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Abstract

The need to combine data from different frequencies plays an important role for many economic

decision-makers and economists. The process, which consists in using higher frequency data to

construct a higher frequency indicator from its lower frequency counterpart, is called temporal

disaggregation. In this paper, we propose a new temporal disaggregation technique based on

MIDAS regression using time series data sampled at different frequencies. We first propose a

simple disaggregation procedure more flexible than the more traditional approaches, such as Chow-

Lin (1971), and we extend the procedure to a dynamic setting. The proposed procedure is flexible

enough to take into account seasonality or calendar effects. An extensive simulation study examines

the performance of the new approach compared to alternative approaches.
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Introduction

The need to combine data from different frequencies plays an important role for many economic

decision-makers and economists. The process, which consists in using higher frequency data to

construct a higher frequency indicator from its lower frequency counterpart, is called temporal

disaggregation. The importance of temporal disaggregation is well reflected by the efforts of national

statistical institutes to provide such disaggregated indicators.

Temporal disaggregation has been extensively studied in the econometric literature. The Denton

(1971) method, which relies principally on optimizing calculations to make the annual totals of

infra-annual series tally with annual reference totals, was among the first of its kind and continues

to be one of the most widely used benchmarking methods. Using a formalization leading to a

solution of generalized least squares in an univariate framework, Chow and Lin (1971) also produced

a method that has become widely used by national statistical institutes to construct quarterly

national economic accounts. While the Chow and Lin approach is applicable to static univariate

models, Santos Silva and Cardoso (2001) extend the Chow and Lin approach to univariate dynamic

models. Temporal disaggregation procedures using multivariate structural times series models

based on state space representation have also be proposed (see Moauro and Savio 2005, and Proietti

2006).

In the domain of forecasting, modeling techniques that associate data from different frequencies

have also been proposed in order to calculate projections for economic aggregates. Shen (1996)

used VAR and Bayesian VAR modelling to forecast quarterly variables in Taiwan. By developing

a procedure capable of taking into account data issued from monthly series, he demonstrated that

this significantly increases forecast accuracy. Chin and Miller (1996), also using VAR, proposed a

quarterly series forecasting procedure based on the combination of forecasts from a monthly model

and a quarterly model. Schumacher and Breitung (2008) propose a factor model using mixed-

frequency data to construct GDP forecasts. Recently, Clements and Galvão (2008) examine how

MIDAS (Mixed Data Sampling) approach, as introduced by Ghysels, Sinko and Valkanov (2006),

can be adapted for the forecasting of US output growth (see also Clements and Galvão 2009).
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Marcellino and Shumacher (2010) introduce a Factor-Midas approach which exploits estimated

factors rather than single or small groups of economic indicators as regressors to forecast German

GDP. Andreou, Ghysels and Kourtellos (2013) also use Factor-MIDAS to examine the usefulness

of daily financial data to forecast macroeconomic series.1

In this paper, we propose a new temporal disaggregation procedure based on an adaptation of

the MIDAS regression as introduced by Ghysels, Sinko and Valkanov (2006).2 We think that a

disaggregated procedure must be kept relatively simple. By mixing data from different frequencies,

MIDAS regression is a well suited framework to obtain a disaggregation procedure which is simple

but at the same time more flexible than existing procedures based on an univariate equation.

This also allows us to propose a procedure using dynamic models. As a result, a MIDAS-based

disaggregated procedure is more flexible than the current practice adopted by most statistical

offices. In particular the approach has the advantage to attach flexible weights to explanatory

variables. This can take into account seasonality and calendar components without imposing, for

example, that seasonal pattern of the aggregate series is proportional to that of the indicators, an

underlying assumption of standard existing procedures. This point is important because seasonality

and calendar effects explain a relevant part of the fluctuation of aggregate economic time series. A

simulation study shows that the proposed MIDAS procedure is competitive compared to existing

methods in cases of constant weights for the explanatory variables, and outperforms other existing

methods in presence of varying weights.

Our work is organized as follows. Section 1 provides an overview of MIDAS regressions. In

Section 2, we present our temporal disaggregation procedure based on the MIDAS regression. In

particular, we show how we can obtain a disaggregated series in a dynamic setting using MIDAS

regression. In Section 3, results from an extensive simulation study are presented which compares

the new procedure to traditional alternative procedures. Conclusions appear in the last section.
1See also Kuzin, Marcellino and Schumacher (2011) for a comparison of MIDAS vs mixed frequency VAR.
2Recent surveys on MIDAS regressions appear in Armesto, Engemann and Owyang (2010), Andreou, Ghysels and

Kourtellos (2011) and Ghysels and Valkanov (2012)
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1 MIDAS regression

A regression such as MIDAS allows for the relation between variables sampled at different frequen-

cies to be examined. We shall begin by presenting a simple case. Let us examine the variable

yt sampled once between the period t − 1 et t. This variable, for instance, can be sampled at a

quarterly frequency, the index t would thus correspond to quarters. The explanatory variable x(m)
t

is sampled m times over the same period. For example, if x(m)
t is sampled on a monthly basis, the

index m is equal to three. We are seeking here to examine the relationship between yt and x
(m)
t .

The objective is to project the variable yt on the historical samplings of x(m)
t−j/m. The index t− j/m

shows that the variable is sampled more frequently than the variable yt. A MIDAS-type regression

is defined by the relation:

yt = β0 + β1B
(
L1/m; θ

)
x

(m)
t + εt (1)

where t = 1, . . . , T , B
(
L1/m; θ

)
=
∑K

k=0B (k; θ)Lk/m and L1/m is a lag operator such as L1/mx
(m)
t =

x
(m)
t−1/m. The term B

(
L1/m; θ

)
depends on the lag operator L1/m and on a parameter vector of lim-

ited dimension θ. The introduction of the vector θ allows for the handling of cases where the number

of lags of x(m)
t is considerable. For example, yt can depend on 12-quarter lags of the explanatory

variable x
(m)
t . Since the latter is sampled on a monthly basis, the number of lags is therefore

equal to 36. One approach which would allow us to address the problem of over-parameterization

associated with the high number of lags in the case of a regression model with data from different

frequencies is to constrain the lag polynomial of the explanatory variable. The latter therefore

depends on a limited number of parameters contained here in the vector θ. Ghysels, Sinko and

Valkanov (2006) proposed several alternatives for constraining the form of this lag polynomial. In

the specification (1), the parameter β1 captures the aggregate effect of lags of x(m)
t on yt. This

parameter can be identified by normalizing the function B
(
L1/m; θ

)
so that its sum is equal to the

unit.
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Specifying the parameters of the polynomial B
(
L1/m; θ

)
is the major challenge for a MIDAS-

type regression model. Ghysels, Sinko et Valkanov (2006) proposed different functional forms for

this polynomial. One of these forms is associated with the Almon lag polynomial (Almon, 1965).

An exponential variant can be defined as follows:

B(k; θ) =
eθ1k+θ2k

2+...+θpkp∑K
k=1 e

θ1k+θ2k2+...+θpkp
.

This function is very flexible and can take on several configurations, hence its interest. The simple

case where θ1 = θ2 = · · · = θp = 0 corresponds to the case where the lag weight of each lag is the

same. This specification corresponds to the often used practice which consists of using an average

of monthly values to obtain a quarterly series. In general, the weights can decline more or less

rapidly or take on the desired form according to the value of the parameters θi, for i = 1, · · · , p.

The second specification proposed by Ghysels, Sinko and Valkanov (2006) depends on two

parameters θ1, θ2 and has the following form:

B(k; θ1, θ2) =
f
(
k
K , θ1; θ2

)∑K
k=1 f

(
k
K , θ1; θ2

)
and

f (x, a; b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)

Γ(a) =
∫ ∞

0
e−xxa−1dx.

This specification is based on the function gamma which is often used in econometrics for its

flexibility. The function f (x, θ1; θ2) can take on several forms, according to the values of θ1 and

θ2. For example, when θ1 = θ2 = 1, the weights are equal.

The two functions presented above involve two important characteristics: (i) the coefficients

are positive; (ii) their sum is equal to 1. The fact that the coefficients are positive allows for the
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volatility process to be assessed and the second characteristic allows for the identification of the

parameter β1.

As shown by Ghysels, Sinko and Valkanov (2006), the specification (1) can be generalized. Lags

of the endogenous variable can be added as regressors to the explanatory variable x(m)
t , we then

obtain the following dynamic specification:

yt = µ+ α(L)yt−1 + β1B
(
L1/m; θ

)
x

(m)
t + εt

where α(L) =
∑Q

q=0 αqL
q. The model (1) can also be extended to a multivariate context. This

gives:

Yt = µ+A(L)Yt−1 + B
(
L1/m; θ

)
X

(m)
t + εt

where Yt, εt and Xt are now vectors with µ, A(L) and B of compatible dimensions.

2 The MIDAS regression and temporal disaggregation

We now show how a disaggregated series can be obtained from a MIDAS-type regression. The

approach presented here is therefore an alternative to the more traditional Chow and Lin (1971)

and Litterman (1983) approaches. Let us consider the simple case where a yt series is sampled

annually and a x
(m)
t series is sampled on a quarterly basis.3 The relation of the non-sampled

quarterly series y(m)
t−i/m according to the sampled variable xt−i/m is represented as:

y
(m)
t−i/m = β

(m)
0 + β

(m)
1 ωix

(m)
t−i/m + ε

(m)
t−i/m. (2)

for t = 1, . . . , T , i = 0, . . . ,m − 1 and m = 4 in this case. It can be noted here that the ωi

weight can vary according to the quarter but are constrained to be positive and to sum up to

unity. In cases where the annual series is the sum of the non-sampled quarterly series, we then
3This presentation can easily be generalized with p explanatory variables.
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have yt =
∑m−1

i=0 y
(m)
t−i/m. Using the relation (2) we obtain:

yt =
m−1∑
i=0

y
(m)
t−i/m = mβ

(m)
0 + β

(m)
1

(
m−1∑
i=0

ωix
(m)
t−i/m

)
+
m−1∑
i=0

ε
(m)
t−i/m.

This relation corresponds to a MIDAS regression having the following form

yt = β0 + β1B
(
L1/m; θ

)
x

(m)
t + εt. (3)

with β0 = mβ
(m)
0 , β1 = β

(m)
1 ,

∑m−1
i=0 ωix

(m)
t−i/m = B

(
L1/m; θ

)
x

(m)
t and εt =

∑m−1
i=0 ε

(m)
t−i/m.

In this case, the problem of disaggregation consists of constructing a quarterly series y
(m)
t

using the annual series yt and the regression (3). Under the hypothesis that the error term is

a homoscedastic white noise, a disaggregated series corresponding to the non-sampled quarterly

series in (2) can be obtained using the following transformation:

y
(m)
t−i/m =

1
m
β̂0 + β̂1ω̂ix

(m)
t−i/m +

1
m
ε̂t. (4)

where β̂0, β̂1, ω̂i are parameter estimators for the MIDAS regression (3) and ε̂t the residual from

this regression. More specifically, the estimates of quarterly weights ωi in (2) are provided by

B̂
(
L1/m; θ

)
of the MIDAS regression (3) and the estimates of ε(m)

t−i/m in (2) by the equally weighted

residuals 1
m ε̂t for i = 0, . . . ,m− 1.

Let us now compare the approach developed here using the MIDAS regression to the Chow-Lin

approach. Under the latter, the weighting of the quarterly indicator variable in the relation (2)

is assumed to be the same for all quarters, i.e. β
(m)
1 ωi = β

(m)
1 ω for all i imposing an invariant

relation according to the quarter. In the case of the MIDAS regression, this weighting is estimated

using the polynomial B
(
L1/m; θ

)
. The approach proposed here uses a wider range of information

than Chow and Lin’s more standard method. This additional flexibility should improve aggregate

performance and allow, among other things, for the possible presence of seasonality or calendar

effects. In particular, in presence of seasonality, the flexible weights of the MIDAS regression avoid
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to impose that seasonal pattern of the aggregate series is proportional to that of the indicators, an

underlying assumption of the Chow-Lin procedure.

Chow and Lin’s (1971) approach also allows to take the autocorrelation into account by cor-

recting the efficient least squares estimator in order to obtain a generalized least squares estimator.

This correction is achieved using a first order autoregressive process for the error term of the dis-

aggregated series. Unlike the approach proposed here, this temporal dependence does not serve

to improve the calculation of the disaggregated series, but simply to obtain an effective estima-

tor of β0 and β1. Accordingly, the disaggregated series obtained by Chow and Lin (1971) for the

representation (3) is given in matrix form by:

Ŷ (m) = X(m)β̂ + V C
(
C′V C

)−1 Cε̂(m).

where Ŷ (m) is a Tm × 1 vector containing the disaggregated series y(m)
t−i/m for t = 1, . . . , T and

i = 0, . . . ,m − 1, X(m) is a matrix containing a constant and the disaggregated samples x(m)
t−i/m,

ε̂(m) is the vector of the residuals ε̂
(m)
t−i/m, V is the variance-covariance matrix that takes into

account the presence of autocorrelation and heteroscedasticity in the disaggregated error terms

and β̂ = (β̂0, β̂1)′. The matrix C with a dimension of T × Tm has the following written form in the

case of annual aggregated series and quarterly disaggregated series:

C =



1 1 1 1 0 0 0 0 . . . 0 0 0 0

0 0 0 0 1 1 1 1 . . . 0 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0 0 0 0 0 . . . 1 1 1 1


. (5)

The observed aggregated series Y satisfies the following regression model:

Y = Xβ + ε
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with X = CX(m), Y = CŶ (m) and ε = Cε(m). Thus, the estimators of β = (β0, β1)′ are the

generalized least squares estimators defined as follows:

β̂ =
[
X ′(CV C′)−1X

]−1
X ′(CV C′)−1Y

and ε̂ = Cε̂(m) = Y −Xβ̂. Based on the Chow and Lin approach, other procedures with alternative

dynamics have been proposed. For example, Fernandez (1981) assumes a unit root for the error

term and, Litterman (1983) suppose an AR(2) process with a unit root for the error term.

The MIDAS approach can also take into account the presence of autocorrelation. This can

be done by performing a two-step estimation procedure. Suppose a first order autocorrelation

coefficient denoted by φ. The first step consists of estimating the parameters of interest by using

the identity matrix as the weighting matrix. Using the first-step estimator of the weight parameters

ωi, an estimator of φ is obtained by minimizing the generalized least criteria for the given first-step

estimator ω̂1
i . In fact, this corresponds to the Chow-Lin approach using known fixed weights ω̂1

i .

This estimator of φ allows to construct the weighting matrix uses in the second-step which elements

(i, j) of this weighting matrix denoted by Ω(φ) are given by φ|i−j|.

As aforementioned, the MIDAS regression can be extended to a dynamic setting by introducing

an autoregressive form. For instance, the lagged variables of the aggregated series can be included,

which can improve the calculation of the disaggregated series. Let us examine MIDAS regression

including a lag of the dependent variable. We obtain the following regression equation:

yt = β0 + ρyt−1 + β1B
(
L1/m; θ

)
x

(m)
t + εt.

This specification can be rewritten in the following form:

yt =
β0

(1− ρ)
+
β1B

(
L1/m; θ

)
(1− ρL)

x
(m)
t +

εt
(1− ρL)

.

We thereby obtain a polynomial having the form B
(
L1/m; θ

)∑∞
j=0 ρ

jLj . This polynomial is com-

patible with the seasonal effects of x(m)
t on y

(m)
t . Indeed, for our example, this polynomial has
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a moving average representation with periodical effects corresponding to quarters. This MIDAS

regression is compatible with a relation between the disaggregated variables given by:

y
(m)
t−i/m = β

(m)
0 + ρy

(m)
t−(m−i)/m + β

(m)
1 ωix

(m)
t−i/m + ε

(m)
t−i/m.

We can easily think that it would be more pertinent to examine the relation between the

disaggregated series based on a first-order autoregressive representation of the non-sampled disag-

gregated series as in Santos-Silva and Cardoso (2001). We are rather interested by the following

equation:

y
(m)
t−i/m = β

(m)
0 + ρ(m)y

(m)
t−(i−1)/m + β1ωix

(m)
t−i/m + ε

(m)
t−i/m. (6)

where the variable y
(m)
t−i/m depends on its non-sampled value from the preceding quarter. This

specification can be rewritten in the following form:

y
(m)
t−i/m =

β
(m)
0

(1− ρ(m))
+

β1ωi

(1− ρ(m)L1/m)
x

(m)
t−i/m +

ε
(m)
t−i/m

(1− ρ(m)L1/m)
.

which gives

y
(m)
t−i/m =

β
(m)
0

(1− ρ(m))
+ β1

∞∑
j=0

(
ρ(m)

)j
ωix

(m)
t−i/m−j/m +

∞∑
j=0

(
ρ(m)

)j
ε
(m)
t−i/m−j/m. (7)

We thereby obtain a polynomial depending on L1/m having the form B
(
L1/m; θ

)∑∞
j=0

(
ρ(m)

)j
Lj/m.

This specification represents a challenge in terms of estimation since the lagged variable is not

sampled. In what follows, we adopt the strategy proposed by Santos-Silva and Cardoso (2001)

but adapted to a MIDAS regression. This strategy has the great advantage that does not need to

condition on the initial observations and allows to compute directly the disaggregated series.
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In that respect, the equation (7) can be expressed as

y
(m)
t−i/m =

β
(m)
0

(1− ρ(m))
+ β1

mt−i−1∑
j=0

(
ρ(m)

)j
ωix

(m)
t−i/m−j/m +

(
ρ(m)

)mt−i
µ+ νt−i/m. (8)

where µ = β1
∑∞

j=0

(
ρ(m)

)j
ωix

(m)
−j/m is the truncation remainder and νt−i/m = ρ(m)νt−i/m−1/m +

εt−i/m. By aggregating this relation, we obtain:

yt =
m−1∑
i=0

y
(m)
t−i/m = m

β
(m)
0

(1− ρ(m))
+ β1

m−1∑
i=0

(mt−(i+1))∑
j=0

(
ρ(m)

)j
ωix

(m)
t−i/m−j/m +

m−1∑
i=0

(
ρ(m)

)t−i/m
µ+ ν̃t.

where ν̃t =
∑m−1

i=0 νt−i/m.

The equation (8) can be rewritten as

y
(m)
t−i/m =

β
(m)
0

(1− ρ(m))
+ β1Xt−i/m(ρ, wi) +

(
ρ(m)

)t−i/m
µ+ νt−i/m.

where Xt−i/m(ρ(m), wi) =
∑mt−(i+1)

j=0

(
ρ(m)

)j
ωix

(m)
t−i/m−j/m. By aggregating the relation, we get

yt = m
β

(m)
0

(1− ρ(m))
+ β1

m−1∑
i=0

Xt−i/m(ρ(m), ωi) +
m−1∑
i=0

(
ρ(m)

)t−i/m
µ+ ν̃t.

Estimates of β0, β1, µ and ωi for i = 1, . . . ,m − 1 can be obtained by a weighted nonlinear

regression with the weighting matrix Ω∗(ρ(m)) = CΩ(ρ(m))C′ where the elements (i, j) of Ω(ρ(m))

are given by
(
ρ(m)

)|i−j|
and the matrix C is defined in (5). The objective function to minimized is

ν̃ ′(δ)Ω∗(ρ(m))−1ν̃(δ)

with ν̃(δ) = (ν̃1(δ), ν̃2(δ), . . . , ν̃T (δ))′ where T is the number of observations for the aggregated

series and δ = (ρ, β0, β1, ω0, . . . , ωm−1, µ)′. Since the weighting matrix also depends on a parameter

to estimate, a two-step procedure can be implemented with the identity matrix as the weighting

matrix at the first step. This two-step weighted nonlinear least squares allows to jointly estimate
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the parameters of interest ρ, β0, β1, µ and ωi for i = 1, . . . ,m − 1. According to equation (8),

the parameter µ can be interpreted as the conditional expectation of y0 given the past values of

Xt−i/m(ρ(m), ωi) providing an estimator of the initial condition for yt. The method then allows the

construction of the estimated disaggregated series using (8), namely

ŷ
(m)
t−i/m =

β̂
(m)
0

(1− ρ̂(m))
+ β̂1

mt−i−1∑
j=0

(
ρ̂(m)

)j
ω̂ix

(m)
t−i/m−j/m +

(
ρ̂(m)

)mt−i
µ̂+ ν̂t−i/m

where the vector of the residuals ν̂t−i/m is given as Ω
(
ρ̂(m)

)
C ′
(
CΩ

(
ρ̂(m)

)
C ′
)−1

ν̃ ′(δ̂).

3 Simulation experiments

In this section we examine the small sample properties of the temporal disaggregation technique

based on MIDAS regression and we compare the performance of the new proposed methods respec-

tive to more traditional ones. First, we evaluate the ability of the MIDAS regression to estimate

correctly parameter values in finite sample. The first DGP investigated generates a disaggregated

series according to equation (4), namely:

y
(m)
t−i/m =

1
m
β0 + β1ωix

(m)
t−i/m +

1
m
εt. (9)

with m = 4. The aggregation of the series is such that:

yt =
m−1∑
i=0

y
(m)
t−i/m = β0 + β1

m−1∑
i=0

ωix
(m)
t−i/m + εt.

We also allow the error term to be characterized by an AR(1) process, namely:

εt = φεt−1 + ut

in order the evaluate the performance of dynamic regression with MIDAS.
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In the first set of experiments (denoted Case 1), we examine the small sample performance with

equal weights for each quarter. In this case, there is no advantage to use the method proposed here,

in comparison with the Chow-Lin method. These experiments allow to investigate to which extend

MIDAS regression can create spurious dynamic in the dissaggregated series. We fix the following

values to the parameters: β0 = 8, β1 = 8 and ωi = .25 for i = 1, 2, 3, 4. The variables xt−i/m are

drawn from a normal centered to a value of two with a variance also equal to two.4 The standard

deviation of the AR(1) process εt is fixed to one such as the error term ut is drawn from a normal

distribution centered to zero with (1 − φ2) as variance. We simulate a disaggregated series of 200

observations for an aggregated series of 50 observations. We run 1000 simulations and calculate

the mean bias and the root mean square errors of the estimator for parameters β0, β1, ω1, ω2, ω3

and ω4. The performance of the MIDAS approach is examined for different values of φ fixed to 0,

.5 and .9. Table 1a contains results for this first set of simulation experiments.

In the second set of experiments (Case 2), we fix the weights to different values. We consider

that ω1 = .4, ω2 = ω3 = .25 and ω4 = .1. Finally, we use the same values for the autocorrelation

parameter as in the first set of experiments. Results appear in Table 1b.

For both Case 1 and Case 2, estimates obtained with the MIDAS regression are extremely precise

in terms of the bias and the root mean squared errors. The bias and the root mean square errors

increase slightly with the autocorrelation coefficient for all parameters. Among the parameters, the

constant parameter β0 is the less precisely estimated especially for φ = .9. Overall, the performance

of the MIDAS regression is greatly satisfactory.

We now examine the performance of the MIDAS regression for the autoregressive form corre-

sponding to equation (6), namely

y
(m)
t−i/m = ρ(m)y

(m)
t−(i−1)/m + β1ωix

(m)
t−i/m + ε

(m)
t−i/m. (10)

4Results are robust to other values of these parameters.

12



with m = 4. The specification has no constant and the error term ε
(m)
t−i/m follows a N(0, 1). The

aggregation of the series is also:

yt =
m−1∑
i=0

y
(m)
t−i/m.

The case with equal weights (Case 1) and different weights (Case 2) are also investigated with the

same parameter values as in the preceding experiments with ρ(m) = .25, .5, .75. In contrast to the

experiments above, the autoregressive parameters is now estimated. Results appear respectively in

Tables 2a and 2b. Again here, parameters are precisely estimated in both cases and the performance

does not vary much across autoregressive parameters with the exception of the parameter β1 which

is more precisely estimated with a higher value of ρ(m).

We now study the ability of the MIDAS disaggregation approach to retrieve the true disaggre-

gated series compared to more traditional approaches. To do so, we first simulate disaggregated

series corresponding to equations (9) and (10) and we aggregate these series afterward. To evaluate

the performance of the various disaggregation methods, we compute the correlation between the

true disaggregated series and the ones estimated by the various disaggregation methods investi-

gated. The correlation is calculated for the series in level and in difference and the corresponding

90 % confidence interval is reported. The comparison is done for the non-dynamic MIDAS, dy-

namic MIDAS methods (denoted MIDAS-AR1 in the tables), Chow-Lin (1971), Litterman (1983),

Fernandez (1981) methods and the dynamic method proposed by Santos Silva and Cardoso (2001)

(denoted SSC in the tables). For both equations (9) and (10), we consider Case 1 with equal weights

and Case 2 with different weights fixed at the same values as previous experiments. For the case

corresponding to equation (9), the parameters are fixed to the same values as previously, namely:

β0 = 8, β1 = 8, except that φ = .5, .75, .9. The variables xt−i/m are also drawn from a normal

centered to a value of two with a variance also equal to two. The standard deviation of the AR(1)

process εt is fixed to one such that the error term ut is drawn from a normal distribution centered

to zero with (1− φ2) as variance. For the case corresponding to equation (10), the parameters are

also fixed to the same values as previously, namely: β1 = 8 and ρ(m) = .5, .75, .9. The variables
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xt−i/m are also drawn from a normal centered to a value of two with a variance equal to 2 and the

error term ε
(m)
t−i/m is drawn from a N(0, 1).

The number of observations for the simulated disaggregated series is fixed to 100 which yields

corresponding aggregated series of 25 observations. The number of simulations is equal to 1000.

Results for the equation (9) appear in Tables 3a and Table 3b for equal weights and different weights

respectively while results for the equation (10) appear in Tables 4a and 4b for equal weights and

different weights respectively.

Table 3a shows that Chow-Lin, Litterman, Fernandez and MIDAS methods perform equally

well to identify the disaggregated series. Correlations between predicted disaggregated series and

the true ones are all included between .970 and .995. The Chow-Lin method and the MIDAS

regression slightly dominate other methods but not significantly. This result is encouraging for the

MIDAS based approach because this method does not impose fixed weights in contrast to Chow-

Lin method. The two dynamic methods SSC and MIDAS-AR1 underperform for this specification

with a slight advantage to MIDAS-AR1. This is not surprising because these two methods are

misspecified with respect to the DGP corresponding to equation (9). For Case 2 (Table 3b), as

expected, the MIDAS regression outperforms other methods with correlation coefficients around

.85 to .88 for series in level and .82 to .83 for series in difference. For Chow-Lin, Litterman and

Fernandez, correlation coefficients are between .80 and .82 for series in level and .75 to .76 for series

in difference. Interestingly, the MIDAS-AR1 outperforms other methods excepts the MIDAS one.

The possibility of flexible weights seems to offset the misspecification problem. In conclusion, the

MIDAS method seems to well capture the presence of unequal weights in the disaggregated series.

Finally, the results are not very sensitive to the value of φ.

We now turn to the dynamic specification (10). Results for equal weights are reported in Table

4a. As expected, both dynamic methods, SSC and MIDAS, dominate other methods. This is true

especially for the correlation between the true and the predicted series in difference. For this DGP,

both dynamic methods are well specified in contrast to the other ones. Also as expected, SSC

slightly dominates MIDAS-AR1. Since SSC constraints the weights to be fixed, a true restricted

version should perform better. For the case with unequal weights, Table 4b shows that MIDAS-
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AR1 clearly outperforms other methods especially for the correlation in difference. For instance,

with ρ = .9, correlation in difference is equal to .9505 when the disaggregated series is predicted by

MIDAS-AR1 whereas this correlation is equal to .8012 with the alternative dynamic method SCC.

The correlation is around .60 and .66 for other methods. In this case, there is an improvement

in the correlation coefficients with higher value of the persistence parameter ρ(m). In conclusion,

these simulation experiments show that there exists almost no cost to using MIDAS methods in

cases with equal weights and a clear advantage when these weights can differ.

Conclusion

We propose a new temporal disaggregation procedure based on an adaptation of the MIDAS re-

gression as introduced by Ghysels, Sinko and Valkanov (2006). The MIDAS framework allows us to

propose a simple procedure using dynamic models. The novel MIDAS-based disaggregated proce-

dure is more flexible than the current practice adopted by most statistical offices. In particular, the

procedure does not assume that the seasonal pattern of the aggregate series is proportional to that

in the indicator. A simulation study shows that the proposed MIDAS disaggregation procedure is

competitive or outperforms existing alternative procedures.

In this paper, we have only considered a MIDAS regression with one regressor although the

approach can accommodate higher dimensional system and other frequencies of observations. As

future research, an extended Monte-Carlo study should be performed to evaluate if the simulation

results obtained here are robust to higher dimension system and other frequencies of disaggregated

series. It would be also interesting to extend the disaggregated methods based on MIDAS proposed

in this paper to Factor-MIDAS models to take into account all potential disaggregated information

to retrieve a more accurate disaggregated series. Finally, applications on real series are under

process by both authors.
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[8] Clements, M.P. and A.B. Galvõ, (2009), ”Forecasting US Output Growth Using Leading Indi-

cators: An Appraisal Using MIDAS Models”, Journal of Applied Econometrics, 24, 1187-1206.

[9] Denton F.T., 1971, Adjustment of monthly or quarterly series to annual totals: an approach

based on quadratic minimization, Journal of the American Statistical Association, Vol. 66,

92-102.

[10] Fernandez, R.B., 1981, A methodological note on the estimation of time series, Review of

Economics and Statistics, 63, 471-476.

16



[11] Ghysels, E., A. Sinko and R. Valkanov (2006), ”MIDAS Regressions: Further Results and New

Directions”, Econometric Review, Vol. 26, 53-90.

[12] Ghysels, E. and R. Valkanov (2012), ”Forecasting Volatility with MIDAS”, in L. Bauwens,

C. Hafner and S. Laurent, ed: Handbook of Volatility Models and Their Applications, pp.

383–401. Wiley.

[13] Kuzin, V., M. Marcellino and C. Schumacher (2011), MIDAS vs. mixed-frequency VAR: Now-

casting GDP in the Euro Area, International Journal of Forecasting 27, 529-542.

[14] Litterman, R.B., 1983, A random walk, Markov model for the distribution of time series,

Journal of Business & Economic Statistics, 63, 471-476.

[15] Marcellino, M. and C. Schumacher (2010), Factor MIDAS for Nowcasting and Forecasting with

Ragged-Edge Data: A Model Comparison for German GDP, Oxford Bulletin of Economics and

Statistics 72, 518-550.

[16] Moauro, F. and G. Savio, 2005, ”Temporal Disaggregation Using Multivariate Structural Time

Series”, Econometrics Journal, vol. 8, 214–234.

[17] Proietti T., 2006, Temporal disaggregation by state space methods: dynamic regression meth-

ods revisited, Econometrics Journal, vol. 9, 357–372.

[18] Santos Silva J.M.C. and F.N. Cardoso, 2001, The Chow-Lin method using dynamic models,

Economic Modelling, vol. 18, 269-280.

[19] Shen C. H., 1996, Forecasting macroeconomic variables using data of different periodicities,

International journal of forecasting, No 12, 269-282.

[20] Schumacher, C. and J. Breitung (2008), Real-time forecasting of German GDP based on a

large factor model with monthly and quarterly data, International Journal of Forecasting 24,

368-398.

17



Table 1a: Bias and root mean square errors (rmse)

Case 1

φ = 0 φ = .5 φ = .9

bias rmse bias rmse bias rmse

ω1 .0019 .0005 .0026 .0010 .0025 .0016

ω2 -.0014 .0005 -.0016 .0010 - .0006 .0017

ω3 -.00002 .0005 -.0004 .0010 -.0018 .0016

ω4 .0005 .0005 -.0006 .0010 -.0002 .0016

β0 .0076 .7788 .0177 1.6314 .0051 3.7331

β1 -.0025 .1722 -.0078 .3465 .0014 .5641

Table 1b: Bias and root mean square errors (rmse)

Case 2

φ = 0 φ = .5 φ = .9

bias rmse bias rmse bias rmse

ω1 .0023 .0006 .0036 .0012 .0037 .0019

ω2 -.0014 .0005 -.0016 .0010 - .0006 .0017

ω3 -.00002 .0005 -.0005 .0010 -.0018 .0016

ω4 -.0009 .0006 -.0015 .0012 -.0012 .0018

β0 .0076 .7788 .0172 1.6305 .0013 3.7148

β1 -.0025 .1722 -.0075 .3463 .0034 .5600
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Table 2a: Bias and root mean square errors (rmse) for AR(1)

Case 1

ρ(m) = .25 ρ(m) = .5 ρ(m) = .75

bias rmse bias rmse bias rmse

ω1 .00054 .0023 .00087 .0020 .0011 .0020

ω2 .00066 .0007 .00046 .0007 -.000016 .0007

ω3 -.00010 .0013 -.0012 .0017 -.00074 .0020

ω4 -.00140 .0019 -.00029 .0021 .00077 .0020

ρ -.0128 .0103 -.0058 .0037 -.0023 .00069

β1 .1532 1.2872 .1061 1.0675 .0857 .9054

Table 2b: Bias and root mean square errors (rmse) for AR(1)

Case 2

ρ(m) = .25 ρ(m) = .5 ρ(m) = .75

bias rmse bias rmse bias rmse

ω1 -.00018 .0013 .00058 .0012 .00025 .0014

ω2 .0029 .0012 .0016 .0012 .0011 .0013

ω3 .00046 .0014 -.0018 .0015 -.00096 .0018

ω4 -.0032 .0017 -.00042 .0020 -.00043 .0019

ρ -.0329 .0238 -.0150 .0079 -.0024 .0012

β1 .3457 2.6314 .2289 1.8631 .0705 1.1065
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Table 3a:

Correlation between the true and the estimated disaggregated series

ω1 = .25, ω2 = .25, ω3 = .25, ω4 = .25.

Case 1

φ = .5 φ = .75 φ = .9

Level Difference Level Difference Level Difference

Chow-Lin .9717 .9721 .9854 .9866 .9943 .9949

(.9590,.9809) (.9604,.9811) (.9783,.9905) (.9811,.9910) (.9914,.9963) (.9928,.9966)

Litterman .9698 .9715 .9843 .9864 .9939 .9948

(.9550,.9800) (.9595,.9806) (.9751,.9900) (.9805,.9908) (.9904,.9962) (.9926,.9965)

Fernandez .9713 .9720 .9851 .9866 .9941 .9949

(.9587,.9806) (.9604,.9810) (.9778,.9904) (.9811,.9909) (.9911,.9963) (.9928,.9965)

SSC .8367 .8598 .8109 .8344 .8127 .8355

(.6188,.9608) (.6742,.9606) (.5884,.9584) (.5824,.9597) (.5907,.9624) (.5695,.9668)

MIDAS .9718 .9721 .9855 .9867 .9943 .9949

(.9590,.9809) (.9604,.9811) (.9783,.9905) (.9811,.9910) (.9914,.9963) (.9927,.9965)

MIDAS-AR1 .8804 .8648 .8857 .8671 .8946 .8747

(.7661,.9503) (.7114,.9545) (.7649,.9595) (.7118,.9638) (.7784,.9692) (.7206,.9733)
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Table 3b:

Correlation between the true and the estimated disaggregated series

ω1 = .4, ω2 = .25, ω3 = .25, ω4 = .1.

Case 2

φ = .5 φ = .75 φ = .9

Level Difference Level Difference Level Difference

Chow-Lin .8057 .7536 .8161 .7600 .8214 .7633

(.7385.8614) (.6595,.8310) (.7532,.8680) (.6653,.8351) (.7625,.8715) (.6701,.8366)

Litterman .8014 .7511 .8125 .7578 .8184 .7615

(.7322,.8588) (.6554,.8296) (.7473,.8660) (.6634,.8341) (.7560,.8692) (.6668,.8361)

Fernandez .8049 .7532 .8153 .7596 .8207 .7630

(.7381,.8610) (.6576,.8310) (.7526,.8678) (.6655,.8345) (.7609,.8711) (.6695,.8365)

SSC .6798 .6548 .6758 .6472 .6761 .6468

(.5793,.7588) (.5597,.7375) (.5758,.7551) (.5488,.7343) (.5797,.7553) (.5385,.7320)

MIDAS .8597 .8274 .8727 .8386 .8771 .8398

(.7513,.9760) (.6728,.9772) (.7643,.9856) (.6829..9876) (.7696,.9942) (.6820,.9949)

MIDAS-AR1 .8281 .8293 .8306 .8266 .8352 .8304

(.6871,.9411) (.6474,.9449) (.6872,.9481) (.6305,.9523) (.6918,.9530) (.6440,.9546)
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Table 4a:

Correlation between the true and the estimated disaggregated series

ω1 = .25, ω2 = .25, ω3 = .25, ω4 = .25.

Case 1

ρ(m) = .5 ρ(m) = .75 ρ(m) = .9

Level Difference Level Difference Level Difference

Chow-Lin .8968 .8201 .9074 .8185 .9758 .7915

(.8538.9302) (.7721,.8498) (.8411,.9529) (.7765,.8585) (.9478,.9907) (.7365,.8510)

Litterman .9086 .8259 .9137 .8150 .9770 .7717

(.8517,.9597) (.7639,.8669) (.8424,.9588) (.7733,.8644) (.9466,.9915) (.5240,.8566)

Fernandez .8933 .8200 .9052 .8194 .9752 .7946

(.8566,.9300) (.7672,.8501) (.8404,.9524) (.7752,.8584) (.9447,.9907) (.7378,.8535)

SSC .9866 .9548 .9861 .9506 .9971 .9557

(.9794,.9911) (.9479,.9671) (.9774,.9922) (.9328,.9653) (.9949,.9985) (.9393,.9685)

MIDAS .6524 .5211 .6435 .4708 .8356 .3726

(.5311,.7932) (.3103,.6653) (.4465,.8728) (.2367..8015) (.6788,.9768) (.1217,.7912)

MIDAS-AR1 .9790 .9185 .9784 .9190 .9956 .9276

(.9626,.9875) (.8525,.9539) (.9608,.9897) (.8515,.9564) (.9915,.9980) (.8700,.9615)
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Table 4b:

Correlation between the true and the estimated disaggregated series

ω1 = .4, ω2 = .25, ω3 = .25, ω4 = .1.

Case 2

ρ(m) = .5 ρ(m) = .75 ρ(m) = .9

Level Difference Level Difference Level Difference

Chow-Lin .8363 .6694 .8455 .6726 .9502 .6618

(.7262.9192) (.5715,.7557) (.7495,.9184) (.5699,.7629) (.8900,.9823) (.5512,.7579)

Litterman .8408 .6581 .8515 .6676 .9553 .6540

(.7169,.9246) (.5696,.7565) (.7443,.9287) (.5564,.7619) (.8957,.9840) (.5350,.7597)

Fernandez .8334 .6700 .8423 .6722 .9482 .6608

(.7089,.9202) (.5686,.7603) (.7474,.9164) (.5680,.7617) (.8873,.9820) (.5516,.7575)

SSC .9388 .7812 .9420 .7825 .9861 .8012

(.9045,.9630) (.7045,.8364) (.9128,.9642) (.7098,.8424) (.9765,.9927) (.7343,.8554)

MIDAS .6741 .7097 .6814 .7108 .7979 .6128

(.5618,.7584) (.5860,.7894) (.5824,.7705) (.5872..8135) (.6740,.9008) (.4562,.7445)

MIDAS-AR1 .9819 .9481 .9818 .9470 .9956 .9506

(.9665,.9913) (.9039,.9729) (.9666,.9911) (.9035,.9728) (.9916,.9981) (.9080,.9743)
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