∫ ω
ω

∂g′2
∂Φ

(
â1
T , β̂T , ω

)
g2(a(0), β̂T , ω)dω

 .

• The second-step C-ALS estimator, denoted by âT , solves:

âT = arg min
a

[
g1(a(0), β̂T )′W1T g1(a(0), β̂T ) + s2(a(0), β̂T )′W̃ 2

2T s2(a(0), β̂T )
]
,

where W1T is the inverse of 2D+
N (Σ̂⊗ Σ̂)D+

N

′
, s2

(
a(0), β̂T

)
is the second set of transformed estimating

equations, and W̃2T is the generalized inverse of W2T :

W2T = Ω
1/2
Φ

∫ ω

ω

∂g′2
∂Φ

(
â1
T , β̂T , ω

)∂g2

∂Φ′

(
â1
T , β̂T , ω

)
dωΩ

1/2
Φ .

Proof: See the Appendix.

The first-step C-ALS estimator can be easily obtained from the first-order conditions and only requires

to solve N2 nonlinear equations with respect to the parameters of interest a(0) = vec(A(0)). Interestingly,

for a given ω, the two terms (IN ⊗ C(z)′)H′ and D+
N (A(0)⊗ IN ) are those that provide the rank condition

and thus the local identification of structural VARs.20 Meanwhile, taking the block diagonal structure of

the optimal variance–covariance matrix when the third-order moments of ut are zero, the second-step C-

ALS estimator can also be derived in a straightforward way by numerically solving either the minimization

problem or the first-order conditions. In both cases, there is no need for numerical integration. Finally,

the vector of estimating equations in the second step involves the optimal projection of g2(â1
T , β̂T , ω) onto

the subspace spanned by the reduced-form estimates of the autoregressive parameters and the standard

N(N + 1)/2 estimating equations, g1(a(0), β̂T ), that defines the mapping between the variance–covariance

20See Proposition 9.4. in Lütkepohl (2007).
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of the innovations and the structural shocks.

As an application of Proposition 4.1, suppose that we consider a bivariate model and that the second

structural shock has no impact on the first variable on a frequency band [ω, ω] with ω = −ω. In particular,

the matrix A(0) is locally identified (up to a sign restriction) when

g2(ã12, β̂T , ω) = ĉ11(e−iω)ã12 + ĉ12(e−iω) = 0

=

∞∑
j=0

[
ĉ11,je

−iωj ã12 + ĉ12,je
−iωj] = 0,

where ã12(0) = a12(0)/a22(0). In this case, one can proceed sequentially, that is, one first determines an

efficient two-step ALS estimate of ã12(0), denoted by ̂̃a12,T , using only the previous functional estimating

equation and then obtains an estimate of a(0) using the first set of just-identified estimating equations

g1(a(0), β0) ≡ vech
(

Σ̂T −A(0)A(0)′
)

= 0 after replacing a12(0) with ̂̃a12,Ta22(0). More specifically, using

the identity operator, the first-step C-ALS estimator of ã12(0) is given by:

̂̃a1

12,T = −

∞∑
j=0

∞∑
l=0

ĉ11,j ĉ12,l

∫ ω
ω

cos((l − j)ω)dω

∞∑
j=0

∞∑
l=0

ĉ11,j ĉ11,l

∫ ω
ω

cos((l − j)ω)dω
. (4.19)

This first-step estimator corresponds to the Min-effect/Max-effect frequency estimator proposed by Wen

(2001, 2002). Meanwhile, imposing the identifying restriction at ω = 0 (Blanchard and Quah, 1989) yields:

â12,T = − ĉ12(1)
ĉ11(1) . The one-step C-ALS estimator can be seen as a generalized least squares estimator in

which the weights (i.e., the cosine terms) capture not only the information at the zero frequency but also its

neighborhood. Finally, using the simplified expression of the objective function and a consistent estimate of

W2T , the efficient second-step C-ALS estimator is:21

̂̃a12,T = −
ŝ′11,T (Ŵ 2

2T )−1ŝ12,T

ŝ′11,T (Ŵ 2
2T )−1ŝ11,T

,

where ŝ1k,T for k = 1, 2 and Ŵ2T are given by:

ŝ1k,T = Ω̂Φ

′1/2
∞∑
j=0

∞∑
l=0

[(
∂ĉ11,j

∂Φ
̂̃a1

12,T +
∂ĉ12,j

∂Φ

)
ĉ1k,l

] ∫ ω

ω

cos((l − j)ω)dω,

and

Ŵ2T = Ω̂
′1/2
Φ

 ∞∑
j=0

∞∑
l=0

(
∂ĉ11,j

∂Φ
̂̃a1

12,T +
∂ĉ12,j

∂Φ

)(
∂ĉ11,l

∂Φ′
̂̃a1

12,T +
∂ĉ12,l

∂Φ′

)∫ ω

ω

cos((l − j)ω)dω

 Ω̂
1/2
Φ ,

where Φ = vec(Φp).

21The proof is available on the online Appendix.
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5 Monte Carlo simulations

In this section, we provide some Monte Carlo simulations to study the finite sample performances of the

C-ALS estimator. We assume that the data generating process (DGP) is a bivariate VAR model in which

the first variable, X1,t, is nonstationary and thus written in first-difference and the second variable, X2,t, is

a weakly stationary process:

∆X1,t = ϑ1 + ρ11,1∆X1,t−1 + (ρ12,1 + δ)X2,t−1 − ρ12,1X2,t−2 + ε1,t (5.20)

X2,t = ϑ2 + ρ21,1∆X1,t−1 + ρ22,1X2,t−1 + ρ22,2X2,t−2 + b21ε1,t + ε2,t, (5.21)

where the vector εt = (ε1,t, ε2,t)
′

represents some structural shocks, with εt ∼ N(0, I2). Since the presence

of deterministic terms might contaminate the estimation at ω = 0 and thus the finite sample properties, we

include one intercept term in each equation and calibrate them so that to match the unconditional means

of the variables of interest in our application (Section 6). The parameter δ controls the magnitude of the

long-run effect of the second shock ε2,t on the first variable X1,t. When δ = 0, only the first shock has

a long-run impact on the first variable. To some extent, the corresponding specification can be viewed as

the one often encountered in the macro literature in order to identify a permanent shock, for example, the

identification of a technology shock with some measures of (labor or total) productivity and hours worked

(see Section 6). It is worth emphasizing that the VAR(1) specification (the first set of experiments) is the

DGP of Gospodinov et al. (2013) and Chevillon et al. (2020).

Using equations (5.20) and (5.21), we generate 10,000 samples of size T = 200 observations—a sample

size often encountered in applied macro works—and the effect of initial conditions is controlled by including

200 pre-sampled observations that are subsequently discarded in the estimation. For each repetition, the lag

order is set to its true value so that results are interpreted free of any lag order misspecification issue.22 Our

method, denoted by C-ALS is compared with three approaches. The first one, denoted by LR, is a standard

long-run identification scheme à la Blanchard–Quah, that is, we only impose the identification constraint

at ω = 0.23 The second alternative is the first-step C-ALS estimator defined in equation (4.19) when the

kernel operator is the identity operator. The last alternative is the max-share procedure of DiCeccio and

Owyang (2010), Dieppe et al. (2021) and Francis et al. (2014), denoted by MS, which has been used in recent

contributions (e.g., Angeletos et al., 2020).

With the exception of the LR method, we consider four fixed symmetric frequency intervals ωn = [− 2π
n ,

2π
n ]

with n = 30, 60, 90, and 120 quarters. The results are then assessed along three dimensions. First, we

compute the contemporaneous effect of each structural shock on each variable (that is, the impulse re-

sponse function at h = 0) and determine the corresponding mean absolute bias and root mean squared

22Several robustness exercises, which are available upon request, have been experimented with to control for the lag order

selection. Overall, our results remain unchanged, and our estimator performs better than competing estimators.
23We also implement the methodology of Christiano et al. (2006b), that is, a nonparametric approach to estimate the zero-

frequency spectral density (with a Bartlett or Andrews-Monahan kernel). However, our Monte Carlo results show that their

approach underperforms with respect to the max-share approach and our C-ALS procedure.
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error (RMSE). Second, we provide the cumulative mean absolute bias and RMSE for h ∈ [0, H], with

H = 4, 8, and 12 by using the impulse response functions.24 More specifically, the cumulative mean abso-

lute bias is defined as cmd(H) =
∑H
h=0 |irfh(model) − irfh(svar)| where H denotes the selected horizon,

irfh(model) the impulse response at horizon h from the model defined by equations (5.20) and (5.21), and

irfh(svar) = (1/N)
∑N
j=1 irfh,j(svar) the average impulse response function over the N simulation exper-

iments. In other words, the cumulative mean absolute bias is a measure of the area between the impulse

response function up to a given horizon H and the horizontal axis. Third, we contrast the true impulse

response function of the second variable relative to the first structural shock with the impulse response

function estimates of the competing methods.

We first consider a VAR(1) specification with (ρ11,1, ρ12,1, ρ21,1, ρ22,1, ρ22,2, b21, δ) = (0, 0, 0.2, ρ, 0, 0.2, 0)

where ρ = 0.9, 0.95, or 0.98. When ρ11,1 = ρ12,1 = δ = 0, the first variable, X1,t, is a random walk, and the

second variable is a persistent stationary process driven by ρ. Moreover, δ = 0 implies that only the first

structural shock has a permanent effect on the first variable and that the identifying restriction is correctly

specified (null hypothesis). In particular, the variance contribution of the second structural shock to the

first variable is equal to zero irrespective of the frequency interval under consideration, and the long-run

restriction is always satisfied irrespective of the frequency interval ωn. Figure 1 reports the mean absolute

bias (left panel) and RMSE (right panel) of the contemporaneous effect of each structural shock on each

variable for different frequency intervals ωn.

Three points are worth commenting. First, inspecting Figure 1 shows that the mean absolute bias and

RMSE curves of the frequency-based approaches are below the solid line that represents the results of the LR

approach. This also holds true when compared to the MS approach. Second, the second-step C-ALS approach

outperforms other methods for both statistical criteria, and, in particular, the mean absolute bias differences

between the second-step C-ALS estimator and other alternatives are substantial irrespective of the frequency.

The performance of the second-step C-ALS estimator in terms of bias and RMSE improves monotonically

and impressively in the range [0; 0.05], whereas gains are mostly negligible for higher frequencies. This is

further illustrated by the discrepancy between the first-step C-ALS and the second-step C-ALS: there is an

effective gain to exploit the relevant information of the reduced-form VAR estimation through the optimal

weighting matrix. Notably, the second-step C-ALS estimator captures the persistence of the transitory shock,

driven by ρ, through the system of transformed estimating equations, whereas there is a confounding effect

between the permanent shock and the persistent transitory shock in the absence of the optimal projection

into the space spanned by the reduced-form estimates, hence leading to a less substantial bias and RMSE

reduction for the first-step C-ALS estimator. Overall, the C-ALS estimator leads to a significant bias reduc-

tion while being more efficient. Third, as to be expected, the first-step C-ALS and max-share estimators

display roughly the same finite sample properties under the null hypothesis of a well-specified identifying

restriction. Indeed, the objective function of the first-step estimator is equivalent to minimize (respectively,

24As our results are qualitatively the same irrespective of the horizon, we only report those at the impact and those at H = 12.

Other results are available upon request.
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to maximize) the contribution of the second (respectively, the first) structural shock to the (marginal) spec-

trum of the first variable. Under the null hypothesis of a well-specified identifying restriction, it amounts

to finding the largest eigenvalue of the forecast error variance decomposition, which is the purpose of the

max-share approach.

Regarding the cumulative absolute bias between the average response in SVARs and the true response,

and the cumulative RMSE up to 12 periods for n = 30, 60, 90, and 120, Figure 2 provides very supportive

evidence for the C-ALS approach. In particular, the cumulative bias and RMSE performances of our two-step

procedure are better than those of the competing approaches when studying the effect of each structural

shock on each variable of interest. Notably, the C-ALS estimator displays less cumulative bias and RMSE

for tiny intervals around ω = 0. Unreported results for ρ = 0.9 and ρ = 0.98 lead to the same conclusions.

To further contrast the different approaches, Figure 3 displays the true and estimated impulse response

function of the second variable relative to the first structural shock as well as the confidence intervals in the

case of the frequency interval ω60 = [− 2π
60 ,

2π
60 ].25 Interestingly, the impulse responses for the LR restriction

mimics the empirical results for the impact of a technology shock on hours worked when the hours series is

specified in level in a VAR (see Christiano et al., 2006a); the response is positive at the impact and declines

toward zero, and the confidence interval contains zero at all horizons. This is also the case for the first-step

and MS estimators that display narrower confidence intervals than the one of the LR method. However, the

C-ALS-based impulse response function is more precise, and one can reject the hypothesis that the effect of

the first shock on the second variable is equal to zero up to H = 20. Therefore, by computing the optimal

weighting matrix, there is a huge gain of efficiency relative to the first-step C-ALS and the max-share ap-

proach. Finally, we implement (the regularized version of) the overidentification test (Proposition 3.3).26

As reported in panels a, b, and c of Table 1, when δ = 0, the test is conservative under the null hypothesis

irrespective of the frequency interval.

To evaluate the robustness of the previous results, we now proceed with a misspecified exclusion restric-

tion (alternative hypothesis) in the sense that both shocks have a permanent effect on the first variable

(δ 6= 0) whereas we only impose that the first structural shock matters permanently for the first variable.

As reported in Table 1, when δ = 0.05 or 0.1 and n increases and thus the length of the frequency band

decreases, the proportion of the variance explained by the second structural shock for the first variable

increases. This can be observed in Figure 4a), which displays the (marginal) spectral densities of the first

variable resulting from the first and the second structural shocks. In this respect, Figure 5 supports that our

25The results are qualitatively the same for ω30, ω90, and ω120.
26One issue is the regularization of the W matrix and the fact that the test cannot be implemented if the original weighting

matrix displays a large rank deficiency (i.e., the proportion of smaller eigenvalues is too large). More specifically, as the length

of the symmetric frequency interval decreases, the matrix W might not be of full rank so that we make use of a generalized

inverse through a regularization method. To circumvent this issue, we determine the rank of the matrix, say k, and take as the

regularization parameter the kth (ordered) eigenvalue. All in all, our worst case leads us to reject 4 simulations out of 10,000

for the frequency interval ω120. We apply the same procedure for the application in the next section.
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methodology clearly outperforms other methods in terms of mean absolute bias and RMSE.27 Here again,

the reduction of both the bias and the RMSE is quite substantial, and it is worth emphasizing that the

first-step C-ALS estimator has better finite samples properties than the max-share estimator in the presence

of misspecification, irrespective of ρ. Moreover, as already observed in the benchmark parameter vector,

Figure 6 shows that the discrepancy between the true impulse response function and the one obtained from

the C-ALS estimator is rather small, whereas those of other methods display a significant and substantial bias

at very short horizons—the IRF estimates being even below the lower bound of the confidence band for the

first five quarters —and also in the medium term. This relatively good performance of the C-ALS estimator

can be explained by the fact that the minimization solution yields a pseudo-true value getting closer to the

true value when the frequency interval becomes wider and thus there is a decreasing relative contribution

of the second shock to the spectral density of the first variable as observed in Figure 4a). Regarding the

overidentification test, panels a,b, and c of Table 1 show that it performs well. As δ increases, the contri-

bution of the second structural shock to the first structural variable increases and so the rejection rate, the

probability of rejecting the null hypothesis being between 90% and 99% for δ = 0.1.

As a second set of experiments, we consider other parameter configurations. For instance, as shown in the

online Appendix, using a VAR(2) specification with (ρ11,1, ρ12,1, ρ21,1, ρ22,1, ρ22,2, b21) = (0,−0.08, 0.2, ρ +

0.55,−0.55ρ, 0.2) under the null (δ = 0) and alternative (δ > 0) hypothesis where ρ = 0.9, 0.95, or 0.98, our

results are qualitatively similar. We also compare the discretized ALS estimators with the corresponding

C-ALS estimators. The simulation results (not reported here) show that the second-step discretized ALS

estimator performs better than the LR and MS estimators in terms of bias and RMSE but is very slightly

dominated by the optimal two-step C-ALS estimator. This is probably due to the excessive smoothness of

the marginal spectral densities and of the cross-spectrum, which is implied by our DGP and can be easily

replicated using a discretization procedure.28

Finally, we evaluate the small sample performances of the data-driven procedure for the selection of the

frequency interval (Section 4.4). In so doing, we first consider a DGP where the first structural shock does

not contribute to the spectral density of the second variable at any frequency. In this case, the V ICST (ω)

criterion should select the widest possible interval. Then, as a local alternative, the first structural shock is

assumed to contribute to the marginal spectral density of the second variable only in an interval strongly

concentrated around the zero frequency (Figure 4b). In this case, the V ICST (ω) criterion should select the

narrowest possible interval around zero. In both cases, we make use of symmetric intervals ωn = [− 2π
n ,

2π
n ]

where n = 30, 40, 50, . . . , 240 and of a narrow interval with n = 2000 to mimic a long-run restriction. Our

results show that the V ICST (ω) test statistic based on a SIC penalty term selects the largest interval with

a probability of 0.757 in the first case whereas the narrowest interval is recovered with a probability of 0.668

27The results for the cumulative mean absolute bias and cumulative RMSE are very similar but not reported here for sake of

space.
28In the online Appendix, we provide theoretical results about the asymptotic distribution of C-ALS estimators and overi-

dentification tests in the presence of local misspecification.
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in the second case. It turns out that our data-driven interval selection procedure performs well for (finite)

sample sizes encountered in practice and even better when the sample size gets larger and larger.

To summarize, our Monte Carlo simulations provide evidence that the two-step C-ALS estimator outper-

forms other methods in terms of both (cumulative) mean absolute bias and RMSE. Contrasting the true

impulse responses with those of the competing methods shows that the two-step C-ALS estimator is more

reliable and precise. At the same time, the proposed J-test behaves nicely in the presence of local alternatives

and misspecified identifying restrictions.

6 Application: The hours–productivity debate using bivariate SVAR

models

We now discuss an application regarding the technology–hours debate in light of the contribution of Francis

and Ramey (2009). Indeed, structural VAR models yield conflicting results regarding the effect of technol-

ogy shocks on hours. Consequently, the predominant role of technology shocks as the main source behind

movements in macro data has been sharply challenged since the appraisal of Gaĺı (1999). One key issue of

the technology–hours debate is the assumed DGP for the hours worked (per capita) measures. Using a first

difference specification of hours, structural VAR models predict a decline in hours in response to a positive

technological shock (e.g., Gaĺı, 1999, or Francis and Ramey, 2005), opposite of what is implied by Real Busi-

ness Cycles models.29 However, entered in level, hours increase in response to a positive technological shock,

and the standard result at the core of the long-standing RBC model emerges (Christiano et al, 2006a). To go

one step further, Francis and Ramey (2009) argue that one potential explanation for these conflicting results

is that the standard measure of hours per capita and productivity have significant low-frequency movements,

and these movements can lead to misleading results in the level-based specification of a structural VAR model.

More specifically, Francis and Ramey (2009) show that demographic trends and sectoral allocation are

important sources of low-frequency movements in hours worked and labor productivity.30 Accordingly, labor

productivity might be driven by two permanent shocks, the technology shock and the demographic shock,

and thus the usual long-run restriction of hours-productivity VAR models might be violated. To circumvent

this issue, Francis and Ramey (2009) propose new measures of hours worked per capita and labor produc-

tivity that are more comfortable with the imposed long-run restriction(s). Using the adjusted series, it turns

out that the response of hours worked is now negative in the short run, and then becomes slightly positive

after a year for a structural VAR model in which the adjusted hours worked per capita variable is specified

in level. In this respect, a more complete test of their results begs the following questions: Is there any

29While standard unit root tests cannot reject the presence of a unit root for hours worked series, most dynamic macroeconomic

models with standard preference specifications imply that the hours worked per capita should be stationary in the absence of

permanent structural changes in government spending, labor income taxes, and preferences (see Francis and Ramey, 2009).
30Several strands of research have discussed the existence of alternative shocks that can result in permanent effects on labor

productivity (e.g., Mertens and Ravn, 2013; Fisher, 2006; Ben Zeev and Kahn, 2015).
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evidence that only technology shocks have a long-run effect on labor productivity using unadjusted hours

and productivity measures? If not, how effective is the technology shock identified with the adjusted series?

To this end, we conduct structural bivariate VAR analysis in which the first variable is labor productivity

and the second variable (in level) is subsequently the standard hours per capita measure (private business

hours per capita) and the adjusted hours series constructed by Francis and Ramey (2009). Starting from

the two-step procedure in the bivariate case presented in Section 4, we implement the overidentification

test to assess the reliability of the identifying restrictions, and thus proceed as follows. We estimate the

two reduced-form VAR models in which the hour series is in level. As in Francis and Ramey (2009), the

sample period is 1948Q1–2007Q4 and the lag order is set to 4. To compare the results of our approach

with those of Francis and Ramey (2009), the identifying constraints are imposed over the frequency interval

ω120 = [− 2π
120 ,

2π
120 ]. Finally, confidence intervals at 95% are built from a bootstrap procedure with 1,000

replications.

As reported in Figure 7, using the standard LR restriction, the two graphs show that (unadjusted) pri-

vate business hours per capita respond significantly, with the exception of the initial period, and positively

in the short run to a positive technological shock and then decreases at intermediate to long horizons. In con-

trast, using our approach, (unadjusted) private business hours per capita initially decrease, and then respond

positively in the short run (after one year) before gradually decreasing toward zero in the medium-to-long

term. Moreover, none of the effect of the technological shock is statistically different from zero. As pointed

out by Francis and Ramey (2009), one explanation for this apparent discrepancy is that the identifying

assumption, namely that the technological shock alone explains the long-run effect on labor productivity for

the unadjusted hours series, is misspecified. To shed some light on this issue, we perform our identification

test and find that the JT statistic has a p-value of 0.0005. Consequently, our proposed overidentification test

clearly rejects the hypothesis that only one shock has a permanent effect on the labor productivity when

using the unadjusted series of hours.

As reported in the two graphs at the bottom of Figure 7, both methods lead to the same shape of the

impulse response function, with the exception of the initial effect, when the VAR specification contains the

adjusted series of hours. More specifically, there is a statistically significant negative effect of the techno-

logical shock on (adjusted) hours worked over the first periods in the case of our methodology, whereas

those effects are not statistically different from zero using the standard LR method. Note that the LR results

are consistent with those of Francis and Ramey (2009). Interestingly, the JT statistic now has a p-value

of 0.6512. In other words, this provides some support of the argument of Francis and Ramey (2009); the

adjusted hours worked series for demographic and sectoral changes is now compatible with the hypothesis

that only the technology shock has a long-run effect on labor productivity. We also conduct our data-driven

procedure to select the optimal frequency interval such that the imposed restrictions do hold. We find signif-

icant evidence for ω̂T = 80 quarters (with a p-value of 0.4307), and this provides additional support for the
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previous results with ω̂T = 120.31 Finally, the right panels of Figure 7 also show that the impulse response

functions derived from the discretized ALS estimator are close to but slightly different from the ones of the

C-ALS estimator.

Therefore, to answer our two questions, the evidence that only the technological shock has a long-run effect

on labor productivity is weak, and correcting the hours series for demographic and sectoral changes is more

consistent with the Blanchard–Quah long-run restriction and leads to a negative effect of a technological

shock in the short run.

7 Conclusion

In this paper, we propose a joint methodology for the identification and inference of structural VAR mod-

els in the presence of frequency identifying restrictions. Using the methodology of Carrasco and Florens

(2000) and Carrasco et al. (2007a), and the ALS procedure of Gouriéroux et al. (1985), we derive a C-ALS

estimator that allows obtaining reliable estimates of the dynamic responses of macroeconomic variables to

structural shocks and formally assessing the relevance of the imposed restrictions over either a given set of

frequencies or a data-driven selected interval. Monte Carlo simulations argue in favor of our approach with

respect to competing methods. Finally, our application regarding the hours–productivity debate provides

some new insights and highlights the relevant argument of Francis and Ramey (2009).

From an empirical point of view, our methodology and the associated testing procedure (overidentifica-

tion, interval selection) can be used to reassess several debates, such as the identification and reliability of

news’ shocks (Beaudry and Portier, 2006; Barsky and Sims, 2011; Kurmann and Sims, 2021), the assessment

of the long-run neutrality (super-neutrality) of money or the long-run Fisher relation, or the identification

and estimation of the main driver (Angeletos et al., 2020). However, the derivation of optimal rules for the

choice of the regularization parameter for testing procedures, the existence of nonfundamental representa-

tions (Gouriéroux et al., 2020) and the recoverability condition (Chahrour and Jurado, 2022) deserve further

research.

31In contrast, the p-value of the J-stat is 0.0433 when ω̂T = 60 quarters.
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Appendix: Proofs

Proof of Proposition 3.2

The optimal C-ALS estimator is defined as the solution of the following problem:

α̂T = arg min
α∈A

‖K−1/2
T g(α, β̂T , ω)‖2

⇐⇒ α̂T = arg min
α∈A

〈
K−1
T g(α, β̂T , ω), g(α, β̂T , ω)

〉
.

where K−1/2 = (K†)−1/2. We can rewrite this objective function as:

α̂T = arg min
α∈A

〈
K−1
T g(α, β̂T , ω),KTK

−1
T g(α, β̂T , ω)

〉
.

For sake of notation, g(α, β̂T , ω) ≡ g(ω). Let hT denote hT (ω) = K−1
T g(ω), the objective function is thus given by:

〈h(ω),KT h(ω)〉

where

KT h(ω) =
∂g

∂β′
(ω)Ω

1/2
T

∫
I

Ω
1/2
T

∂g′

∂β
(ω1)h(ω1))dω1.

This yields

〈h(ω),KT h(ω)〉 =

∫
I
h(ω1)′

∂g

∂β′
(ω1)Ω

1/2
T )dω1

∫
I

Ω
1/2
T

∂g′

∂β
(ω2)h(ω2))dω2.

Using the notation,

b =

∫
I

Ω
1/2
T

∂g′

∂β
(ω)h(ω)dω,

the objective function is then defined by b′b.

After multiplying KT h(ω) by Ω
1/2
T

∂g′

∂β
(ω) and integrating, one obtains:∫

I
Ω

1/2
T

∂g′

∂β
(ω)

∂g

∂β′
(ω)Ω

1/2
T dω

∫
I

Ω
1/2
T

∂g′

∂β
(ω1)h(ω1)dω1

=

∫
I

Ω
1/2
T

∂g′

∂β
(ω1)g(ω1)dω1 = s.

using KT h(ω) = g(ω). Denoting W =
∫
I Ω

1/2
T

∂g′

∂β
(ω) ∂g

∂β′ (ω)Ω
1/2
T dω, we obtain: Wb = s. Now suppose that there exists a

generalized inverse of the matrix W denoted W̃ . Then b = W̃s and the objective function can be rewritten as s′W̃ 2s. This

provides the result. When W is of rank equal to q, then W̃ = W−1.

Proof of Proposition 3.3

To derive the limiting distribution of the J-statistic, we need the following Lemma:

Lemma 7.1. Suppose that ξ ∼ N(0,K) is a Gaussian random vector with the covariance operator K defined as the operator

from H to H with a finite range of dimension m . Thus,

ξ =

m∑
j=1

〈ξ, φj〉φj

where λj , j = 1, . . . ,m are the eigenvalues (arranged in decreasing order) of K and φj the corresponding eigenfunctions of K.

The inner product 〈ξ, ξ〉 is distributed as
∑m
j=1 λjχ

2
j (1) where χ2

j (1) are independent central chi-square random variables with

1 degree of freedom.
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Proof of Lemma 7.1: Consider the spectral decomposition of the compact linear self-adjoint operator K with a finite range

of dimension m such that:

Kφj = λjφj

where λj are the eigenvalues of K for j = 1, . . . ,m and φj the corresponding eigenfunctions of K such that for f ∈ H

Kf =

m∑
j=1

λj 〈f, φj〉φj

with the eigenvalues λj , j = 1, . . . ,m arranged in decreasing order. For ξ ∼ N(0,K), this gives

ξ =

m∑
j=1

〈ξ, φj〉φj =

m∑
j=1

√
λj
〈ξ, φj〉√

λj
φj

and
〈ξ,φj〉√
λj

are i.i.d.N(0, 1). This implies that 〈ξ, ξ〉 is distributed as
∑m
j=1 λjχ

2
j (1) where χ2

j (1) are independent central chi-

square random variables with 1 degree of freedom.

Using the mean value expansion, one has:

g(α̂T , β̂T , ω) = g(α0, β0, ω) +
∂g

∂β′
(α̂T , β̄, ω)(β̂T − β0) +

∂g

∂α′
(ā, β̂T , ω)(α̂T − α0)

where ᾱ is on the line segment joining α̂T and α0 and β̄ is on the line segment joining β̂T and β0. Taking the asymptotic

distribution of
√
T (α̂T − α0) in Proposition 3.1 and g(α0, β0, ω) = 0, it follows that:

√
Tg(α̂T , β̂T , ω) =

∂g

∂β′
(α̂T , β̄, ω)

√
T (β̂T − β0)

−
∂g

∂α′
(ᾱ, β̂T , ω)

〈
ST

∂g

∂α′
(α̂T , β̂T , ω), ST

∂g

∂α′
(ā, β̂T , ω)

〉−1 〈
S∗TST

∂g

∂α′
(α̂T , β̂T , ω),

∂g

∂β′
(α̂T , β̄, ω)

√
T (β̂T − β0)

〉
.

where S∗T = S
′
. Since α̂T

p→ α0, β̂T
p→ β0 and under the assumption that ‖ST − S‖ → 0 in probability:

√
Tg(α̂T , β̂T , ω) =

∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0)

−
∂g

∂α′
(α0, β0, ω)

〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1 〈
S∗S

∂g

∂α′
(α0, β0, ω),

∂g

∂β′
(α0, b0, ω)

√
T (β̂T − β0)

〉
+op(1).

The covariance operator of the right-hand term of the equation above denoted K̃ as a kernel k̃(ω1, ω2) given by

k̃(ω1, ω2) = k(ω1, ω2)− k1(ω1, ω2)− k1(ω1, ω2)∗ + k2(ω1, ω2)

where

k1(ω1, ω2) = E

[
∂g

∂β′
(α0, b0, ω1)

√
T (β̂T − β0)

〈
S∗S

∂g

∂α′
(α0, b0, ω1),

∂g

∂β′
(α0, b0, ω2)

√
T (β̂T − β0)

〉′
A′(ω2)

]

= E

[
∂g

∂β′
(α0, b0, ω1)

√
T (β̂T − β0)

∫
I

√
T (β̂T − β0)′

∂g′

∂β
(α0, b0, ω2)S∗S

∂g

∂α′
(α0, b0, ω1)dωA′(ω2)

]

=
∂g

∂β′
(α0, b0, ω1)Ω

∫
I

∂g′

∂β
(α0, b0, ω2)S∗S

∂g

∂α′
(α0, b0, ω)dω1A′(ω2)

= (KS∗S)
∂g

∂α′
(α0, b0, ω1)A′(ω2)

with A(ω) = ∂g
∂α′ (α0, β0, ω)

〈
S ∂g
∂α′ (α0, β0, ω), S ∂g

∂α′ (α0, β0, ω)
〉−1

and

k2(ω1, ω2) =
∂g

∂α′
(α0, β0, ω1)

〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1 〈
S
∂g

∂α′
(α0, β0, ω), (SKS∗)S

∂g

∂α′
(α0, β0, ω)

〉
×
〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1 ∂g

∂α′
(α0, β0, ω2)′.
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Collecting the previous results, under the assumption that ‖ST − S‖ → 0 in probability and by Lemma 3.1, one gets:
√
TST g(α̂T , β̂T , ω)⇒ N

(
0, SK̃S∗

)
where K̃ = (I − P (ω1))′K(I − P (ω2))′ with P (ω) = ∂g

∂α′ (α0, β0, ω)
〈
S ∂g
∂α′ (α0, β0, , ω), S ∂g

∂α′ (α0, β0, ω)
〉−1

∂g′

∂α
(α0, β0, ω)SS∗.

Since theR(K) is of dimension q and the operator I−P (ω) from H to H is the projection orthogonal to the subspace spanned by
∂g
∂α′ (α0, β0, ω) which is of dimension r using Assumption A.6, the range of the operator K̃, denoted R(K̃), is of dimension q−r.

Let denote λj the eigenvalues ordered in decreasing order of SK̃S∗, by Lemma 7.1, we get〈
ST
√
Tg(α̂T , β̂T , ω), ST

√
Tg(α̂T , β̂T , ω)

〉
d−→

m∑
j=1

λjχ
2
j (1)

where m is the dimension of the range of SK̃S∗ with m ≤ q−r since the range of K̃ is of dimension q−r. When ST = I, λi are

the eigenvalues of the covariance operator K̃ with a range of dimension q−r. For the optimal C-ALS obtained with a consistent

estimator K
−1/2
T of K−1/2 = (K†)−1/2 evaluated at a first-step consistent estimator of α, the asymptotic distribution of the

statistic is a chi-square distribution with q − r degrees of freedom since
√
TK
−1/2
T g(α̂T , β̂T , ω)⇒ N (0,M)

where M = I − K−1/2 ∂g
∂α′ (α0, β0, ω1)

〈
K−1/2 ∂g

∂α′ (α0, β0, , ω),K−1/2 ∂g
∂α′ (α0, β0, ω)

〉−1
∂g′

∂α
(α0, β0, ω2)K−1/2 is a bounded

idempotent operator with q − r eigenvalues equal to one and r eigenvalues equal to zero.

Proof of Proposition 3.4 Suppose there exists a lower bound ωlb such that for this lower bound JT (ωlb) = Op(1). The restric-

tions are then asymptotically valid for the interval (−ωlb, ωlb). Now, there exists two possible cases for which |ω| 6= |ω0|. First,

consider the case where |ω| > |ω0|. For this case, JT (ω)→∞ while JT (ω0) = Op(1). Thus V ISCT (ω0)− V ISCT (ω)
p→ −∞.

The criterion selects the interval (−ω0, ω0) with a probability going to one when T is going to ∞. For the second case,

|ω| < |ω0| which implies that both JT (ω) and JT (ω0) are Op(1). Since |ω| < |ω0|, −h(|ω0|)κT +h(|ω|)κT → −∞ which implies

V ISCT (ω0)− V ISCT (ω)
p→ −∞. By combining the two results, the criterion selects ω0 with a probability going to one when

T diverges toward ∞ for all ω 6= ω0.

Proof of Proposition 4.1

Consider the vector of just- or over-identified estimating equations defined by Eq. 3.11. Let β = (vec(Φp)′, vec(Σ)′)′ ≡ (Φ′, σ′)′

denote the vector of reduced-form parameters, and ΩT =

(
ΩΦ 0

0 Ωσ

)
the corresponding partitioning of the asymptotic

variance-covariance matrix of the OLS estimator of β. The first-order conditions of the first-step objective function with respect

to a are given by:∫ ω

ω

∂

∂a′

{
vec
(
C(e−iω)A(0)

)′
H′Hvec (C(e−iω)A(0))

}
dω +

∂

∂a′

{
vech

(
Σ−A(0)A(0)′

)′
vech

(
Σ−A(0)A(0)′

)}
= 0,

where

∂

∂a′

{
vech

(
Σ−A(0)A(0)′

)′
vech

(
Σ−A(0)A(0)′

)}
= −2vech

(
Σ−A(0)A(0)′

)′
D+
N [KNN (A(0)⊗ IN ) + (A(0)⊗ IN )]

= −2vech
(
Σ−A(0)A(0)′

)′
D+
N [(A(0)⊗ IN ) + (A(0)⊗ IN )]

= −4vech
(
Σ−A(0)A(0)′

)′
D+
N (A(0)⊗ IN )

using the results in Lütkepohl, (2007, p. 363) and D+
NKNN = D+

N with KNN the commutator matrix for which KNNvec(X) =

vec(X′) for any N ×N matrix X, and

∂

∂a′

{
vec
(
C(e−iω)A(0)

)′
H′Hvec (C(e−iω)A(0))

}
=

∂

∂a′

[
vec(A(0))′

(
IN ⊗ C(e−iω)

)′
H′H

(
IN ⊗ C(e−iω)

)
vec(A(0))

]
= 2vec(A(0))′

(
IN ⊗ C(e−iω)

)′
H′H

(
IN ⊗ C(e−iω)

) ∂vec(A(0))

∂a′

= 2vec(A(0))′
(
IN ⊗ C(e−iω)

)′
H′H

(
IN ⊗ C(e−iω)

)
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Finally the first result follows by taking the transpose of the two previous expressions. For the second-step estimator, using

∂vec(Σ)

∂Φ′
= 0 and

∂vec (A(0))

∂σ′
= 0,

imply that the weighting matrix is block diagonal. The optimal weighting matrix for the first set of estimating equations is

given by Proposition 3.2 and
∂vec(C(e−iω))A(0))

∂Φ′ = (A(0)′ ⊗ I) ∂vec(C(e−iω))
∂Φ′ where

∂vec(C(e−iω))
∂Φ′ can be easily derived from

Lütkepohl (2007, p. 111). The optimal weighting matrix for the second set of estimating equations is given by 2D+
N (Σ̂⊗ Σ̂)D+

N

′

(see Lütkepohl, 2007, p. 93).
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Table 1: J-test

Quarters

n 30 60 90 120 30 60 90 120 30 60 90 120

a. VAR(1) : ρ = .90

δ = 0 δ = .05 δ = .1

% 2nd struct. 0 0 0 0 .1139 .1456 .1575 .1628 .3218 .3730 .3903 .3979

shock

.05 .0274 .0318 .0332 .0324 .4039 .4165 .4374 .4546 .9034 .9139 .9218 .9226

.10 .0457 .0494 .0547 .0508 .4705 .4770 .4977 .5137 .9273 .9349 .9403 .9424

b. VAR(1) : ρ = .95

δ = 0 δ = .05 δ = .1

% 2nd struct. 0 0 0 0 .2421 .3176 .3521 .3708 .5513 .6128 .6356 .6472

shock

.05 .0259 .0306 .0358 .0393 .5875 .6336 .6506 .6628 .9779 .9818 .9831 .9837

.10 .0448 .0497 .0553 .0581 .6464 .6826 .6993 .7070 .9847 .9864 .9874 .9878

c. VAR(1) : ρ = .98

δ = 0 δ = .05 δ = .1

% 2nd struct. 0 0 0 0 .5358 .6229 .6586 .6778 .8245 .8357 .8389 .8401

shock

.05 .0242 .0278 .0341 .0369 .7880 .8115 .8208 .8306 .9924 .9942 .9946 .9956

.10 .0442 .0457 .0530 .0563 .8236 .8354 .8489 .8590 .9942 .9960 .9962 .9965

Note: The frequency intervals under investigation are: ωn = (− 2π
n ,

2π
n ) for n = 30, 60, 90, 120 quarters. The percentage of the second

structural shock represents the proportion of the variance explained by the second shock for the first variable in the frequency interval

of interest.

32



Figure 1: Contemporaneous bias and RMSE using a VAR(1) model with ρ = .95 and δ = 0
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Note: The left panel displays the (average) bias of the contemporaneous effect of shock i on variable j (i, j = 1, 2),

i.e. the average impulse response function minus the true impulse response function for h = 0, using subsequently the

frequency intervals ωn =
[
− 2π
n
, 2π
n

]
for n = 30, 60, 90, and 120 quarters. The right panel displays the corresponding

RMSE. The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-

share and first-step estimators, respectively. Results are obtained from 10,000 samples of size T = 200 using equations

(5.20) and (5.21).
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Figure 2: Cumulative Bias and RMSE up to 12 quarters using a VAR(1) model with ρ = .95 and δ = 0
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Note: The left panel displays the cumulative mean absolute bias of the effect of shock i on variable j (i, j = 1, 2) up

to H = 12 quarters using subsequently the frequency intervals ωn =
[
− 2π
n
, 2π
n

]
for n = 30, 60, 90, and 120 quarters.

The right panel displays the corresponding RMSE. The solid line, long dashed line, dash-dotted line, and dotted lines

represent the LR, second-step C-ALS, Max-share and first-step estimators, respectively. Results are obtained from 10,000

samples of size T = 200 using equations (5.20) and (5.21).
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Figure 3: Impulse Responses for the first shock on second variable when n = 60 quarters, ρ = .98 and δ = 0
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Note: The solid line and dashed line represent the true impulse response function for the first shock on the second variable

and the average impulse response function using the BQ, first-step C-ALS, second-step C-ALS or the MS estimator when the

long-run restriction is imposed on the frequency interval ω60 =
[
− 2π

60
, 2π

60

]
. Confidence intervals are based on the 95–percentile

from 10,000 Monte–Carlo experiments.
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Figure 4: Marginal spectral densities of the first variable under the null and the alternative hypothesis
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Note: In Figure 4 a), the solid line is the contribution of the first shock on the marginal spectral density of the first

variable and the dashed line, the second shock on the first variable.
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Figure 5: Contemporaneous bias and RMSE using a VAR(1) model with ρ = .95 and δ = .1
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Note: Monte Carlo simulations assume that there is a misspecified exclusion restriction (δ = .1). A zero long-run

restriction of the second shock on the first variable is imposed whereas both shocks have a permanent effect on the first

variable. The left panel displays the (average) bias of the contemporaneous effect of shock i on variable j (i, j = 1, 2),

i.e. the average impulse response function minus the true impulse response function for h = 0, using subsequently the

frequency intervals ωn =
[
− 2π
n
, 2π
n

]
for n = 30, 60, 90, and 120 quarters. The right panel displays the corresponding

RMSE. The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-

share and first-step estimators, respectively.
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Figure 6: Impulse Responses for the first shock on second variable when n = 60, ρ = .98 and δ = .05
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Note: The solid line and dashed line represent the true impulse response function for the first shock on the second variable

and the average impulse response function using the BQ, first-step C-ALS, second-step C-ALS or the MS estimator when there

is a misspecified exclusion restriction (δ = 0.05). Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo

experiments.
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Figure 7: Impulse responses for the technology shock on hours worked
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Note: Confidence intervals are based on the 95–percentile from 2000 bootstraps. In the right panels, the solid line and the

dash line represent the C-ALS and the discretized ALS estimators respectively. The identifying interval frequency restriction is

imposed over the frequency interval ω120 = [− 2π
120

, 2π
120

].
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