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This supplementary material presents some elements regarding:

1. Further theoretical derivations

We present the proof of Proposition 4.1, the derivation of the spectral decomposition of the opera-

tor K, and the closed form determination of the C-ALS estimator in the case of bivariate VAR models.

2. Misspecification and C-ALS

We provide theoretical results about the asymptotic distribution and the overidentification test in

the presence of local misspecification. Furthermore, some Monte Carlo simulations are discussed.

3. The derivation of a discretized ALS estimator

As explained in Section 2 of the main text, a first strategy to impose identifying restrictions in the

frequency domain is to consider a discretization of the frequency band of interest. After distinguishing

the real part and the imaginary part of the identifying restrictions, the estimation of the structural

parameters a(0) can be settled down as an asymptotic least squares problem.

4. Identification of only one structural shock of interest

We discuss the case in which one aims at identifying only one structural shock.

5. Further Monte Carlo simulations

Starting from the general definition of the data generating process (Section 5 of the main text), we

provide some additional results using a VAR(2) specification.

6. The spectral density matrix and structural VAR models

We briefly discuss the concept of spectral density matrix and then apply it to the case of structural

VAR models.

7. Comparison between C-ALS and the CEV-based approach

To circumvent the uncertainty surrounding the estimation of long-run multipliers, Christiano et al.
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(2006a, 2006b) have proposed implementing a nonparametric correction of the spectral density matrix

at ω = 0. We compare their smoothing-based approach (using a local average of the periodogram)

with our procedure.

8. Applications of the C-ALS approach

This section provides some applications of the asymptotic least squares theory using a frequency band

or equivalently a continuum of estimating equations.

9. The unreliability issue of a long-run identification scheme

This section discusses the theoretical foundations of the so-called unreliability problem in the case

of a long-run identification scheme.
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1 Further theoretical derivations

In this section, we present the proof of Proposition 3.1, the derivation of the spectral decomposition of the

operator K, and the closed form determination of the C-ALS estimator in the case of bivariate VAR models.

1.1 Proof of Proposition 3.1

The estimator is given by

α̂T = arg min
α∈A

∥∥∥ST g(a, b̂T , ω)
∥∥∥

where ST is a sequence of random bounded linear operators.

First, under Assumption A.1 to Assumption A.5, α̂T
p→ α0 by Theorem 2.1 of Newey and McFadden

(1994). Now, differentiating the objective function with respect to α and β by a mean value expansion leads

to: 〈
ST

∂g
∂α′ (α̂T , β̂, ωT ), ST g(α̂T , β̂T , ω)

〉
= 0

⇐⇒
〈
ST

∂g
∂α′ (α̂T , β̂T , ω), ST

{
g(α0, β0, ω) + ∂g

∂α′ (āT , β̂T , ω)(α̂T − α0) + ∂g
∂β′ (α̂T , β̄T , ω)(β̂T − β0)

}〉
= 0

where āT is on the line segment joining α̂T and α0, β̄T is on the line segment joining β̂T and β0 and under

Assumption A.1, g(α0, β0, ω) = 0.

Using the linearity of the operator and g(α0, β0, ω) = 0, we obtain:

α̂T − α0 = −
〈
ST

∂g

∂α′
(α̂T , β̂T , ω), ST

∂g

∂α′
(āT , β̂T , ω)

〉−1〈
ST

∂g

∂α′
(α̂T , β̂T , ω), ST

∂g

∂β′
(α̂T , β̄T , ω)(β̂T − β0)

〉
.

Since α̂T
p→ α0, β̂T

p→ β0 and under the assumption that ‖ST − S‖ → 0 in probability

√
T (α̂T − α0) = −

〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂β′
(α0, β0, ω)

√
T (β̂T − β0)

〉
+op(1)

Using Lemma 4.1 and ‖ST − S‖ → 0 in probability, one has

ST
∂g

∂β′
(α0, β̂T , ω)

√
T (β̂T − β0)⇒ Y

and Y = N (0, SKS
′
).
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The asymptotic variance-covariance matrix of
√
T (α̂T − α0) depends on the following expression:

E

〈
S
∂g

∂α′
(α0, β0), S

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

〉〈
S
∂g

∂α′
(α0, β0), S

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

〉′
=

E

[(∫ ω

ω

∂g′

∂α
(α0, β0)SS

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)dω

)(∫ ω

ω

√
T (β̂T − β0)′

∂g′

∂β
(α0, β0)SS

∂g

∂α′
(α0, β0)dω

)]
=

E

[∫ ω

ω

∫ ω

ω

∂g′

∂α
(α0, β0)SS

∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

√
T (β̂T − β0)′

∂g′

∂β
(α0, β0)SS

∂g

∂α′
(α0, β0)dω

]
.

Using

K∗ = E

[
∂g

∂β′
(α0, β0)

√
T (β̂T − β0)

√
T (β̂T − β0)′

∂g′

∂β
(α0, β0)

]
=

[
∂g

∂β′
(α0, β0)Ω

∂g′

∂β
(α0, β0)

]
and K = K∗ (the operator K is self-adjoint) imply

=

∫ ω

ω

∂g′

∂α
(α0, β0)S

(∫ ω

ω

SKS(
∂g

∂α′
(α0, β0)dω

)
dω =

〈
S
∂g

∂α′
(α0, β0), (SKS

′
)S

∂g

∂α′
(α0, β0)

〉
.

under the assumption that S is Hermitian. Then, for

√
T (α̂T − α0) = −

〈
S
∂g

∂α′
(α0, β0), S

∂g

∂α′
(α0, β0)

〉−1〈
S
∂g

∂α′
(α0, β0), Y

〉
+ op(1).

using the previous result,〈
S
∂g

∂α′
(α0, β0), Y

〉
∼ N

(
0,

〈
S
∂g

∂α′
(α0, β0), (SKS

′
)S

∂g

∂α′
(α0, β0)

〉)
.

The result for the asymptotic distribution for a given sequence of random linear operators ST follows.

1.2 Derivation of the spectral decomposition of the operator K

Proposition 1.1. Let α̂1
T denote a first-step consistent estimator of α0. A consistent estimator of the

Moore-Penrose generalized inverse is defined by:

(
K−1
T f

)
(ω1) =

q∑
i=1

1

λi,T
γi,T (ω1) 〈f, γi,T 〉

where γi,T (ω1) is given by:

∂g

∂β′
(α̂1
T , β̂T , ω1)Ω̂

1/2
T Di,T ,

the eigenvalues λi,T are those of the q × q matrix:∫
I

Ω̂
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω̂

1/2
T dω2,

and the matrix DT = [D1,T · · ·Dq,T ] and the diagonal matrix ΛT of eigenvalues λi,T satisfy∫
I

Ω̂
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω̂

1/2
T dω2DT = DTΛT .

where Ω̂T is a consistent estimate of Ω.
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We first show that ‖KT −K‖ → 0 in probability. Consider for a given element (j, l) of KT (ω1, ω2) and

the corresponding element of K(ω1, ω2), the following expression:∫
I

∫
I
k̂jl,T (ω1, ω2)− kjl(ω1, ω2)dω1dω2.

where k̂jl,T (ω1, ω2) =
∂gj
∂β′ (α̂

1
T , β̂T , ω1)Ω̂∂gl

∂β (α̂1
T , β̂T , ω2)′ for α̂1

T ia consistent first step estimator of α0 and

kjl(ω1, ω2) =
∂gj
∂β′ (α0, β0, ω1)Ω∂gl

∂β (α0, β0, ω2)′. Under α̂1
T

p→ α0, β̂T
p→ β0 and Ω̂T

p→ Ω, the expression above

converges to zero. This holds for ∀j, l = 1, . . . , J which implies that ‖KT − K‖ → 0 in probability. Let(
K̂T f

)
(ω1) denote

(
K̂T f

)
(ω1) =

(
J∑
l=1

∫
I
k̂jl,T (ω1, ω2)fl(ω2)dω2

)
j=1,...,J

.

Then
(
K̂T f

)
(ω1) can be written as:

(
K̂T f

)
(ω1) =

∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T

∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)f(ω2)dω2.

for f(ω) = (f1(ω), f2(ω), . . . , fJ(ω))
′

where fj(ω) for j = 1, . . . , J are scalar functions in L2(I). In this

case, R(KT ) is the space spanned by ∂g
∂β′ (α̂

1
T , β̂T , ω2)Ω

1/2
T with rank at most equals to q. The eigenfunctions

γi,T is necessarily of the form ∂g
∂β′ (α̂

1
T , β̂T , ω2)Ω

1/2
T Di,T where the matrix Di,T is of dimension q × 1 and

DT = [D1,T D2,T . . . Dq,T ] where DT is of dimension q× q. By virtue of the Mercer’s theorem, the vector

γi,T (ω) of eigenfunctions satisfies

(KT γi,T ) (ω1) = λi,T γi,T (ω1)

where λi,T is the corresponding eigenvalue of the eigenfunctions vector γi,T .

Using γi,T (ω) = ∂g
∂β′ (α̂

1
T , β̂T , ω)Ω

1/2
T Di,T yields:

(KT γi,T ) (ω1) =
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T

∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T Di,T dω2

Let DT = [D1,T D2,T . . . Dq,T ] and ΛT denote the matrices containing the eigenvectors and the eigenvalues

of the following q × q matrix:∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T dω2.

More specifically, the eigenvectorsDi,T , i = 1, . . . , q and the corresponding eigenvalues λi,T solve the following

system of q equations:∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T dω2Di,T = λi,TDi,T .
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Using the spectral decomposition,

(KT γi,T ) (ω1) =
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T

∫
I

Ω
1/2
T

∂g′

∂β
(α̂1
T , β̂T , ω2)

∂g

∂β′
(α̂1
T , β̂T , ω2)Ω

1/2
T DT dω2

=
∂g

∂β′
(α̂1
T , β̂T , ω1)Ω

1/2
T Di,Tλi,T = λi,T γi,T (ω1),

which implies that γi,T (ω) is given by ∂g
∂β′ (α̂

1
T , β̂T , ω1)Ω

1/2
T Di,T . A consistent estimator of the Moore-Penrose

generalized inverse is then given by:

(
K−1
T f

)
(ω1) =

q∑
i=1

1

λi,T
γi,T (ω1) 〈f, γi,T 〉 .

1.3 Derivation of the first-step and second-step C-ALS estimator in the bivari-

ate case

We show the following result.

Proposition 1.2. Consider the identifying restrictions that the effect of the second structural shock on the

first variable in a bivariate structural VAR is zero over a frequency interval:

ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0) = 0 ∀ω ∈ [ω, ω].

Then, using the simplified objective function, the optimal C-ALS is:

̂̃a12,T = −
ŝ′11,T (Ŵ 2

2T )−1ŝ12,T

ŝ′11,T (Ŵ 2
2T )−1ŝ11,T

where ŝ11,T , ŝ12,T and Ŵ2T are given by:

ŝ11,T = Ω̂′1/2
∞∑
j=0

∞∑
l=0

[(
∂ĉ11,j

∂Φ
̂̃a1

12,T +
∂ĉ12,j

∂Φ

)
ĉ11,l

] ∫ ω

ω

cos((l − j)ω)dω

ŝ12,T = Ω̂′1/2
∞∑
j=0

∞∑
l=0

[(
∂ĉ11,j

∂Φ
̂̃a1

12,T +
∂ĉ12,j

∂Φ

)
ĉ12,l

] ∫ ω

ω

cos((l − j)ω)dω

where Φ = vec(Φp), the vectorization of the autoregressive parameters and

Ŵ2T = Ω̂′1/2

 ∞∑
j=0

∞∑
l=0

(
∂ĉ11,j

∂Φ
̂̃a1

12,T +
∂ĉ12,j

∂Φ

)(
∂ĉ11,l

∂Φ′
̂̃a1

12,T +
∂ĉ12,l

∂Φ′

)∫ ω

ω

cos((l − j)ω)dω

 Ω̂1/2

where ̂̃a1

12,T is a first-step estimator and
∫ ω
ω

cos((l− j)ω)dω = 1
l−j [sin((l − j)ω)]

ω
ω = 2

l−j sin((l− j)ω) with a

symmetric interval [−ω, ω] for (l − j) 6= 0 and
∫ ω
ω

cos((l − j)ω)dω = ω − ω = 2ω for l = j.
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Proof: The objective function of the C-ALS problem of a bivariate VAR model is based on the W2 and s(·, ·)
matrices, with

s(ã12, Φ̂T ) =

∫ ω

ω

∞∑
j=0

[(
∂ĉ11,j

∂Φ′
eiωĵ̃a1

12,T +
∂ĉ12,j

∂Φ′
eiωj

)
Ω1/2

]′ ∞∑
l=0

[
ĉ11,le

−iωlã12 + ĉ12,le
−iωl] dω

=

∫ ω

ω

∞∑
j=0

∞∑
l=0

[(̂̃a1

12,T

∂ĉ11,j

∂Φ′
Ω1/2

)′
ĉ11,lã12 +

(̂̃a1

12,T

∂ĉ11,j

∂Φ′
Ω1/2

)′
ĉ12,l +

(
∂Ĉ12,j

∂Φ′
Ω1/2

)′
ĉ11,lã12 +

(
∂ĉ12,j

∂Φ′
Ω1/2

)′
ĉ12,l

]
× exp((j − l)ω)dω

=

∞∑
j=0

∞∑
l=0

[(̂̃a1

12,T

∂ĉ11,j

∂Φ′
Ω1/2

)′
ĉ11,lã12 +

(̂̃a1

12,T

∂ĉ11,j

∂Φ′
Ω1/2

)′
ĉ12,l +

(
∂ĉ12,j

∂Φ′
Ω1/2

)′
ĉ11,lã12 +

(
∂ĉ12,j

∂Φ′
Ω1/2

)′
ĉ12,l

]

×
∫ ω

ω

cos((l − j)ω)dω

and

Ŵ2T =

∫ ω

ω

∞∑
j=0

[(
∂ĉ11,j

∂Φ′
eiωĵ̃a1

12,T +
∂ĉ12,j

∂Φ′
eiωj

)
Ω1/2

]′ ∞∑
l=0

[(
∂ĉ11,l

∂Φ′
e−iωl̂̃a1

12,T +
∂ĉ12,l

∂Φ′
e−iωl

)
Ω1/2

]
dω

=

∫ ω

ω

∞∑
j=0

∞∑
l=0

[((
∂ĉ11,j

∂Φ′
̂̃a1

12,T +
∂ĉ12,j

∂Φ′

)
Ω1/2

)′((
∂ĉ11,l

∂Φ′
̂̃a1

12,T +
∂ĉ12,l

∂Φ′

)
Ω1/2

)]
exp((j − l)ω)dω

=

∞∑
j=0

∞∑
l=0

[((
∂ĉ11,j

∂Φ′
̂̃a1

12,T +
∂ĉ12,j

∂Φ′

)
Ω1/2

)′((
∂ĉ11,l

∂Φ′
̂̃a1

12,T +
∂ĉ12,l

∂Φ′

)
Ω1/2

)]∫ ω

ω

cos((l − j)ω)dω

.

and the last equality holds by the symmetry of the interval around zero. The objective function can be then

rewritten as:

s(ã12, Φ̂T )′
(
Ŵ 2

2T

)−1

s(ã12, Φ̂T ) = (ŝ11,T ã12 + ŝ12,T )′(Ŵ 2
2T )−1(ŝ11,T ã12 + ŝ12,T ) (1.1)

where ŝ11,T , ŝ12,T and Ŵ2T are given by:

ŝ11,T =

∞∑
j=0

∞∑
l=0

̂̃a1

12,T∂ĉ11,j

∂Φ′
Ω̂1/2

′ ĉ11,l +

(
∂ĉ12,j

∂Φ′
Ω̂1/2

)′
ĉ11,l

∫ ω

ω

cos((l − j)ω)dω

ŝ12,T =

∞∑
j=0

∞∑
l=0

̂̃a1

12,T∂ĉ11,j

∂Φ′
Ω̂1/2

′ ĉ12,l +

(
∂ĉ12,j

∂Φ′
Ω̂1/2

)′
ĉ12,l

∫ ω

ω

cos((l − j)ω)dω,

and

Ŵ2T =

∞∑
j=0

∞∑
l=0

[((
∂ĉ11,j

∂Φ′
̂̃a1

12,T +
∂ĉ12,j

∂Φ′

)
Ω̂1/2

)′((
∂ĉ11,l

∂Φ′
̂̃a1

12,T +
∂ĉ12,l

∂Φ′

)
Ω̂1/2

)]∫ ω

ω

cos((l − j)ω)dω.

The minimiser of the objective function 1.1 is given by ̂̃a12,T = − ŝ
′
11,T (Ŵ 2

2T )−1ŝ12,T

ŝ′11,T (Ŵ 2
2T )−1ŝ11,T

.
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2 Misspecification and C-ALS

We start from the (functional) system of estimating equations (equation 4.17), which can be decomposed as

follows:

g(a(0), β0, ω) =

 g1(a(0), β0)

g2(a(0), β0, ω)

 , (2.2)

where the estimating equations g1(a(0), β0) = 0 result from vech (Σ−A(0)A(0)′) and the q2 (functional)

estimating equations g2(a(0), β0, ω) = 0, which stem from the frequency identifying restrictions, can be

written as:

Gvec
(
A(e−iω)− C(e−iω)A(0)

)
= 0q2×1

where G is an q2 ×N2 selection matrix, a(0) = vec(A(0)) and ω ∈ [ω, ω].

To analyze the impact of misspecification on our identification method, one can specify a local alternative

of the estimating equations as follows:

g2T (a(0), β0, ω) = g2(a(0), β0, ω) +
c√
T
h(ω)

where c√
T
h(ω) is the deviation from the null hypothesis, the scalar c represents the distance from the null,

and h is a function of ω, with ω ∈ [ω, ω], which gives the direction of the alternative hypothesis. Under the

local alternative hypothesis, one can show that the asymptotic expansion of the C-ALS estimator is given

by:

√
T (α̂T − α0) = −

〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂β′
(α0, β0, ω)

√
T (β̂T − β0)

〉
−
〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1〈
S
∂g

∂α′
(α0, β0, ω), cSH(ω)

〉
+op(1)

where the H(ω) matrix is partitioned comfortably w.r.t. (2.2), i.e.,

H(ω) =

 0

h(ω)

 .
Due to the presence of the second right-hand side term, the C-ALS estimator is then asymptotically biased;

the magnitude of the bias being a function of the local alternative.

In this respect, it can be shown that the asymptotic distribution of the JT statistic under the local

alternative is given by:

JT = ‖
√
TST g(α̂, β̂T , ω)‖2 →

m∑
j=1

λjχ
2
j (1, δ̃j).
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with the non-centrality parameter δ̃j = c2 〈SMH, γj〉, and where the γj terms are the eigenvectors of SKS∗

and M = I − P is the operator from H to H such for all f ∈ H:

Mf(ω) = f(ω)− ∂g

∂α′
(α0, β0, ω)

〈
S
∂g

∂α′
(α0, β0, ω), S

∂g

∂α′
(α0, β0, ω)

〉−1〈
S∗S

∂g

∂α′
(α0, β0, ω), f(ω)

〉
where I denotes the identity operator on H, which is compact since H is finite dimensional, and P is the

orthogonal projection onto the subspace of ∂g
∂α′ (α0, β0, ω) with a range of dimension r. Accordingly, the

JT -statistic is asymptotically distributed as a sum of weighted noncentral χ2 distributions with 1 degree of

freedom, and the non-centrality parameter is given by δ̃j , which is function of the local alternative.

As an illustration, using the data generating process of Section 5 and the same notations, we consider

the following local alternative hypothesis:

ĉ11(e−iω)a12(0) + ĉ12(e−iω)a22(0) =
c√
T
h(ω) ∀ω ∈ Iω = [ω, ω]. (2.3)

For the first set of experiments in the paper, we assume that δ = .05 as the alternative. Figure 1 reports

the (partial) spectral density of the first variable with respect to the second structural shock as a measure

of the deviation from the null hypothesis. It corresponds to the right-hand side term in eq. (2.3).

Figure 1: Deviation from the null hypothesis: second shock on first variable, δ = .05
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Figure 1 shows that the partial spectral density after imposing the local alternative is strongly concen-

trated around the zero frequency. This implies that considering a tight interval around zero would induce

a significant bias of the estimator and a high probability of rejection for the J-test. When the frequency
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band of interest, Iω, gets larger and larger, our Monte Carlo simulations show that the bias decreases and

the JT -stat is less and less powerful, as to be expected.

As a second set of experiments, we consider a constant function h on the interval [−π, π]. Then our

simulation results show that the bias and the rejection rate of the JT -stat are constant irrespective of the

frequency band of interest Iω as expected.1

3 A discretized ALS estimator

One possible approach is to apply the standard asymptotic least squares procedure using a discretization

of the frequency band, and thus evaluating g(a0, β̂T , ωτ ) = 0 at different points/frequencies, say for τ =

1, · · · , n. We consider frequency intervals of the form Iω = [−ω;−ω] ∪ [ω;ω] where ω ≥ ω ≥ 0. In practise,

only [ω;ω] needs to be considered for standard identifying restrictions C(z)A(0) = 0.

3.1 Discretization of the frequency interval

We first divide the interval [ω;ω] into n − 1 subintervals to obtain n frequency indices. Let ωj denote the

j-th frequency in the partition:

ω = ω1 < ω2 < · · · < ωn = ω.

On top of the estimating equations defined by vech (Σu −A(0)A(0)′) = 0, the n frequency identifying

restrictions write

c11(e−iωj )a12(0) + c12(e−iωj )a22(0) = 0.

3.2 First-step and second-step discretized ALS estimator

Proposition 3.1 provides the first-step and second-step discretized ALS estimator in the case of a bivariate

VAR(p) model.2 Provided that the dimension of the system of estimating equations cannot exceed the

dimension of the vector of auxiliary parameter (2n ≤ dim(Φ)), one can derive the second-step discretized

ALS estimator.

Proposition 3.1. Consider a discretization of the frequency band

ω = ω1 < ω2 < · · · < ωn = w.

Suppose that (Xt) is described by a bivariate VAR(p) model and that the identifying restriction is given by:

ĉ11(e−iω)ã12(0) + ĉ12(e−iω) = 0.

1Simulations results are available upon request.
2Results can be easily generalizable in the case of any N-variate VAR(p) model.
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Then, the first-step discretized ALS estimator, denoted by ̂̃a1,d

12,T , is:

̂̃a1,d

12,T = −

∞∑
k=0

∞∑
l=0

(
ĉ11,k ĉ12,j

n∑
j=1

cos(ωj(k − `))

)
∞∑
k=0

∞∑
l=0

(
ĉ11,k ĉ11,j

n∑
j=1

cos(ωj(k − `))

) ,

and the second-step discretized ALS-estimator, denoted by ̂̃ad12,T , is:

̂̃ad12,T = −

∞∑
k=0

∞∑
l=0

ĉ11,k ĉ12,`Λ
′(ω1:n, k)

[ ∞∑
k=0

∞∑
l=0

αk,`

(̂̃a1,d

12,T

)
Λ?(ω1:n, k, `)

]−1

Λ(ω1:n, `)

∞∑
k=0

∞∑
l=0

ĉ11,k ĉ11,`Λ′(ω1:n, k)

[ ∞∑
k=0

∞∑
l=0

αk,`

(̂̃a1,d

12,T

)
Λ?(ω1:n, k, `)

]−1

Λ(ω1:n, `)

.

where αk,`

(̂̃a1,d

12,T

)
=

(
∂ĉ11,k
∂β′

̂̃a1,d

12,T +
∂ĉ12,k
∂β′

)
Ω̂T

(
∂ĉ11,`
∂β

̂̃a1,d

12,T +
∂ĉ12,`
∂β

)
is a scalar, Λ?(ω1:n, k, `) := Λ(ω1:n, k)Λ′(ω1:n, `),

and Λ(ω1:n, k) =
(

cos(ω1k) · · · cos(ωnk) sin(ω1k) · · · sin(ωnk)
)′

.

Proof : Following the approach of Feuerverger and McDunnough (1981), Singleton (2001) and Chacko and

Viceira (2003), we distinguish the real part and the imaginary part of the identifying restrictions:

∞∑
k=0

ĉ11,k cos(ωjk)ã12(0) +

∞∑
k=0

ĉ12,k cos(ωjk) = 0

∞∑
k=0

ĉ11,k sin(ωjk)ã12(0) +

∞∑
k=0

ĉ12,k sin(ωjk) = 0.

for j = 1, · · · , n. Accordingly, the moment conditions are given by:

g(ã12(0), β̂T , ω1:n) =

 g1(ã12(0), β̂T , ω1:n)

g2(ã12(0), β̂T , ω1:n)

 ,

where

g1(ã12(0), β̂T , ω1:n) =


∞∑
k=0

ĉ11,k cos(ω1k)ã12(0) +
∞∑
k=0

ĉ12,k cos(ω1k)

...
∞∑
k=0

ĉ11,k cos(ωnk)ã12(0) +
∞∑
k=0

ĉ12,k cos(ωnk)


and

g2(ã12(0), β̂T , ω1:n) =


∞∑
k=0

ĉ11,k sin(ω1k)ã12(0) +
∞∑
k=0

ĉ12,k sin(ω1k)

...
∞∑
k=0

ĉ11,k sin(ωnk)ã12(0) +
∞∑
k=0

ĉ12,k sin(ωnk)

 .
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A first-step consistent estimator of ã12(0) solves the following minimization problem (using the identity

matrix of order 2n):

̂̃a1,d

12,T = argmin
ã12

g′(ã12, β̂T , ω)g(ã12, β̂T , ω)

or

̂̃a1,d

12,T = argmin
ã12


∞∑
k=0

∞∑
l=0

(ĉ11,k ĉ11,`ã
2
12 + 2ĉ11,k ĉ12,`ã12 + ĉ12,k ĉ12,`

) n∑
j=1

cos(ωj(k − `))

 .

Therefore,

̂̃a1,d

12,T = −

∞∑
k=0

∞∑
l=0

(
ĉ11,k ĉ12,`

n∑
j=1

cos(ωj(k − `))

)
∞∑
k=0

∞∑
l=0

(
ĉ11,k ĉ11,`

n∑
j=1

cos(ωj(k − `))

) .

Accordingly, the (discretized) second-step ALS estimator, denoted by ̂̃ad12, solves (provided that the dimension

of the system of estimating equations does not exceed the dimension of the vector of auxiliary parameters):

̂̃ad

12,T = argmin
ã12

g′
(
ã12, β̂T , ω

)
S−1

0 (̂̃a1,d

12,T , β̂T , ω1:n)g
(
ã12, β̂T , ω

)
where S−1

0 (̂̃a1,d

12,T , β̂T , ω1:n) is the 2n× 2n efficient weighting matrix defined by:

S−1
0 (̂̃a1,d

12,T , β̂T , ω1:n) : =

∂g(̂̃a1,d

12,T , β̂T , ω1:n)

∂β′
Ω̂T

∂g′(̂̃a1,d

12,T , β̂T , ω1:n)

∂β

−1

with

∂g(.)

∂β′
Ω̂T

∂g′(.)

∂β
=

∞∑
k=0

∞∑
l=0

Λ(ω1:n, k)

(
∂ĉ11,k

∂β′
̂̃a1,d

12,T +
∂ĉ12,k

∂β′

)
Ω̂T

(
∂ĉ11,`

∂β
̂̃a1,d

12,T +
∂ĉ12,`

∂β

)
Λ′(ω1:n, `)

=

∞∑
k=0

∞∑
l=0

(
∂ĉ11,k

∂β′
̂̃a1,d

12,T +
∂ĉ12,k

∂β′

)
Ω̂T

(
∂ĉ11,`

∂β
̂̃a1,d

12,T +
∂ĉ12,`

∂β

)
Λ?(ω1:n, k, `)

=

∞∑
k=0

∞∑
l=0

αk,`

(̂̃a1,d

12,T

)
Λ?(ω1:n, k, `)

where

Λ?(ω1:n, k, `) :=



cos(ω1k) cos(ω1`) · · · cos(ω1k) cos(ωn`) cos(ω1k) sin(ω1`) · · · cos(ω1k) sin(ωn`)
...

. . .
...

...
. . .

...

cos(ωnk) cos(ω1`) · · · cos(ωnk) cos(ωn`) cos(ωnk) sin(ω1`) · · · cos(ωnk) sin(ωn`)

sin(ω1k) cos(ω1`) · · · sin(ω1k) cos(ωn`) sin(ω1k) sin(ω1`) · · · sin(ω1k) sin(ωn`)
...

. . .
...

...
. . .

...

sin(ωnk) cos(ω1`) · · · sin(ωnk) cos(ωn`) sin(ωnk) sin(ω1`) · · · sin(ωnk) sin(ωn`)


.
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Note that the analytical expression of
∂ĉ11,j
∂β

′
and

∂ĉ12,j
∂β′ is provided in Appendix 4. In addition, it also worth

noting that the rank of the matrix Λ?(ω1:n, k, j) is one.

Under suitable regularity conditions, the discretized second-step ALS estimator, denoted ̂̃ad12,T , solves the

first-order condition:

g′(̂̃ad12, β̂T , ω1:n)S−1
0 (̂̃a1,d

12,T , β̂T , ω1:n)
∂g(̂̃ad12,T , β̂T , ω1:n)

∂ã′12

= 0,

that is, [ ∞∑
k=0

{(
ĉ11,k

̂̃ad12,T + ĉ12,k

)
Λ′(ω1:n, k)

}]
S−1

0 (̂̃a1,d

12,T , β̂T , ω1:n)

[ ∞∑
l=0

ĉ11,`Λ(ω1:n, `)

]
= 0.

Finally,

̂̃ad12,T = −

∞∑
k=0

∞∑
l=0

ĉ11,k ĉ12,`Λ
′(ω1:n, k)

[ ∞∑
k=0

∞∑
l=0

αk,`

(̂̃a1,d

12,T

)
Λ?(ω1:n, k, `)

]−1

Λ(ω1:n, `)

∞∑
k=0

∞∑
l=0

ĉ11,k ĉ11,`Λ′(ω1:n, k)

[ ∞∑
k=0

∞∑
l=0

αk,`

(̂̃a1,d

12,T

)
Λ?(ω1:n, k, `)

]−1

Λ(ω1:n, `)

.

4 Identification of only one structural shock of interest

We also consider the identification of a single structural shock in a VAR with more than two variables

without identifying other structural shocks. Without loss of generality, we assume that the structural shock

of interest is the first one. For instance, this corresponds to the identification of a technology shock in a

multivariate VAR without requiring the identification of other shocks (see Christiano et al., 2006b; Francis

and Ramey, 2009) or the identification of a news shocks (Beaudry and Portier, 2006; Barsky and Sims,

2011; Kurmann and Sims, 2021). For sake of completeness, we first provide the common sign and (long-run)

exclusion restrictions and then turn to the frequency identifying restrictions.

Following Christiano et al. (2006a), the dynamic effects of the first structural shock can be computed

by identifying only the first column of A(0), [A(0)]·1, as combining a sign restriction and zero restrictions on

the long-run impact uniquely identifies the vector [A(0)]·1. In this respect, one needs to impose N − 1 zero

restrictions:

Ĉ(1)A(0) = A(1) =

 a11(1) 01×(N−1)

Ã21(1) Ã22(1)

 ,
where Ã21(1) is the first column of the long-run impact matrix A(1) after dropping the first element a11(1),

and the submatrix Ã22(1) contains the other columns of A(1) (except the first row of those columns).

Imposing that only the first structural shock has a long-run impact on the first variable yields the following
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specification of the long-run variance–covariance matrix:3

Ĉ(1)A(0)A(0)′Ĉ(1)′ = A(1)A(1)′ =

 a11(1)2 a11(1)Ã21(1)′

Ã21(1)a11(1) Ã21(1)Ã21(1)′ + Ã22(1)Ã22(1)′

 = Ĉ(1)Σ̂T Ĉ(1)′.

This implies that a11(1)2 is the (1,1)-element of the matrix Ĉ(1)Σ̂T Ĉ(1)′ and that Ã21(1) is equal to the

corresponding elements of the matrix Ĉ(1)Σ̂T Ĉ(1)′ divided by a11(1). Because the first column of the matrix

C(1)A(0), denoted by [A(1)]·1, is known, the column vector [A(0)]·1 is uniquely identified by the relation

[A(0)]·1 = Ĉ(1)−1[A(1)]·1. Now consider the same restrictions but in the frequency domain. One then has:

|a11(e−iω)|2 =
[
Ĉ(e−iω)Σ̂T Ĉ(e−iω)

]
11

Ã21(e−iω)a11(z) =

[
Ĉ(e−iω)Σ̂T Ĉ(e−iω)

′
]
n1, n=2,...,N

,

where

[
Ĉ(e−iω)Σ̂T Ĉ(e−iω)

′
]
n1

is the element (n, 1) of the matrix Ĉ(e−iω)Σ̂T Ĉ(e−iω)
′
. Then it is straight-

forward to show the following result.

Proposition 4.1. Consider the following identifying restrictions
N∑
j=1

ĉ1j(e
−iω)ajn(0) = 0 for n = 2, . . . , N

and ∀ω ∈ [ω, ω]. Let β̂T =

(
vec
(

Φ̂p

)′
, vech

(
Σ̂T

)′)′
denote the vector of dimension q = N2 × p+ N(N+1)

2

of the reduced-form parameters estimates. Under Assumptions A.1 and A.2, the estimating equations,

g(α0, β̂T , ω) = 0 for ω ∈ [ω, ω], defined by

g(α0, β̂T , ω) =
(
g1(α0, β̂T , ω), g2(α0, β̂T , ω), · · · , gN (α0, β̂T , ω)

)′
with

g1(α0, β̂T , ω) =
∣∣∣[Ĉ(e−iω)A(0)]11

∣∣∣2 − [Ĉ(e−iω)Σ̂T Ĉ(e−iω)
′
]

11

gn(α0, β̂T , ω) =
[
Ĉ(e−iω)A(0)

]
n1

[A(0)′Ĉ(e−iω)
′
]11 −

[
Ĉ(e−iω)Σ̂T Ĉ(e−iω)

′
]
n1

for n = 2, . . . , N uniquely identify the first column of the matrix α0 = [A(0)]·1 up to a sign restriction.

Note that for n = 1, · · · , N the moment conditions can be written as:

gn(α0, β̂T , ω) =

N∑
r=1

N∑
s=1

∞∑
j=0

∞∑
l=0

c1s,jcnr,l (ar1(0)as1(0)− σ̂sr,T ) cos((j − l)ω),

where σ̂sr,T is a consistent estimate of the (s, r) element of Σ. As in Section 5.1, a first-step consistent

C-ALS estimator of α0 = [A(0)]·1 solves the following minimization problem (using the identity operator as

a weighting matrix):

α̂T = arg min
a

∫ ω

ω

g(α, β̂T , ω)′g(α, β̂T , ω)dω.

3Note that many matrices A(0) are conformable with these restrictions, but the first column of each of these matrices [A(0)]·1

is the same (see Christiano et al., 2006b).
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Then the second-step C-ALS results from the minimization of the simplified (regularized) objective function

in light of Proposition 3.2.. In particular, the first-order conditions can be derived from the following

proposition.

Proposition 4.2. The first-order partial derivatives of the estimating equations,

g(a, β̂T , ω) = vech
(
Ĉ(z)Σ̂T Ĉ

∗(z)− Ĉ(z)A(0)A(0)′Ĉ∗(z)
)

with respect to a, Φ, and σ are respectively given by:

∂g

∂a′
(a, β̂T , ω) = −LN

(
C(z)⊗ C(z)

)
(IN2 +KNN ) (A(0)⊗ IN )

and

∂g

∂Φ′
(a, β̂T , ω) = LN

[(
IN ⊗ Ĉ(z)(Σ̂T −A(0)A(0)′)

) ∂vec(Ĉ∗(z))

∂Φ′
+
(
Ĉ(z)(Σ̂T −A(0)A(0)′) ⊗ IN

) ∂vec(Ĉ(z))

∂Φ′

]
∂g

∂σ′
(a, β̂T , ω) = LN (C(z)⊗ C(z))

with Ĉ∗′(z) = Ĉ(z), LN is an
(

1
2N(N + 1)×N2

)
elimination matrix, KNN is the commutator matrix for

which KNNvec(X) = vec(X ′) and X is an arbitrary N ×N matrix.

Proof: One has

∂g

∂a′
(a, β̂T , ω) = −LN

∂

∂a′
vec
(
Ĉ(z)A(0)A(0)′Ĉ∗(z)

)
= −LN

(
Ĉ(z)⊗ Ĉ(z)

) ∂

∂a′
vec (A(0)A(0)′)

= −LN
(
Ĉ(z)⊗ Ĉ(z)

)[
(IN ⊗A(0))

∂vec(A(0)′)

∂a′
+ (A(0)⊗ IN )

∂vec(A(0))

∂a′

]
= −LN

(
C(z)⊗ C(z)

)
((IN ⊗A(0))KNN + (A(0)⊗ IN ))

= −LN
(
C(z)⊗ C(z)

)
(IN2 +KNN ) (A(0)⊗ IN )

using that KNN (A(0)⊗ IN ) = (IN ⊗A(0))KNN . On the other hand, the partial derivatives with respect

to Φ are obtained using the standard product rule for vector differentiation with the vec operator:

∂vec (A(θ)CD(θ))

∂θ′
= (IN ⊗A(θ)C)

∂vec (D(θ))

∂θ′
+ (D(θ)′C ′ ⊗ IN )

∂vec (A(θ))

∂θ′
.

Moreover, ∂vec(C(z))
∂Φ′ can be derived from Lütkepohl (2007, p. 111). Finally, using the property vec(PQP ∗) =

(P ?′ ⊗ P ) vec(Q) and P ?′ = P where P is a complex-valued matrix, one has

∂g

∂σ′
(a, β̂T , ω) = LN (C(z)⊗ C(z))

∂vec(Σ)

∂σ′
= LN (C(z)⊗ C(z)).

5 Other Monte Carlo simulations

In this section, we provide some further Monte Carlo simulations to study the finite sample performances of

the C-ALS estimator. We still assume that the data generating process (DGP) is a bivariate VAR model in
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which the first variable, X1,t, is nonstationary and thus written in first-difference and the second variable,

X2,t, is a weakly stationary process:

∆X1,t = ϑ1 + ρ11,1∆X1,t−1 + (ρ12,1 + δ)X2,t−1 − ρ12,1X2,t−2 + ε1,t (5.4)

X2,t = ϑ2 + ρ21,1∆X1,t−1 + ρ22,1X2,t−1 + ρ22,2X2,t−2 + b21ε1,t + ε2,t, (5.5)

where the vector εt = (ε1,t, ε2,t)
′

represents some structural shocks, with εt ∼ N(0, I2).

As second set of experiments, we consider other parameter configurations. For instance, as shown in the

online Appendix, using a VAR(2) specification with (ρ11,1, ρ12,1, ρ21,1, ρ22,1, ρ22,2, b21) = (0,−0.08, 0.2, ρ +

0.55,−0.55ρ, 0.2) under the null (δ = 0) and alternative (δ > 0) hypothesis where ρ = 0.9, 0.95, or 0.98, our

results are qualitatively similar.

Looking at Figures 2 to 4, the results are qualitatively similar to those of the VAR(1) under the null

hypothesis. Interestingly, when δ = 0, the contribution of the second structural shock to the first variable is

not zero but is rather close to zero and decreases when the length of the frequency band increases, and, as

such, this case can be interpreted as a local alternative to the null hypothesis of a well-specified identifying

restriction.4 Given that this local alternative hypothesis is often considered as a very plausible DGP in

SVARs applications, the finite sample properties of the second-step C-ALS estimator are again remarkable

and appealing. Meanwhile, as to be expected, the J-stat has less power but can still provide useful informa-

tion in the case of a local alternative.

When δ = 0.04 and there is a misspecified exclusion restriction (alternative hypothesis), three points are

worth emphasizing in Figures 5 to 7. First, the C-ALS estimator still dominates the first-step, MS, and LR

approaches and displays a small (cumulative) mean absolute bias for intervals greater than ω30, whereas the

max-share estimator is only slightly improving relative to the standard LR approach. Notably, the mean

absolute bias of the two-step C-ALS estimator is close to zero for the widest interval ω30, while it increases

with decreasing intervals. This arises as the variance contribution of the second shock to the first variable

augments when the frequency interval becomes smaller and smaller, and the (regularized) minimisation

problem of the C-ALS estimator seeks to find the optimal linear combination of the reduced-form shocks

such that the contribution of the second structural shock to the first variable is minimized. Second, the bias

reduction of the second-step C-ALS estimator is achieved with a lower (cumulative) RMSE relative to other

estimators. Third, all these results are robust irrespective of the chosen horizon H.

4In contrast to other cases, the partial spectral density of the first variable with respect to the second structural shock is

U-shaped in a neighborhood of ω = 0.
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6 An overview of the spectral density matrix and its application

to SVAR models

The second-order properties of a second-order stationary, bivariate, zero-mean time series {Xt}−∞<t<+∞

may be described either by the auto- and cross-covariances Γ(h) = E(Xt+hX
′
t) or, equivalently, by the

spectral density matrix or spectrum f(ω) of the process, which is given by:

fX(ω) =
1

2π

 fX,11(ω) fX,12(ω)

fX,21(ω) fX,22(ω)

 , ω ∈ [−π;π].

Provided that
+∞∑

h=−∞
|γij(h)| <∞ where γij(h) is the element (i,j) of the matrix Γ(h), the marginal spectral

densities fX,ii(ω) and the cross-spectrum fX,ij(ω) are defined as the Fourier transforms of the auto- and

cross-covariance functions:5

fX,ij(ω) =
1

2π

+∞∑
h=−∞

γij(h)e−iωh.

By the inverse of the Fourier transform, one retrieves the auto- and cross-covariances as

γij(h) =

∫ π

−π
eiωhfX,ij(ω)dω.

In particular, when h = 0, the spectrum integrates to the unconditional variance–covariance matrix of Xt,

Γ(0) =

∫ π

−π
fX(ω)dω.

Said differently, marginal spectral densities and the cross-spectrum integrate to the unconditional variances

and the unconditional covariance between X1 and X2. The marginal spectral density (respectively, the

cross-spectrum) at frequency ω is the portion of the variance (respectively, covariance between X1 and X2)

that is attributable to cycles with frequency ω. More generally, for any ω between 0 and π, the expression∫ w

−w
fX(ω)dω

provides the decomposition of the unconditional variance–covariance matrix that is attributable to the fre-

quency interval [0;ω]. In this respect, the spectral matrix is a natural tool to analyze fluctuations of macro

variables at different periodicities and, in particular, at business cycle, medium-term, and low (or long-run)

frequencies.6

5The real part of the cross-spectrum is the co-spectrum, whereas the imaginary part is the quadrature spectrum.
6Stationary time series are generally split into three ranges in the frequency domain. Indeed, the general consensus is that

high-frequency or business-cycle frequencies correspond to periodicity below 8 years, whereas medium-term frequencies are

those with periodicity in between 8 and 40–50 years and low or long-run frequencies are those with periodicity above 40–50

years.
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In the case of the moving average representation in terms of innovations of the reduced-form VAR(p) (equa-

tion 2.1 of the main text), the spectral density matrix is given by:

fX(ω) =
1

2π
C(e−iω)ΣuC

?(e−iω) ω ∈ [−π;π], (6.6)

where C(e−iω) =
∞∑
k=0

Cke
−iωk. In the case of the moving average representation in terms of structural shocks

(equation 2.3 of the main text), one has:

fX(ω) =
1

2π
A(e−iω)A?(e−iω) ω ∈ [−π;π] (6.7)

=
1

2π
C(e−iω)A(0)A(0)′C?(e−iω).

Using equations (6.6) and (6.7), we unsurprisingly recover the mapping (equation 2.5 of the main text)

between the reduced-form moving average matrix C(e−iω) and the structural moving average matrices A(0)

and A(e−iω) for a given frequency ω:

C(e−iω)A(0) = A(e−iω).

Thus, imposing identifying restrictions in the frequency domain can be achieved by imposing constraints on

some elements of C(e−iω)A(0). These constraints yield estimating equations at a given frequency ω, and,

more generally, on a frequency interval.

7 Comparison between C-ALS and the CEV-based approach

We first describe the approach of Christiano, Eichenbaum and Vigfusson (2006a, 2006b), and, without loss of

generality, we consider the case of a just-identified bivariate structural VAR model. Then we reformulate their

nonparametric correction using a system of estimating equations. Finally, we discuss the main differences.

7.1 Approach of Christiano, Eichenbaum and Vigfusson (2006a, 2006b)

(a) Derivation of a(0) In the case of a just-identified bivariate structural VAR model, the approach of

Christiano, Eichenbaum and Vigfusson (2006a, 2006b) rests on the following equations:

A(0) = C(1)−1A(1) ≡ Φ(1)A(1)

1

2π
A(1)A(1)′ =

1

2π
C(1)ΣuC(1)′ = fX(0)

where fX(0) is the spectral matrix at frequency ω = 0. At this stage, we assume that fX(0) is given

and we discuss later on the use of a nonparametric correction of the estimate of fX(0). Using the second

equation and assuming that A(1) is a lower-triangular matrix (that is, one imposes the identifying restriction

[A(1)]12 = 0), it is straightforward to show that: a2
11(1) a11(1)a21(1)

a11(1)a21(1) a2
21(1) + a2

22(1)

 =

 S11(0) S′21(0)

S21(0) S22(0)
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where SX(0) = 2πfX(0). Using the sign restrictions a11(1) ≥ 0 and a22(1) ≥ 0), one can easily get the

expressions of a11(1), a21(1), and a22(1) as some functions of the elements of SX(0):

a2
11(1) = S11(0)⇔ a11(1) =

√
S11(0)

a21(1) =
S′21(0)

a11(0)
=

S′21(0)√
S11(0)

a2
22(1) = S22(0)− S

′2
21(0)

S11(0)
(≥ 0)⇔ a22(1) =

√
S22(0)− S

′2
21(0)

S11(0)
.

Now, using the first equation A(0) = C−1(1)A(1) = Φ(1)A(1), one has a11(0) a12(0)

a21(0) a22(0)

 =

 Φ11(1) Φ12(1)

Φ21(1) Φ22(1)



√
S11(0) 0

S′21(0)√
S11(0)

√
S22(0)− S

′2
21(0)
S11(0)

 .

where the second right-hand side term is the lower triangular Cholesky factor of SX(0). Therefore,

a11(0) = Φ11(1)
√
S11(0) + Φ12(1)

S′21(0)√
S11(0)

a12(0) = Φ12(1)

√
S22(0)− S

′2
21(0)

S11(0)

a21(0) = Φ21(1)
√
S11(0) + Φ22(1)

S′21(0)√
S11(0)

a22(0) = Φ22(1)

√
S22(0)− S

′2
21(0)

S11(0)

It is worth emphasizing that the expression of ã12(0), which is given by

ã12(0) =
a12(0)

a22(0)
=

Φ12(1)

Φ22(1)
≡ −C12(1)

C11(1)
,

does not depend on SX(0).

(b) Nonparametric correction Consider now a local average estimator of fX(0) using the standard

Andrews-Monahan estimator:7

f̂X(0) =
1

2π
Ĉ(1)F̂u(0)Ĉ(1)′

where F̂u(0) = 1
T

r∑
k=−r

∣∣1− k
r

∣∣ T∑
t=k

ûtû
′
t−k.

7One could also consider the Bartlett’s nonparametric estimator of the population spectrum. Results are available upon

request.
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Accordingly, the previous results are still valid after replacing SX(0) by ŜX(0) = 2πf̂X(0), and Φij(1)

by some consistent estimate Φ̂ij(1) for i, j = 1, 2. Notably, it turns out that the estimate of ã12(0) is the

same as the standard LR estimate, i.e. the nonparametric correction is only effective for the elements of A(0),

but not for ã12(0).

7.2 Reformulation

Noting that C(1)A(0) = SX,tr(0) where SX,tr is the lower-triangular matrix that results from the Cholesky

decomposition of the spectral matrix at ω = 0 (since there is no imaginary part) conveys the same information

as the standard long run identifying restriction c11(1)a12(0) + c12(1)a22(0) = 0, it turns out that the system

of estimating equations of Christiano, Eichenbaum and Vigfusson (2006a, 2006b) can be written as:

c11(1)a12(0) + c12(1)a22(0) = 0

vech (A(0)A(0)′) = vech (Φ(1)SX(0)Φ(1)′)

whereas the standard long-run (LR) estimator is defined from:

c11(1)a12(0) + c12(1)a22(0) = 0

vech (A(0)A(0)′) = vech (Σu) .

In contrast, the C-ALS estimator rests on:

c11(e−iω)a12(0) + c12(e−iω)a22(0) = 0

vech (A(0)A(0)′) = vech (Σu)

for all ω ∈ [ω;ω].

On the one hand, using the Andrews-Monahan (1992) estimate of fX(0), one has

vech
(
A(0)A(0)′ − Φ̂(1)Ĉ(1)F̂u(0)Ĉ(1)′Φ̂(1)′

)
= 0

where Φ̂(1)Ĉ(1) = I2 (since Ĉ(1) = Φ̂−1(1)) and F̂u(0) is defined above. Therefore, after plugging in

a consistent estimate of the slope parameters and the residuals of the reduced-form VAR, the system of

estimating equations is:

ĉ11(1)a12(0) + ĉ12(1)a22(0) = 0

vech
(
A(0)A(0)′ − F̂u(0)

)
= 0

where

F̂u(0) ' Σ̂T +

r∑
k=−r
k 6=0

∣∣∣∣1− k

r

∣∣∣∣ Σ̂T (k)

where Σ̂T (k) is a consistent estimate of the k-order autovariance matrix of innovations.
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7.3 Discussion

The previous system of estimating equations can be first compared with the one derived from the LR esti-

mator:

ĉ11(1)a12(0) + ĉ12(1)a22(0) = 0

vech
(
A(0)A(0)′ − Σ̂T

)
= 0.

Comparing the two systems of estimating equations, the correction of the spectral matrix at ω = 0 does not

convey so much ”new” information for the elements of A(0) when Σ̂T ' F̂u(0), i.e. when the reduced-form

VAR is not misspecified (lag order) and that there is nothing left in the residuals (innovations). In presence

of a misspecified VAR, the correction might be more substantial with respect to the standard LR estimator

of A(0).

On the other hand, the key point is that the approach of Christiano, Eichenbaum and Vigfussion (2006a,

2006b) makes use of a ”local average” of the spectrum at ω = 0, but left unchanged the identifying con-

straint, which has a zero Lebesgue measure. Indeed, they consider a generic estimator of the true spectral

matrix f0 with the following form:

f̂X(0) =

∫ π

−π
WM (ω)In(ω)dω

where WM (ω) is the periodogram window corresponding to the weights of the lag window w(x), M is the

truncation lag such that M →∞ and M/n→ 0, and In(ω) is the periodogram of the mean corrected data

or residuals:

In(ω) = (2πn)
−1

Γz(0) + 2

n−1∑
j=1

Γz(j)e
−iωj


WM (ω) = (2π)

−1

w(0) + 2

n−1∑
j=1

w(j/M)e−iωj


where zt = Xt − µX or zt = ût for all t, and Γz(j) is the autocovariance matrix of order j. Then it can be

shown (Hauser et al., 1999; Pötscher, 2002) that alternatives f1 close to f0 can have values f1(0) that are

arbitrarily far away from the true value of the spectral density matrix at ω = 0. It is a direct consequence of

the highly discontinuous nature of the functional fX → fX(0) with respect to the L1-distance (see Section

8 of this Appendix). In this respect, the nonparametric correction proposed by Christiano, Eichenbaum

and Vigfussion (2006a, 2006b) is not immune to the unreliability problem and still falls in the category of

”ill-posed” (identification) problems (Sims, 1972).

8 Applications of the C-ALS approach

This section provides some applications of the asymptotic least squares theory using a frequency band or

equivalently a continuum of estimating equations. The first two applications, namely the identification
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of technology and news shocks, are further discussed respectively in the main text and in Section ?? of

this technical appendix. The third application regarding neutral versus investment technology shocks is

presented formally in Section 5. The fourth application is related to the recoverability condition of Chahrour

and Jurado (2021) and the structural identification of expectations-driven fluctuations. The last application,

that is, the identification and inference of common features, is left for future work. Finally, it is worth

emphasizing that this section is not exhaustive in the sense that our methodology applies for general zero

restrictions, i.e. with a mixture of short-run, delayed and long-run restrictions (e.g., in the monetary policy

model of Rubio-Ramirez et al. (2010)), as well as for structural VARs based on present value models (e.g.,

Campbell and Shiller (1987,1988)), for structual VECM (e.g., King et al. (1991)) for the identification

and contribution of seasonal cycles versus business cyles (Wen, 2002), and the estimation and validation of

dynamic stochastic general equilibrium models using SVARs, among others.

8.1 The hours-productivity debate using bivariate SVAR models

The predominant role of technology shock as the main source behind movements in macro data has been

sharply challenged since the important contribution of Gaĺı (1999). Indeed, bivariate structural vector autore-

gressive models including labor productivity and hours worked yield conflicting results regarding the effect

of technology shocks on hours worked, generally due to the assumed data generating process for the measure

of hours worked (in level or in difference). On the other hand, Francis and Ramey (2009) show that demo-

graphic trends and sectoral allocation are important sources of low-frequency movements in hours worked

and labor productivity. Consequently, labor productivity might be driven by two permanent shocks, the

technology shock and the demographic shock, and thus the usual long-run restriction of hours-productivity

VAR models might be violated. A SVAR model with some identifying restrictions on a frequency band

allows to focus in a neighborhood more or less close to ω = 0 rather than just the zero frequency, and thus to

assess the effects of other low-frequency movements, such as those advocated by Francis and Ramey (2005),

on the identification of technology shocks.

Our strategy has three advantages with respect to the usual long-run restrictions. First, the set of identify-

ing restrictions in the frequency domain has a Lebesgue measure strictly greater than zero. Indeed the fact

that standard long-run restrictions (when ω = 0) have a zero Lebesgue measure (Faust, 1996) leads to the

so-called unreliability problem (Faust and Leeper, 1997). Notably, unreliable long-run effects of shocks are

transferred on estimates of other model parameters through the long-run identification scheme and thus any

test of the null hypothesis that the kth coefficient of an autoregressive polynomial in the SVAR equals zero

is not consistent, i.e., the test has significance level greater than or equal to maximum power. In addition,

one cannot compute asymptotically correct confidence intervals for impulse responses since the unreliability

of the long run effect estimator is transferred to the estimator of the dynamic multipliers of the structural

shocks. In contrast, and as suggested by Faust and Lepper (1997), Faust (1998) and Pötscher (2002), this

issue can be circumvented by imposing restrictions on the (long-run) effect of these shocks at non-zero fre-

quencies and not only at the zero-frequency so that the problem is no-longer ill-posed in the terminology
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of Pötscher (2002). Second, the overidentification testing procedure proposed in the next section allows to

assess the hypothesis that only the first shock drives the long-run movements in labor productivity (Francis

and Ramey, 2009). Third, using a wider frequency band relative to the zero frequency should help to better

identify and estimate the structural shocks driving long-run movements.

8.2 News shock

Using structural VAR’s and partial identification schemes, recent empirical literature delivered controversial

results concerning the role of anticipated neutral technology—news—shocks in business cycle fluctuations.

By imposing long-run restrictions, Beaudry and Portier (2006) and Beaudry and Lucke (2010) conclude

that news shocks about future productivity are one of the main drivers of business cycles and there is a

positive (contemporaneous) impact of the news shock on hours worked. These results have been challenged

in several dimensions. For instance, adopting partial identification schemes based on different max-share

approaches, Barsky and Sims (2011) and Kurmann and Sims (2021) find results incompatible with the

news-driven explanation of business cycles and thereby more in line with the implications of the standard

neoclassical framework. These alternative identification strategies are based on the forecast error variance

decomposition over a horizon of up to 40 quarters (Barsky and Sims, 2011) or 80 quarters (Kurmann and

Sims, 2021): both strategies encompassing short-run and business cycle fluctuations. In contrast, using an

appropriate frequency band has the advantage to focus on the medium and long-run frequencies of TFP and

thus allows to isolate the identification of the news shocks from the effects of short-run and business cycles

fluctuations. In addition we can test whether TFP is driven by one structural shock (the news shock) or two

structural shocks (the surprise TFP shock and the news shock) in the medium to long-run. In the latter,

any linear combination of the two structural shocks would be a main driver and thus there is a lack of proper

identification.

8.3 Neutral versus investment-related technology shocks

Fisher (2006) examines the relative importance of neutral technology shocks and the investment-related

technology shocks in the explanation of business cycles by incorporating long-run restrictions that separately

identify these two sources of technology shocks.8 Pursuing this decomposition, Chen and Wemy (2015) argue

that long-run movements in the capital-producing sector can spread and spillover to the rest of the economy

and enhance TFP in long-run. Accordingly, the long-run fluctuations of TFP may be characterized by two

stochastic trends driven unequivocally either by the long-run movements of specific TFP or the spillover effect

of long-run movements due to investment-specific technological (IST) changes. This implies that long-run

movements of the TFP series would be caused by two shocks while long-run movements of investment-specific

technology are only driven by its own (structural) shock. In this respect, consider a SVAR in which the first

variable is the IST series and the second variable is the TFP series of Fernald (2014). The two restrictions

8See Ramey (2016) for a survey on the debate on the relative importance of the neutral TFP shocks and the investment

specific technology shocks. See also Ben Zeev and Khan (2015) for the effect of IST news shocks.
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that only one shock has long-run effects on IST, and the same shock and the neutral technology shocks have

long-run effects on TFP lead to the following restrictions for an interval of frequencies around zero:

C(e−iω)A(0) = A(e−iω) =


a11(e−iω) 0 01×(N−2)

a21(e−iω) a22(e−iω) 01×(N−2)

Ã31(e−iω) Ã32(e−iω) Ã33(e−iω)


where Ã31(e−iω) is the first column of the matrix A(e−iω) after dropping the two first elements a11(e−iω)

and a21(e−iω) and the column vector Ã32(e−iω) is the corresponding second column and the submatrix

A33(e−iω) contains the other columns of A(e−iω) (except the two first rows of those columns). Proceeding

with a frequency band in a neighboorhood of ω = 0 allows to perform a statistical test on the assumption

that one stochastic trend against the alternative hypothesis of two stochastic trends drives the long-run

movements of TFP.

8.4 Recoverability and expectations-driven fluctuations

Chahrour and Jurado (2021) propose an identification condition of structural shocks, which is less restrictive

than the usual condition of fundamentalness—the so-called recoverability. This condition only imposes that

the structural shocks can be recovered from the past, present and future observables available to the econo-

metrician. Indeed, the econometrician has access to the entire sample to identify the structural shocks and

not only to the information available in the observables up to time t as required by fundamentalness. Said

differently, the econometrician can also use available observables at time t + 1, . . . , t + h to infer structural

shocks at time t. In this respect, the necessary and sufficient condition of recoverability depends on the in-

vertibility of the Fourier transform of the two-side moving average representation of the observable variables

as function of the structural shocks.

Consider the example in Section 3 of Chahrour and Jurado (2021) regarding the identification of a noise and

a fundamental structural shock about technology as potential drivers of business cycle fluctuations. Their

VAR procedure can be summarized as follows. On the one hand, the VAR estimation is conducted with a

set of observables/variables including a technology measure (at). On the other hand, one can get the joint

spectral density of technology at as well as the optimal forecast of technology bt implied by the VAR. Finally,

the identification of the structural shocks is then achieved by matching the joint spectral density resulting

from the VAR and the joint spectral density implied by the structural two-side moving average of at and bt

as function of the two structural shocks for the interval ω ∈ [−π, π]. In our framework, this can be written

as:

g(α, β̂, ω) = vech
(
Ĉab(e

−iω)Σ̂Ĉab(e
−iω)∗ −Aab(e−iω)Aab(e

−iω)∗
)

for ω ∈ [−π, π] where Ĉab(e
−iω)Σ̂Ĉab(e

−iω)∗ is the estimated joint spectral density of the technology series

at and its optimal forecast bt implied by the VAR, and Aab(e
−iω)Aab(e

−iω)∗ is the structural joint spectral

density compatible with the identification restrictions. Then Chahrour and Jurado (2021) solves a minimiza-

tion problem by using the factorization proposed by Rozanov (1967), and thus can derive the mapping from
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observables to structural disturbances, as well as the impulse response functions and the (historical) variance

decomposition. An optimal two-step C-ALS estimator can then be performed allowing to formally test the

imposed identification restrictions that lead to recover the noise and the fundamental technology shocks. In

the event of rejection, the measure of technology at could be contaminated by measurement errors or short-

run fluctuations such that the identification restrictions hold only for medium-run and long-run frequencies.

The C-ALS framework is well-suited to investigate such a conjecture.

8.5 Common features in the frequency domain

Since the seminal contribution of Engle and Kozicki (1993), a common feature can be defined as follows: a

feature is common if a group of variables of interest possesses this feature and a combination of these vari-

ables does not have the feature. Canonical examples include cointegration in which some (all) variables have

stochastic trends but some linear combinations of these variables do not have stochastic trends; common

serial correlation in which some linear combinations of serially correlated variables correspond to a weak

white noise process (Engle and Kozicki, 1993); common cycles in which linear combinations of the cycle

components of a group of variables have no cyclical component (Vahid and Engle, 1993, and Hecq, Palm

and Urbain, 2006).9 It turns out that this concept of a common feature can be extended to the existence

of common business cycles, i.e. a set of series is characterized by some common business cycle fluctuations

whereas some linear combinations does not have this feature.10

To go one step further, suppose that the number of structural shocks is less than the number of vari-

ables and thus that there exist some common business cycles, say on a frequency band ω ∈ [ω, ω]. In this

case, it turns out that the matrix C(e−iω) have less than full rank for all ω ∈ [ω, ω], meaning that the left

null space of the matrix C(e−iω) is non-empty:

C(e−iω)A(0) = A(e−iω) =
[
A1(e−iω) A2(e−iω)N×s

]
=
[
A1(e−iω) 0N×s

]
.

Accordingly, there exists a set of s linear independent combinations such that the rank of the matrix A(e−iω)

is equal to N − s and thus this rank restriction allows the identification of a subset of structural shocks.

Moreover, since these linear combinations define a set of estimating equations, an overidentification test (see

Proposition 3.3) can be conducted and interpreted as a reduced-rank test of common business cycles.

9 Unreliability of the long-run identification scheme

We discuss the unreliability of the long-run identification scheme. It can be explained from these two

fundamental relationships:

C(1)A(0) = A(1), (9.8)

9Other common features have been proposed in the literature which include common seasonally Engle and Hylleberg, 1996),

codependence (Gouriéroux and Peaucelle, 1992), common structural breaks (Hendry, 1999) among others.
10Angeletos, Collard and Dellas (2020) find some support for a main business-cycle driver which implies that the business

cycles fluctuations can be explained by a small number of structural shocks.
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and

A(L) = C(L)A(0) = C(L)C(1)−1A(1), . (9.9)

It turns out that the long-run identification scheme conducts to reliable inference if and only if the A(1) is

consistently estimated in finite samples and especially the lag order p is not misspecified. Otherwise, any

inconsistent estimate of A(1) leads to unreliable long-run effects of shocks (in finite samples). This in turn

is transferred to the estimates of the dynamic multipliers of the structural shocks by virtue of Eq. (9.9).11

In particular, one cannot form asymptotically correct confidence intervals for impulse responses of each

structural shock and there is no consistent test that an individual impulse response coefficient is zero (Faust

and Leeper, 1997). The fundamental issue is that the true data generating process may have an infinite-

ordered VAR representation with Φ0(L) =
∑∞
j=1 Φ0,jL

j and thus the infinite sequence Φ0 = {Φ0,1,Φ0,2, · · · }
must be approximated by a finite sequence Φ̃p = {Φ1, · · · ,Φp} (i.e., a misspecified VAR model). Such

finite-parameter approximations to infinite lag distributions have been studied extensively by Sims (1971,

1972) and Pötscher (2002), especially for least-squares criterion.12 An accurate approximation from the

point of view of least-squares fit does not imply an accurate approximation of the long run effect.13 This

means that convergence of the sequence Φ̃p is not sufficient to guarantee the convergence of some functions

of those parameters (Sims, 1971,1972; Pötscher, 2002) as pointwise convergence does not imply (locally)

uniform convergence. More specifically, functions of a lag distribution (e.g., the sum of coefficients) are in

general discontinuous with respect to the metric implied be least-squares estimation.14 Say differently, the

best least-squares approximation of Φ0, Φp, might be arbitrarily close (w.r.t. L2-norm) whereas Φ(1) and

Φ̃p(1) are arbitrarily far apart and thus converge to different limits. This stems also from the fact that

the least-squares criterion at a single frequency admits a zero Lebesgue measure. From a practical point of

view, it turns out that standard errors of estimates or the coefficient of determination might approach their

optimum values in arbitrarily large samples while the estimated sum of coefficients remains arbitrarily far

from their true values. Inference based on the sum of coefficients is then highly unreliable unless Φ is in fact

contained in Φp, and not only close to it (Pötscher, 2002).15

11Using Monte Carlo simulations, Erceg et al. (2005) and Chari et al. (2008) study the extent of these small-sample estimation

problems.
12A similar argument can be found in Christiano et al. (2006a).
13See Faust (1996,1999) for an application of this result to unit root tests and confidence intervals for points on spectrum.
14The functional S∆X → S∆X(0), with S∆X the spectrum of the stochastic process (∆Xt), is highly discontinuous w.r.t.

L2-distance. This makes the problem fall into the category of ill-posed problem (Sims, 1972; Pötscher, 2002).
15Note that it might occur regardless of how large the sample size is.
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[29] Gaĺı, J. (1999), ”Technology, Employment and the Business Cycle: So Technology Shocks Explain

Aggregate Productivity?”, American Economic Review, vol. 41, 1201-1249.
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Figure 2: Contemporaneous bias and RMSE using a VAR(2) model with ρ = .95 and δ = 0
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 3: Cumulative Bias and RMSE up to 12 quarters using a VAR(2) model with ρ = .95 and δ = 0
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.

33



Figure 4: Impulse Responses for the first shock on second variable with n = 60, ρ = .95 and δ = 0
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Note: Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo experiments.
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Figure 5: Contemporaneous bias and RMSE at the impact using a VAR(2) model with ρ = .95 and δ = .04
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Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 6: Cumulative Bias and RMSE up to 12 quarters using a VAR(2) model with ρ = .95 and δ = .04

0.05 0.1 0.15 0.2

Frequencies

1

2

3

4
First shock on first variable: RMSE

0.05 0.1 0.15 0.2

Frequencies

0

2

First shock on first variable: bias

0.05 0.1 0.15 0.2

Frequencies

2
4
6
8

10
12

Second shock on first variable: bias

0.05 0.1 0.15 0.2

Frequencies

2
4
6
8

10
12

Second shock on first variable: RMSE

0.05 0.1 0.15 0.2

Frequencies

0

5

10

First shock on second variable: bias

0.05 0.1 0.15 0.2

Frequencies

5

10

First shock on second variable: RMSE

0.05 0.1 0.15 0.2

Frequencies

5

10

15
Second shock on second variable: bias

0.05 0.1 0.15 0.2

Frequencies

5

10

15
Second shock on second variable: RMSE

Note: The solid line, long dashed line, dash-dotted line, and dotted lines represent the LR, second-step C-ALS, Max-share

and first-step estimators, respectively.
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Figure 7: Impulse Responses for the first shock on second variable with n = 60, ρ = .95 and δ = .04

0 5 10 15 20

Periods after shocks

-0.5

0

0.5

1

1.5

2

2.5

3
IRF: LR

0 5 10 15 20

Periods after shocks

-0.5

0

0.5

1

1.5

2

2.5

3
IRF: First-step

0 5 10 15 20

Periods after shocks

-0.5

0

0.5

1

1.5

2

2.5

3
IRF: C-ALS

0 5 10 15 20

Periods after shocks

-0.5

0

0.5

1

1.5

2

2.5

3
IRF: MS

Note: Confidence intervals are based on the 95–percentile from 10,000 Monte–Carlo experiments.
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