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1 Introduction

As the GMM is limited in a number of ways (e.g., the existence of a bias, the requirement to compute a

particular weighting matrix), a number of alternative estimators have been proposed: the Continuous Updated

Estimator (CUE, Hansen, Heaton and Yaron, 1996), the Empirical Likelihood estimator (EL, Qin and Lawless,

1994) and the Exponential Tilting estimator (ET, Kitamura and Stutzer, 1997). These three estimators can be

viewed as special cases of the Generalized Empirical Likelihood (GEL) framework considered by Smith (1997).

For example, the CUE shares the same objective function as the GMM but with a weighting matrix that

gets continuoulsy updated as opposed to only once under two-steps estimation (Hansen et al. (1996)). Newey

and Smith (2004) showed (in an i.i.d. setting) that the GEL and GMM estimators have the same asymptotic

distribution but have different higher order properties. It was shown that the expression for the second order

asymptotic bias of GEL has fewer components than the asymptotic bias for the GMM (with EL having the

fewest). Anatolyev (2005) extended these findings to allow for serial correlation and showed that smoothing the

moment conditions reduces bias even further. These findings generated interesting avenues of theoretical and

empirical reseach.

An important aspect of the validation of an estimation strategy is the stability of the parameters and of the

objective function. Both the GMM and the GEL approaches assume that parameters and moment restrictions

are stable across time. Detecting structural changes is important and given that the GEL methods have

interesting properties, it is important to study structural change tests using these estimators.

We introduce a class of partial-sample GEL (PS-GEL) estimators. As an original contribution to the

literature, we establish that the weak convergence of the sequence of PS-GEL estimators is a function of

Brownian motions. Also, the sequence of PS-GEL Lagrange multiplier estimators weakly converges to a function

of Brownian motions and is asymptotically uncorrelated with the sequence of PS-GEL estimators. These

findings allow us to demonstrate that stability tests based on the Lagrange multipliers are stability tests for

the overidentifying restrictions that are then orthogonal to the identification conditions. These asymptotic

distributions are derived under the null hypothesis of stability and general alternatives of structural change (see

Sowell, 1996) for an unknown breakpoint. The distributions are derived for dependent data characterized as

near epoch dependent. Amongst temporal dependency concepts, near epoch dependency is the least restrictive

and allows for certain nonstationarity as well as for the analysis of local alternatives.

We consider cases of structural change which can occur in the parameters of interest or in the overidentifying

restrictions used to estimate these parameters. First, we study standard Wald (GELW ), Lagrange multiplier

(GELM) and likelihood ratio (GELR) test statistics for parameters instability in cases of pure structural change

test when the entire parameter vector is subject to structural change and partial structural change where only

a subset of the parameter vector is subject to structural change. We show that these statistics, when computed

with properly smoothed moment conditions, follow the same asymptotic distribution as in the GMM context

(Andrews, 1993). Second, we examine tests for the stability of overidentifying restrictions because changes could

be attributed to violations of the moment conditions themselves. Equivalent test statistics to Hall and Sen’s
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(1999) statistics in the GMM context are adapted to the GEL with smoothed moment conditions. Two new

tests specific to the GEL framework are also proposed to detect instability of the overidentifying restrictions.

We show that these new statistics have the same asymptotic distribution, at first order, as the distribution

derived by Hall and Sen (1999) when the moment conditions are properly smoothed. A related paper (Guay

and Lamarche, 2012) uses and extend the theoretical results derived in this paper to propose Pearson-type

based statistics based on implied probabilities to detect structural change. The Pearson-type tests are easily

computed and have a nice intuitive interpretation. Recently, Hall et al. (2011) propose Andrews-based tests but

derived from an information-metric perspective.

In the last decade, weak identification has received a large amount of attention (Stock and Wright, 2000).

When the presence of weak instruments is suspected, structural change tests robust to weak identification need

to be implemented so that the correct distributions can be used to perform inference. This paper proposes test

statistics of structural change in the context of weakly identified or completely unidentified cases for the GEL

framework. The first one is based on a renormalized criterion function of GEL evaluated at a restricted partial-

sample estimator. The second is asymptotically equivalent to the first and is based on the Lagrange multiplier

of the restricted partial-sample estimator. The second group of tests includes a test statistic derived from a

GEL criterion that uses moment conditions corresponding to the first-order conditions of the restricted PS-GEL

estimator whose dimension is identical to the number of parameters and a statistic based on the corresponding

Lagrange multiplier. Under weak identification or in the completely unidentified case, these test statistics are

not asymptotically pivotal. As in Caner (2007), we show that their limits are bounded by a distribution which

is nuisance (parameter) free and robust to identification problems. For the first group, the asymptotic bound

is a function of the number of moment conditions while for the second group, the asymptotic bound depends

on the number of parameters. The derivation of the bound under general local alternatives shows that the first

group can have power against instability of parameter values or overidentifying restrictions while the second

group is specifically designed to detect parameters instability allowing for test statistics to be quite flexible.

Our simulation study, based on the widely used design of Stock and Wright (2000), makes use of the

exponential tilting estimation method to evaluate the performance of the tests under different types of parameter

identification. With standard identification we find that GEL-based tests perform very well (and better than

GMM-based tests). Things deterioate quickly with weak parameter identification. The robust GEL-based tests

(for example our GELR, GELIPSR and GELK tests presented in section 3.3) performed well in terms of: 1)

the presence and location of a structural change and 2) the nature of identification. These test statistics should

then be added to the Pearson-type statistics based on implied probabilities to detect structural change presented

by Guay and Lamarche (2012) to complement the specification and testing arsenal of the practitioners.

The paper is organized as follows. Section 2 presents the full-sample and partial-sample GMM and GEL

estimators. Section 3 presents the test statistics and their respective asymptotic distributions. The simulation

results are in Section 4 and the proofs are in the Appendix.
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2 Full and partial-samples GMM and GEL estimators

To establish the asymptotic distribution theory of tests for structural change we need to elaborate on the spec-

ification of the parameter vector in a generic setup. We will consider parametric models indexed by parameters

(β, δ) where β ∈ B, with B ⊂ Rr and δ ∈ ∆ ⊂ Rν . Following Andrews (1993) we make a distinction between

pure and partial structural change. Pure structural change is when no subvector δ appears and the entire pa-

rameter vector is subject to structural change under the alternative while partial structural change corresponds

to cases where only a subvector β is subject to structural change under the alternative hypothesis. The generic

null of parameter stability can be written as follows:

H0 : βt = β0 ∀t = 1, . . . , T. (1)

The assumption under the alternative hypothesis is that at some point in the sample there is a single

structural break, for instance:

βt =

{
β1(s) t = 1, ..., [Ts]

β2(s) t = [Ts] + 1, ..., T

where s determines the fraction of the sample before and after the assumed breakpoint and [·] denotes the

greatest integer function generated under such conditions. The separation [Ts] represents a possible breakpoint

which is governed by an unknown parameter s. Hence, consider a parameter vector which encompasses any kind

of partial or pure structural change involving a single breakpoint. In particular, we consider a p dimensional

parameter vector θ = (β′1, β
′
2, δ
′)′ where β1 and β2 ∈ B ⊂ Rr and θ ∈ Θ = B ×B ×∆ ⊂ Rp where p = 2r + ν.

The parameters β1 and β2 apply to the samples before and after the presumed breakpoint and the null implies

that:

H0 : β1 = β2 = β0. (2)

Thus, under the null, θ0 = (β′0, β
′
0, δ
′
0)
′
.

We formulate all of our models in terms of θ to be as general as possible. Special cases could be considered

whenever restrictions are imposed in the general parametric formulation. One such restriction that is often

seen in practice would be that θ0 = (β′0, β
′
0)′, which would correspond to the null of a pure structural change

hypothesis. Following the analysis of Sowell (1996b) and of Hall and Sen (1999), once we have defined the

moment conditions we also translate these conditions into overidentifying restrictions and relate these two types

of moment conditions to structural change tests.

2.1 Definitions

We assume a triangular array of random variables {xT,t : 1 ≤ t ≤ T, T ≥ 1} that are supposed to be near epoch

dependent which allows temporal dependence but does not impose stationarity.1 Triangular arrays of random

1See Section 5.1 in the Appendix for more details.
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variables are required to study local power of the structural change tests, however, to simplify the notation xT,t

is denoted as xt hereafter. Suppose a q × 1 vector function of data g(xt, β, δ) which depends on some unknown

(r + ν)-vector of parameters (β′, δ′)
′ ∈ B × ∆ ⊂ Rr+ν which are estimated by the population orthogonality

conditions

1

T

T∑
t=1

E[g(xt, β0, δ0)] = 0.

These moment conditions allow for nonstationary data as in Andrews (1993).

In this study of a single structural change we consider two subsamples, the first is based on observations

t = 1, . . . , [Ts] and the second covers t = [Ts]+1, . . . , T where s ∈ S ⊂ (0, 1). In the GEL setting, the parameter

vector is augmented by a vector of auxiliary parameters λ where each element of this vector is associated with

an element of the smoothed moment conditions gtT (θ) to be defined below. The generic null hypothesis of no

structural change for this vector of auxiliary parameters is written as follows:

H0 : λt = λ0 = 0 ∀t = 1, . . . , T. (3)

As for the parameter vector β, the tests we consider assume as alternative that at some point in the sample

there is a single structural break, namely:

λt =

{
λ1(s) t = 1, ..., [Ts]

λ2(s) t = [Ts] + 1, ..., T.

Thus, under the null H0 : λ1 = λ2 = λ0 = 0. We will show later that a structural change in λ is associated with

instability in the overidentifying restrictions.

As in the GMM context an adjustment for the dynamic structure of g(xt, θ) is also required in the GEL

context (see Kitamura and Stutzer, 1997, Smith, 2000, Smith, 2011 and Guggenberger and Smith, 2008). The

adjustment consists of smoothing the original moment conditions g(xt, θ). Defining the smoothed moment

conditions as

gtT (β, δ) =
1

MT

t−1∑
m=t−T

k

(
m

MT

)
g (xt−m, β, δ)

for t = 1, . . . , T and MT is a bandwidth parameter, k(·) a kernel function and we define kj =
∫∞
−∞ k(a)jda. Let

ρ(φ) be a function of a scalar φ that is concave on its domain, an open interval Φ that contains 0, the GEL

criteria is then given by:

T∑
t=1

[ρ(kλ′gtT (θ))− ρ(0)]

T

where k = k1
k2

(see Smith, 2011).

The restricted Generalized Empirical Likelihood (GEL) estimator using the entire sample is formally defined

as:
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Definition 2.1. Let Λ̃T (β, δ) = {λ : kλ′gtT (β, δ) ∈ Φ, t = 1, . . . , T} with k = k1
k2

. Then, the full-sample GEL

estimator {(β̃T , δ̃T )} is a sequence of random vectors such that:(
β̃′T , δ̃

′
T

)′
= arg min

(β,δ)∈B×∆
sup

λ∈Λ̃T (β,δ)

T∑
t=1

[ρ (kλ′gtT (β, δ))− ρ(0)]

T

where ρj() = ∂jρ()/∂φj and ρj = ρj(0) for j = 1, 2, . . . .

We call θ̃T =
(
β̃′T , β̃

′
T , δ̃
′
T

)′
the full-sample GEL estimator of θ. The objective function is normalized so that

ρ1 = ρ2 = −1 (see Smith, 2011). As mentioned earlier, the GEL estimator admits a number of special cases

recently proposed in the econometrics literature. The CUE corresponds to the following quadratic function

ρ(φ) = −(1 + φ)2/2. The EL estimator is a GEL estimator with ρ(φ) = ln(1− φ) and finally the ET estimator

is obtained with ρ(φ) = − exp(φ).

More precisely, the GEL estimator is obtained as the solution of a saddle point problem. Firstly, the criterion

is maximized with respect to the parameter vector (β, δ):

λ̃T (β, δ) = arg sup
λ∈Λ̃T (β,δ)

T∑
t=1

[ρ (kλ′gtT (β, δ))− ρ(0)]

T
.

Secondly, the GEL estimator
(
β̃′T , δ̃

′
T

)′
is given by the following minimization problem:

(
β̃′T , δ̃

′
T

)′
= arg min

(β,δ)∈B×∆

T∑
t=1

[
ρ
(
kλ̃T (β, δ)

′
gtT (β, δ)

)
− ρ(0)

]
T

.

To characterize the asymptotic distribution we need to define the following gradient matrices:

Gβ = lim
T→∞

1

T

T∑
t=1

E∂g(xt, β0, δ0)/∂β′ ∈ Rq×r,

Gδ = lim
T→∞

1

T

T∑
t=1

E∂g(xt, β0, δ0)/∂δ′ ∈ Rq×ν ,

and the long run covariance matrix of the moment conditions is defined as:

Ω = lim
T→∞

V ar

(
1√
T

T∑
t=1

g(xt, β0, δ0)

)
.

The smoothed moment conditions are obtained the truncated kernel (see Kitamura and Stutzer, 1997 and

Guggenberger and Smith, 2008) defined as

k(x) = 1 if |x| ≤ 1 and k(x) = 0 otherwise,

yielding2

gtT (β, δ) =
1

2KT + 1

KT∑
m=−KT

g(xt−m, β, δ)

2We focus on the truncated kernel to simplify the notation and the proofs. Results derived in the following also holds for the

class of kernels K1 considered in Andrews (1991). Moreover Anatolyev (2005) establishes that among positive kernels, only the

uniform truncated kernel proposed by Kitamura and Stutzer (1997) removes the bias component involved by the third moments of

the moment conditions.

6



where KT is related to the bandwidth parameter MT . To handle the endpoints in the smoothing we use the

approach of Smith (2011) and Guggenberger and Smith (2008) which sets

gtT (β, δ) =
1

2KT + 1

min{t−1,KT }∑
m=max{t−T,−KT }

g(xt−m, β, δ).

Note that for this kernel k = k1
k2

= 1. A consistent estimator of the long run covariance matrix is then given

by:

Ω̃T =
2KT + 1

T

T∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′.

The weighting matrix thus obtained using this type of kernel is similar to the matrix obtained with the

Bartlett kernel estimator of the long run covariance matrix of the moment conditions (see Smith, 2011). Along

the same lines we will define the derivatives of the smoothed moment conditions as:

GtT (β, δ) =
1

2KT + 1

KT∑
m=−KT

∂g(xt−m, β, δ)

∂ (β′, δ′)
.

If we consider a possible breakpoint [Ts], we need to define the vector of auxiliary parameters λ(s) = (λ′1, λ
′
2)
′

where λ1 is the vector of the auxiliary parameters for the first part of the sample (e.g., t = 1, . . . , [Ts]) and

λ2 is the vector for the second part of the sample (t = [Ts] + 1, . . . , T ). The sequence of partial-sample GEL

estimators for s ∈ S based on the first and the second subsamples are formally defined as:

Definition 2.2. Let ρ(φ) be a function of a scalar φ that is concave on its domain, an open interval Φ that

contains 0. Also, let Λ̂T (θ, s) = {λ(s) = (λ′1, λ
′
2)
′

: λ(s)′gtT (θ, s) ∈ Φ, t = 1, . . . , T} for all s ∈ S, where

gtT (θ, s) = (gtT (β1, δ)
′, 0′)

′ ∈ R2q×1 for t = 1, . . . , [Ts] and gtT (θ, s) = (0′, gtT (β2, δ)
′)
′ ∈ R2q×1 for t =

[Ts] + 1, . . . , T with λ(s) = (λ′1, λ
′
2)
′ ∈ R2q×1. A sequence of partial-sample Generalized Empirical Likelihood

(PS-GEL) estimators {θ̂T (s)} is a sequence of random vectors such that:

θ̂T (s) = arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

T∑
t=1

[ρ(λ(s)′gtT (θ, s))− ρ(0)]

T

= arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β1, δ))− ρ(0)]

T
+

T∑
t=[Ts]+1

[ρ(λ′2gtT (β2, δ))− ρ(0)]

T

 .

The first-order conditions corresponding to the Lagrange multiplier λ are obtained from the maximization of

the partial-sample GEL criterion for a given β1, β2, δ. Thus for a given s, λ̂T (θ, s) =
(
λ̂1T (β1, δ, s)

′, λ̂2T (β2, δ, s)
′
)′

where

λ̂1T (β1, δ, s) = arg sup
λ1∈Λ̂1T (β1,δ,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β1, δ))− ρ(0)]

T
,

λ̂2T (β2, δ, s) = arg sup
λ2∈Λ̂2T (β2,δ,s)

T∑
t=[Ts]+1

[ρ(λ′2gtT (β2, δ))− ρ(0)]

T
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with Λ̂1T (β1, δ, s) = {λ1 : λ′1gtT (β1, δ) ∈ Φ, t = 1, . . . , [Ts]} and Λ̂2T (β2, δ, s) = {λ2 : λ′2gtT (β2, δ) ∈ Φ, t =

[Ts] + 1, . . . , T}. The corresponding first-order conditions are given by:

1

T

[Ts]∑
t=1

ρ1

(
λ̂1T (β1, δ, s)

′gtT (β1, δ)
)
gtT (β1, δ) = 0

1

T

T∑
t=[Ts]+1

ρ1

(
λ̂2T (β2, δ, s)

′gtT (β1, δ)
)
gtT (β2, δ) = 0.

The partial-sample GEL estimators θ̂T (s) =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′

)′
are the minimizer of the partial-

sample GEL criterion. By writing λ̂1T (s) = λ̂1T (β̂1T (s), δ̂T (s), s) and λ̂2T (s) = λ̂2T (β̂2T (s), δ̂T (s), s), the

corresponding first-order conditions are:

1

T

[Ts]∑
t=1

ρ1

(
λ̂1T (s)′gtT (β̂1T (s), δ̂T (s))

)
GβtT (β̂1T (s), δ̂T (s)))′λ̂1T (s) = 0,

1

T

T∑
t=[Ts]+1

ρ1

(
λ̂2T (s)′gtT (β̂2T (s), δ̂T (s))

)
GβtT (β̂2T (s), δ̂T (s))′λ̂2T (s) = 0,

and writing λ̂T (θ̂T (s), s) = λ̂T (s) , the first-order conditions for δ are

1

T

T∑
t=1

ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GδtT (θ̂T (s), s)′λ̂T (s) = 0.

The next Theorem shows the convergence in probability of {θ̂T (s), λ̂T (s), T ≥ 1} and the corresponding rate

of convergence.

Theorem 2.1. If Assumptions 6.1, 6.2, 6.3, 6.5, 6.6 and 6.7 are satisfied then for every sequence of PS-GEL es-

timators {θ̂T (s), λ̂T (s), T ≥ 1}, sups∈S

∥∥∥θ̂T (s)− θ0

∥∥∥ p→ 0 and sups∈S

∥∥∥λ̂T (s)
∥∥∥ p→ 0. Moreover sups∈S

∥∥∥λ̂T (s)
∥∥∥ =

Op

[(
T/(2KT + 1)2

)−1/2
]

and sups∈S

∥∥∥ 1
T

∑T
t=1 gtT (θ̂T (s), s)

∥∥∥ = Op(T
−1/2).

Proof: See the Appendix.

Let us define the long run covariance matrix Ω(s) as

Ω(s) = lim
T→∞

V ar

(
1√
T

[ ∑[Ts]
t=1 g(xt, β0, δ0)∑T

t=[Ts]+1 g(xt, β0, δ0)

])

which under the null (2) is asymptotically equal to

Ω(s) =

[
sΩ 0

0 (1− s)Ω

]
.

Now we define the estimator

Ω̂T (s) =

[
sΩ̂1T (s) 0

0 (1− s)Ω̂2T (s)

]
,
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with

Ω̂1T (s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β̂1T (s), δ̂T (s))gtT (β̂1T (s), δ̂T (s))′

and

Ω̂2T (s) =
2KT + 1

T − [Ts]

T∑
t=[Ts]+1

gtT (β̂2T (s), δ̂T (s))gtT (β̂2T (s), δ̂T (s))′.

Finally let

G(s) =

[
sGβ 0 sGδ

0 (1− s)Gβ (1− s)Gδ

]
∈ R2q×(2r+ν).

We denote {B(s) : s ∈ [0, 1]} as q-dimensional vectors of mutually independent Brownian motions on [0, 1]

and define

J(s) =

[
Ω1/2B(s)

Ω1/2(B(1)−B(s))

]

where B(π) is a q-dimensional vector of standard Brownian motions.

The next Theorem shows the weak convergence of {θ̂T (s), λ̂T (s), T ≥ 1}.

Theorem 2.2. Under Assumptions 6.1 to 6.12 and the null of no structural change, every sequence of PS-GEL

estimators {θ̂T (·), λ̂T (·), T ≥ 1} satisfies

√
T
(
θ̂T (·)− θ0

)
⇒

(
G(·)′Ω(·)−1G(·)

)−1
G(·)′Ω(·)−1J(·),

√
T

2KT + 1
λ̂T (·) ⇒

(
Ω(·)−1 − Ω(·)−1

(
G(·)′Ω(·)−1G(·)

)−1
G(·)′Ω(·)−1

)
J(·)

as a process indexed by s ∈ S, where S has closure in (0,1) and the sequence of GEL estimators θ̂T (·) and λ̂T (·)
are asymptotically uncorrelated.

Proof: See the Appendix.

The purpose of the next subsection is to refine the null hypothesis of no structural change. Such a refinement

enables us to construct various tests for structural change in the spirit of Sowell (1996a) and Hall and Sen (1999).

2.2 Refining the null hypothesis

The moment conditions for the full sample under the null can be written as: Eg(xt, β0, δ0) = 0,∀t = 1, . . . , T.

Following Sowell (1996a), we can project the moment conditions on the subspace identifying the parameters and

the subspace of overidentifying restrictions. In particular, considering the (standardized) moment conditions

for the full-sample GMM estimator, such a decomposition corresponds to:

Ω−1/2Eg(xt, β0, δ0) = PGΩ−1/2Eg(xt, β0, δ0) + (Iq − PG)Ω−1/2Eg(xt, β0, δ0),
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where PG = Ω−1/2G
[
G′Ω−1G

]−1
G′Ω−1/2. The first term is the projection identifying the parameter vector

and the second term is the projection for the overidentifying restrictions. The projection argument enables us to

refine (split) the null hypothesis of stability of moment conditions. For instance, following Hall and Sen (1999)

we can consider the null, denoted HI
0 (s), for the case of a single breakpoint in β by the projection on the space

corresponding to Gβ , which separates the identifying restrictions across the two subsamples:

HI
0 (s) :

{
PGβΩ−1/2E[g(xt, β0, δ0)] = 0 ∀t = 1, . . . , [Ts]

PGβΩ−1/2E[g(xt, β0, δ0)] = 0 ∀t = [Ts] + 1, . . . , T.

Moreover, the overidentifying restrictions are stable if the restrictions hold before and after the breakpoint.

This is formally stated as HO
0 (s) = HO1

0 (s) ∩HO2
0 (s) with:

HO1
0 (s) : (Iq − PG)Ω−1/2E[g(xt, β0, δ0)] = 0 ∀t = 1, . . . , [Ts]

HO2
0 (s) : (Iq − PG)Ω−1/2E[g(xt, β0, δ0)] = 0 ∀t = [Ts] + 1, . . . , T.

We can then write the general null hypothesis of stability as H0 : HI
0 (s) & HO

0 (s). The projection reveals

that instability must be a result of a violation of at least one of the three hypotheses: HI
0 (s), HO1

0 (s) or HO2
0 (s).

Note that because the overidentifying restrictions are not used in estimation, we can test their stability in each

subsample separately. In contrast, because the identifying restrictions are used in estimation we can always

find parameter values that satisfy them in each subsample. Hence we can not split HI
0 . Various tests can be

constructed with local power properties against any particular one of these three null hypotheses (and typically

no power against the others). To elaborate further on this we consider a sequence of local alternatives based on

the moment conditions.

Assumption 2.1. A sequence of local alternatives is specified as:

Eg(xt, β0, δ0) = h(η, τ,
t

T
)/
√
T (4)

where h(η, τ, r), for r ∈ [0, 1], is a q-dimensional function. The parameter τ locates structural changes as a

fraction of the sample size and the vector η defines the local alternatives3. These local alternatives are chosen

to show that the structural change tests presented in this paper have non trivial power against a large class of

alternatives. Also, our asymptotic results can be compared with Sowell’s results for the GMM framework.

If we now define

J∗(s) =

[
Ω1/2B(s)−H(s)

Ω1/2(B(1)−B(s))− (H(1)−H(s))

]

where H(s) =
∫ s

0
h(η, τ, r)dr.

3The function h(·) allows for a wide range of alternative hypotheses (see Sowell, 1996a). In its generic form it can be expressed

as the uniform limit of step functions, η ∈ Ri, τ ∈ Rj such that 0 < τ1 < τ2 < . . . < τj < 1 and θ∗ is in the interior of Θ. Therefore

it can accommodate multiple breaks.
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Theorem 2.3. Under Assumptions 6.1 to 6.12 and the alternative (4), every sequence of PS-GEL estimators

{θ̂T (·), λ̂T (·), T ≥ 1} satisfies

√
T
(
θ̂T (·)− θ0

)
⇒

(
G(·)′Ω(·)−1G(·)

)−1
G(·)′Ω(·)−1J∗(·),

√
T

2KT + 1
λ̂T (·) ⇒

(
Ω(·)−1 − Ω(·)−1

(
G(·)′Ω(·)−1G(·)

)−1
G(·)′Ω(·)−1

)
J∗(·)

as a process indexed by s ∈ S, where S has closure in (0,1).

Proof: See the Appendix.

3 Tests for structural change

3.1 Tests for parameter stability

In this section we introduce several tests for structural change for parameter stability and establish their asymp-

totic distribution. The null hypothesis is (2), or more precisely HI
0 (s). We present Wald, Lagrange multiplier

and likelihood ratio-type statistics based on smoothed moment conditions. The first is the usual Wald statistic

which is given by:

GELWT (s) = T
(
β̂1T (s)− β̂2T (s)

)′
V̂T (s)−1

(
β̂1T (s)− β̂2T (s)

)
,

where V̂T (s) =
(
V̂1T (s)/s+ V̂2T (s)/(1− s)

)
and V̂iT (s) =

(
Ĝβi,tT (s)′Ω̂−1

i,T (s)Ĝβi,tT (s)
)−1

for i = 1, 2 correspond-

ing to the first and the second parts of the sample and respectively:

Ĝβ1,tT (s) =
1

[Ts]

[Ts]∑
t=1

∂gtT (β̂1T (s), δ̂T (s))

∂β′1
,

Ĝβ2,tT (s) =
1

T − [Ts]

T∑
t=[Ts]+1

∂gtT (β̂2T (s), δ̂T (s))

∂β′2
.

The Lagrange multiplier statistic does not involve estimators obtained from subsamples, rather it relies on

full-sample parameter estimates. The GELMT (s) simplifies to (see Andrews, 1993) :

GELMT (s) =
T

s(1− s)
ĝ1T (θ̃T , s)

′Ω̃−1
T G̃βtT

[
(G̃βtT )′Ω̃−1

T G̃βtT

]−1

(G̃βtT )′Ω̃−1
T ĝ1T (θ̃T , s).

where

ĝ1T (θ̃T , s) =
1

T

[Ts]∑
t=1

gtT (β̃T , δ̃T ),

G̃βtT =
1

T

T∑
t=1

∂gtT (β̃T , δ̃T )

∂β′
.

Thus, the GELMT (s) test corresponds to the projection of the smoothed moment conditions evaluated at the

full-sample estimator on the subspace identifying the parameter vector β.
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The LR-type statistic is defined as the difference between the GEL objective function for the full sam-

ple evaluated at the restricted estimator and the partial-sample GEL function evaluated at the unrestricted

estimator:

GELRT (s) =
2T

2K + 1

 T∑
t=1

[
ρ(λ̂T (θ̃T , s)

′gtT (θ̃T , s))− ρ(0)
]

T
−

T∑
t=1

[
ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s))− ρ(0)

]
T


where λ̂T (θ̃T , s) =

(
λ̂1T (β̃T , δ̃T , s)

′, λ̂2T (β̃T , δ̃T , s)
′
)′

is the solution of the respective following maximization

problem:

λ̂1T (β, δ, s) = arg sup
λ1∈Λ̂1T (β,δ,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β, δ))− ρ(0)]

T

and

λ̂2T (β, δ, s) = arg sup
λ2∈Λ̂2T (β,δ,s)

T∑
t=[Ts]+1

[ρ(λ′2gtT (β, δ))− ρ(0)]

T

evaluated at the restricted estimator
(
β̃T , δ̃T

)
with Λ̂1T (β, δ, s) = {λ1 : λ′1gtT (β, δ) ∈ Φ, t = 1, . . . , [Ts]} and

Λ̂2T (β, δ, s) = {λ2 : λ′2gtT (β, δ) ∈ Φ, t = [Ts] + 1, . . . , T}.

We state now the main Theorem which establishes the asymptotic distribution of the Wald, LM and LR-type

test statistics under the null and local alternatives (4).

Theorem 3.1. Under the null hypothesis in (2) and Assumptions 6.1 to 6.12, the following processes indexed

by s for a given set S whose closure lies in (0, 1) satisfy:

GELWT (s)⇒ Qr(s), GELMT (s)⇒ Qr(s), GELRT (s)⇒ Qr(s),

with

Qr(s) =
BBr(s)

′BBr(s)

s(1− s)

and under local alternatives (4)

Qr(s) =
BBr(s)

′BBr(s)

s(1− s)
+

(H(s)− sH(1))
′
Ω−1/2PGβΩ−1/2 (H(s)− sH(1))

s(1− s)
,

where BBr(s) = Br(s) − sBr(1) is a Brownian bridge, Br is a r-vector of independent Brownian motions and

PGβ = Ω−1/2Gβ
[
(Gβ)′Ω−1Gβ

]−1
(Gβ)′Ω−1/2.

Proof: See the Appendix.

Given Theorem 3.1, we see that the asymptotic distributions under the null of the Wald, LM and LR-

type statistics are the same as those obtained by Andrews (1993) for the GMM estimator. The asymptotic

distribution under the null and the alternative given in the Theorem 3.1 is only valid for moment conditions

properly smoothed. Indeed, smoothing the moment conditions is necessary to obtain test statistics whose
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asymptotic distributions do not depend on nuisance parameters (except s), a finding that also holds for other

results in this paper.

When s is unknown, i.e. the case of unknown breakpoint, we can use the above result to construct statistics

across s ∈ S. In the context of maximum likelihood estimation, Andrews and Ploberger (1994) derived asymp-

totic optimal tests which are characterized by an average exponential form. The Sowell (1996a) optimal tests

are a generalization of the Andrews and Ploberger (1994) approach to the case of two measures that do not

admit densities. The most powerful test is given by the Radon-Nikodym derivative of the probability measure

implied by the local alternative with respect to the probability measure implied by the null hypothesis.

The optimal average exponential form is the following:

Exp = (1 + c)−r/2
∫
S

exp

(
1

2

c

1 + c
QT (s)

)
dF (s)

where various choices of c determine power against close or more distant alternatives and F (·) is the weight

function over the value of s ∈ S. For instance, Andrews (1993) suggests a possible breakpoint in the interval

S = [.15, .85] with an uniform weighting, namely, F (s) = s, be considered. Other intervals and weighting can

be considered depending on the a priori of the possible breakpoint. In the case of close alternatives (c = 0),

the optimal test statistic takes the average form, aveQT =
∫
S
QT (s)dF (s). For a distant alternative (c = ∞),

the optimal test statistics take the exponential form, expQT = log
(∫
S

exp[ 1
2QT (s)]dF (s)

)
. The supremum

form often used in the literature corresponds to the case where c/(1 + c) → ∞. The sup test is given by

supQT = sups∈S QT (s).

The following Theorem gives the asymptotic distribution for the exponential mapping for QT when QT

corresponds to the Wald, LM and LR-type tests under the null.

Theorem 3.2. Under the null hypothesis H0 in (2) and Assumptions 6.1 to 6.12, the following processes indexed

by s for a given set S whose closure lies in (0,1) satisfy:

supQT ⇒ sup
s∈S

Qr(s), aveQT ⇒
∫
S

Qr(s)dF (s), expQT ⇒ log

(∫
S

exp[
1

2
Qr(s)]dF (s)

)
,

with

Qr(s) =
BBr(s)

′BBr(s)

s(1− s)
.

This result is directly obtained through the application of the continuous mapping theorem (Pollard, 1984).

This implies that we can rely on the critical values tabulated for the case of GMM-based tests. For example, the

critical values for the statistics defined by the supremum over all breakpoints s ∈ S of GELWT (s), GELMT (s)

or GELRT (s) can be found in the original paper by Andrews (1993). The same is true for the Sowell (1996a)

and Andrews and Ploberger (1994) asymptotic optimal tests.

3.2 Tests for the stability of the overidentifying restrictions

The tests presented in the previous section are based on the projection of the moment conditions on the subspace

of identifying restrictions. In this section we are interested in testing against violations of HO1
0 (s) or HO2

0 (s).
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The local alternatives are given by the projection of the moment condition on the subspace orthogonal to the

identifying restrictions. For instance, in the case of a single breakpoint, the local alternatives by Assumption

2.1 correspond to:

HO1
A (s) : (Iq − PG)Ω−1/2E[g(xt, θ0)] = (Iq − PG)Ω−1/2 η1√

T
t = 1, . . . , [Ts]

HO2
A (s) : (Iq − PG)Ω−1/2E[g(xt, θ0)] = (Iq − PG)Ω−1/2 η2√

T
t = [Ts] + 1, . . . , T.

Sowell (1996b) introduced optimal tests for the violation of the overidentifying restrictions when the violation

occurs before the breakpoint corresponding to the alternative HO1
A . The statistic is based on the projection of

the partial sum of the full-sample estimator on the appropriate subspace. Hall and Sen (1999) introduce a test

for the case where the violation can occurs before or after the breakpoint i.e. HO1
A or HO2

A . The statistic is

based on the overidentifying restriction test for the sample before and after the considered breakpoint s.

We propose here statistics specially designed to detect instability before and after the possible breakpoint

that are equivalent to Hall and Sen’s statistics. In these tests, the entire parameter vector is allowed to vary for

both subsamples. Thus θ = (β′1, β
′
2)
′
. The first statistic is based on the same statistic as the one of Hall and

Sen (1999) except that it is computed with smoothed moment conditions. The OT (s) statistic is the sum of the

GMM-type criterion function for smoothed moment conditions in each subsample

OT (s) = O1T (s) +O2T (s)

where

O1T (s) =

 1√
[Ts]

[Ts]∑
t=1

gtT (β̂1T (s))

′ Ω̂−1
1T (s)

 1√
[Ts]

[Ts]∑
t=1

gtT (β̂1T (s))


and

O2T (s) =

 1√
(T − [Ts])

[T ]∑
t=[Ts]+1

gtT (β̂2T (s))

′ Ω̂−1
2T (s)

 1√
(T − [Ts])

∑
t=[Ts]+1

gtT (β̂2T (s))

 .
A new test for the GEL counterparts of OT (s) is based on the sum of its objective function for both

subsamples, namely:

GELOT (s) = GELO1T (s) +GELO2T (s)

where

GELO1T (s) =
2[Ts]

2K + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̂1T (s), s)′gtT (β̂1T (s)))− ρ(0)

]
[Ts]

and

GELO2T (s) =
2(T − [Ts])

2K + 1

T∑
t=[Ts]+1

[
ρ(λ̂2T (β̂2T (s), s)′gtT (β̂2T (s)))− ρ(0)

]
T − [Ts]

.

The duality between overidentifying restrictions and the auxiliary Lagrange multiplier parameters λ(·) for

the partial-sample estimation allows us to propose a new structural change test for overidentifying restrictions

based on λ(·). This statistic is defined as following:

GELMOT (s) = GELMO1T (s) +GELMO2T (s)
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where

GELMO1T (s) =
[Ts]

(2KT + 1)2
λ̂1T (β̂1T (s), s)′Ω̂1T (s)λ̂1T (β̂1T (s), s)

and

GELMO2T (s) =
[T − Ts]

(2KT + 1)2
λ̂2T (β̂2T (s), s)′Ω̂2T (s)λ̂2T (β̂2T (s), s).

The following Theorem provides the asymptotic distribution of QOT (s) which equals OT (s), GELOT (s)

and GELMOT (s) under the null and the alternative hypotheses for the supremum, average and exponential

mappings.

Theorem 3.3. Under the null of no structural change and Assumptions 6.1 to 6.12, the following processes

indexed by s for a given set S whose closure lies in (0,1) satisfy:

supQOT ⇒ sup
s∈s

Qq−r(s), aveQOT ⇒
∫
S

Qq−r(s)dF (s), expQOT ⇒ log

(∫
S

exp[
1

2
Qq−r(s)]dF (s)

)
,

with

Qq−r(s) =
Bq−r(s)

′Bq−r(s)

s
+

[Bq−r(1)−Bq−r(s)]′ [Bq−r(1)−Bq−r(s)]
(1− s)

and under alternatives (4)

Qq−r(s) =
Bq−r(s)

′Bq−r(s)

s
+

[Bq−r(1)−Bq−r(s)]′ [Bq−r(1)−Bq−r(s)]
(1− s)

+
H(s)′Ω−1/2 (I − PG) Ω−1/2H(s)

(1− s)
+

(H(1)−H(s))
′
Ω−1/2 (I − PG) Ω−1/2 (H(1)−H(s))

(1− s)

where Bq−r(s) is a q − r-dimensional vector of independent Brownian motion.

Proof: See the Appendix.

The last two terms in the asymptotic distribution under the alternative given in Theorem 3.3 show that

the test statistics have non trivial power to detect overidentifying restrictions instability before and after the

possible breakpoint point. Note also that the asymptotic distributions under the null and alternatives are

only valid for smoothed moment conditions. The asymptotic critical values for the interval S = [.15, .85] can

be found in Hall and Sen (1999). For other symmetric interval [s0, 1 − s0], critical values can be obtained

in Guay (2003), Tables 1 to 3 for a number of overidentifying restrictions divided by 2 (in those tables).

To see the equivalence, note that the critical values for the supremum, the average and the log exponential

mappings applied to
B2q−2r(s)′B2q−2r(s)

s are equivalent the critical values corresponding to
Bq−r(s)′Bq−r(s)

s +
(Bq−r(1)−Bq−r(s))′(Bq−r(1)−Bq−r(s))

1−s for a symmetric interval S4.

4This is verified by comparing the critical values in Hall and Sen (1999) and Guay (2003). The critical values in Table 1 in Hall

and Sen for q − r in our notation are the same as the critical values in Guay (2003) but for 2q − 2r.
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3.3 Structural change tests robust to weak identification or completely unidentified cases

We propose in this section test statistics robust to the nature of identification as defined by Stock and Wright

(2000). Consider the pure structural change case, namely: θ = (β′, β′)
′
. We first consider the null hypothesis

(2) of a one time structural break in the parameter values presented in Section 2, i.e.

H0 : β1 = β2 = β0. (5)

In this case, under the null θ0 = (β′0, β
′
0)
′
. To perform structural change tests, the parameters must be estimated

under the null and/or under the alternative. The dependence of structural change test statistics on a parameter

estimator complicates the derivation of the limit distribution in the weakly identified case. In the presence

of weak identification, some of the parameters are not consistent so we can’t assume the existence of partial

derivatives of the moment conditions with respect to the whole parameter vector. Consequently, traditional

structural change test statistics are not asymptotically pivotal. To solve this problem, Caner (2007) proposed

structural change statistics in the continuous updating GMM framework for which the asymptotic distributions

under the null are bounded. The corresponding asymptotic bound is robust to weak identification or completely

unidentified cases and is free of nuisance parameters (except the interval for the breakpoint, as usual). We

follow here the same strategy as Caner (2007) but in the GEL framework.

As mentioned, we need to replace θ0 by an estimator in order to perform stability tests. In that respect, let

us introduce a restricted estimator θ̃T (s) =
(
β̃T (s)′, β̃T (s)′

)′
obtained with the partial-sample GEL objective

function. A restricted partial-sample GEL estimator {θ̃T (s)} is a sequence of random vectors such that:

θ̃T (s) = arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

P̂ (θ(s), λ(s), s)

= arg min
θ∈Θ

sup
λ(s)∈Λ̂T (θ,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β))− ρ(0)]

T
+

T∑
t=[Ts]+1

[ρ(λ′2gtT (β))− ρ(0)]

T


= arg min

θ∈Θ

 sup
λ1∈Λ̂1T (β,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β))− ρ(0)]

T
+ sup
λ2∈Λ̂2T (β,s)

T∑
t=[Ts]+1

[ρ(λ′2gtT (β))− ρ(0)]

T


for all s ∈ S with λ(s) = (λ′1, λ

′
2)
′ ∈ R2q×1, Λ̂T (θ, s) = {λ(s) = (λ′1, λ

′
2)
′

: λ(s)′gtT (θ, s)} where gtT (θ, s) =

(gtT (β)′, 0′)
′ ∈ R2q×1 for t = 1, . . . , [Ts] and gtT (θ, s) = (0′, gtT (β)′)

′ ∈ R2q×1 for t = [Ts] + 1, . . . , T . Thus for

a given s

λ̂1T (β, s) = arg sup
λ1∈Λ̂1T (β,s)

[Ts]∑
t=1

[ρ(λ′1gtT (β))− ρ(0)]

T
,

λ̂2T (β, s) = arg sup
λ2∈Λ̂2T (β,s)

T∑
t=[Ts]+1

[ρ(λ′2gtT (β))− ρ(0)]

T

with Λ̂1T (β, s) = {λ1 : λ′1gtT (β) ∈ Φ, t = 1, . . . , [Ts]} and Λ̂2T (β, s) = {λ2 : λ′2gtT (β) ∈ Φ, t = [Ts] + 1, . . . , T}.

For this restricted partial-sample GEL, the parameter vector β is restricted to be stable across the sample while

the Lagrange multiplier parameters are allowed to vary across subsamples in contrast to the full-sample GEL.
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A robust test based on the GEL is composed of the sum of its renormalized objective function for both

subsamples:

GELRT (s) = GEL1RT (s) +GEL2RT (s) =
2T

2KT + 1
P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s)

where

GEL1RT (s) =
2[Ts]

2K + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̃T , s)

′gtT (β̃T (s)))− ρ(0)
]

[Ts]

and

GEL2RT (s) =
2(T − [Ts])

2K + 1

T∑
t=[Ts]+1

[
ρ(λ̂2T (β̃T , s)

′gtT (β̃T (s)))− ρ(0)
]

T − [Ts]
.

A similar statistic was introduced by Guggenberger and Smith (2008) and Otsu (2006) for testing H0 : θ = θ0

without considering structural change. In their cases, the derivation is facilitated because θ0 is known.

The GEL framework allows us to propose an asymptotically equivalent statistic based on the Lagrange

multiplier parameters λ(·) evaluated at θ̃T (s)5. The statistic is defined as:

GELMR
T (s) = GELM1RT (s) +GELM2RT (s)

where

GELM1RT (s) =
[Ts]

(2KT + 1)2
λ̂1T (β̃T (s), s)′Ω̂1T (β̃T (s), s)λ̂1T (β̃T (s), s)

and

GELM2RT (s) =
[T − Ts]

(2KT + 1)2
λ̂2T (β̃T (s), s)′Ω̂2T (β̃T (s), s)λ̂2T (β̃T (s), s).

We show (see Appendix) that both test statistics are asymptotically equivalent at the first order to the

S-based test statistic in Caner (2007). The test statistic is not asymptotically pivotal but asymptotically

boundedly pivotal. The bound is then nuisance parameters free and robust to identification problems under the

null. The following Theorem gives this asymptotic bound under the null of no structural change and the local

alternative (4).

Theorem 3.4. Suppose that Assumptions 6.1 to 6.5 and 6.7 to 6.12 hold at the true value of the parameters

θ0, the processes GELRT (s) and GELMR
T (s) indexed by s for a given set S whose closure lies in (0, 1) are

asymptotically boundedly pivotal and the asymptotic bound distribution is given by:

QRq (s)⇒ Bq(s)
′Bq(s)

s
+

[Bq(1)−Bq(s)]′ [Bq(1)−Bq(s)]
1− s

5We can also propose a LR-type test statistic as in Caner (2007) but for the GEL framework. However, Caner (2007) shows

that the LR-type statistic can be very conservative when the number of moment conditions is large compared to the number of

parameters. We can show that this result holds also in the GEL framework for smoothed moment conditions. Moreover, simulation

results provided by Caner (2007) confirm this and his S-based statistic clearly outperforms the LR-type statistic. For this reason,

we do not present the GEL version of the LR-type statistic but we do study it the the simulations section.
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under the null of no structural change and under the alternative (4)

QRq (s) ⇒ Bq(s)
′Bq(s)

s
+
H(s)′Ω(θ0)−1H(s)

s

[Bq(1)−Bq(s)]′ [Bq(1)−Bq(s)]
(1− s)

+
[H(1)−H(s)]

′
Ω(θ0)−1 [H(1)−H(s)]

(1− s)
,

where Bq(s) is a q-vector of standard Brownian motion.

Proof: See the Appendix.

The asymptotic bound derived in this Theorem depends on the number of moment conditions and the

derivation under the alternative shows that both test statistics can have no trivial power against instability of

parameters and overidentifying restrictions. Since the asymptotic bound is valid for ∀s ∈ S, the supremum, the

average and the exponential mappings of both statistics are also asymptotic bounded by the respective mapping

of the bound. Critical values under the null for the different mappings are given in the same tables as those in

subsection 3.2.

Now we propose a second set of tests based on the first-order conditions evaluated at the restricted partial

sample GEL estimator. The first statistic is similar to the one proposed by Caner (2007) for the GMM-CUE

which is a Kleibergen (2005)-type statistic but adapted here for the GEL context. To introduce the statistic,

we need to define the following matrices:

D̂1T (β, s) =
1

T

[Ts]∑
t=1

ρ1(λ̂1T (β, s)′gtT (β))GtT (β),

D̂2T (β, s) =
1

T

T∑
t=[Ts]+1

ρ1(λ̂2T (β, s)′gtT (β))GtT (β).

For the first subsample, we define

K1T (β, s) =
1√
[Ts]

[Ts]∑
t=1

gtT (β)Ω̂1T (β, s)−1D̂1T (β, s)
(
D̂1T (β, s)′Ω̂1T (β, s)−1D̂1T (β, s)

)−1

D̂′1T Ω̂1T (β, s)−1 1√
[Ts]

[Ts]∑
t=1

gtT (β)

and for the second

K2T (β, s) =
1√

[T − Ts]

T∑
t=[Ts]+1

gtT (β)Ω̂2T (β, s)−1D̂2T (β, s)
(
D̂2T (β, s)′Ω̂2T (β, s)−1D̂2T (β, s)

)−1

D̂′2T Ω̂2T (β, s)−1

1√
[T − Ts]

T∑
t=[Ts]+1

gtT (β)

with

Ω̂1T (β, s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β)gtT (β)′

and

Ω̂2T (β, s) =
2KT + 1

T − [Ts]

T∑
t=[Ts]+1

gtT (β)gtT (β)′.
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We now need to introduce another restricted estimator θ̃K,T (s) =
(
β̃K,T (s)′, β̃K,T (s)′

)′
obtained with the

restricted partial-sample GEL objective function with K1t(β, s) and K2t(β, s) as moment conditions

θ̃K,T (s) = arg min
θ∈Θ

(K1T (β, s) +K2T (β, s))

for all s ∈ S where K1T (β, s) ∈ Rr×1 and K2T (β, s) ∈ Rr×1.

The GELKT (s)-statistic for testing the null hypothesis of parameter stability defined in (5) is, for a given

s ∈ S:

GELKT (s) = K1T (β̃K,T (s), s) +K2T (β̃K,T (s), s).

The GEL framework also allows us to propose an asymptotically equivalent test statistic based on the

Lagrange multiplier parameters λ(·). By defining the following restricted estimator

θ̃GELMK,T (s) = arg min
θ∈Θ

(
GELMK1RT (β, s) +GELMK2RT (β, s)

)
for all s ∈ S where

GELMK1RT (β, s) =
[Ts]

(2KT + 1)2
λ̂1T (β, s)′D̂1T (β, s)

(
D̂1T (β, s)′Ω̂1T (β, s)−1D̂1T (β, s)

)−1

D̂1T (β, s)′λ̂1T (β, s)

and

GELMK2RT (β, s) =
[T − Ts]

(2KT + 1)2
λ̂2T (β, s)′D̂2T (β, s)

(
D̂2T (β, s)′Ω̂2T (β, s)−1D̂2T (β, s)

)−1

D̂2T (β, s)′λ̂2T (β, s).

The statistic is defined as:

GELMKR
T (s) = GELMK1RT (β̃GELMK,T (s), s) +GELMK2RT (β̃GELMK,T (s), s)

Theorem 3.5. The GELKT (s) and GELMKR
T (s) processes indexed by s for a given set S whose closure lies

in (0, 1) are asymptotically boundedly pivotal and the asymptotic bound distribution is given by:

Qp(s)⇒
Br(s)

′Br(s)

s
+

[Br(1)−Br(s)]′ [Br(1)−Br(s)]
1− s

under the null of no structural change and under the alternative (4)

Qp(s) ⇒ Br(s)
′Br(s)

s
+
H(s)′Ω(β0)−1/2PG(β0)Ω(β0)−1/2H(s)

s

[Br(1)−Br(s)]′ [Br(1)−Br(s)]
1− s

+
[H(1)−H(s)]

′
Ω(β0)−1/2PG(β0)Ω(β0)−1/2 [H(1)−H(s)]

(1− s)
,

where Br(s) is a r-vector of standard Brownian motion and

PG(β0) = Ω(β0)−1/2G(β0)
(
G(β0)′Ω(β0)−1G(β0)

)−1
G(β0)′Ω(β0)−1/2

with G(β0) = limT→∞

[
T−1

∑T
t=1 ∂gt(β0)/∂β′

]
.
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Proof: See the Appendix.

The asymptotic bound depends on the number of parameters rather than the number of moment conditions.

The asymptotic bound under the alternative shows that these test statistics are specifically designed to detect

instability in parameter values. Critical values under the null for the different mappings are also given in the

same tables than those in the subsection 3.2. The asymptotic bound under the local alternative allows us to

examine the power of the test statistic under different assumptions with respect to identification. Consider the

following decomposition of the alternative:

h(η, τ, tT )
√
T

= PG(β0)Ω(β0)−1/2h(η, τ, tT )
√
T

+
(
Iq − PG(β0)

)
Ω(β0)−1/2h(η, τ, tT )

√
T

.

This decomposition and the asymptotic bound under the alternative show that the ability of the test statistic

to detect a structural change in the parameter values depends on the Jacobian matrix G(β0). Under weak

identification, as defined by Stock and Wright (2000), GT (β0) has a weak value which means that GT (β0) = C√
T

for a C matrix of dimension q × p. With weak identification, the test statistic has trivial power equals to the

size. Obviously, it is also the case under unidentification since G(β0) = 0. In fact, the test statistic will detect

instability in parameter values for alternatives such that
h(η,τ, tT )

Tα for α ≥ 1 in the weak identification case. For

instance, the test statistic will detect structural change in the parameter values with no trivial power for the

following fixed alternative:

HI
A(s) :

{
β1(s) = β0 ∀t = 1, . . . , [Ts]

β2(s) = β0 + η ∀t = [Ts] + 1, . . . , T.

The discussion above also holds for the S-based test statistic proposed by Caner (2007) who derived the bound

only under the null.

4 Simulation evidence

To examine the finite sample properties of the proposed tests of structural change we use a consumption CAPM

environment with CRRA preferences. In this environment, we generate dividend and consumption streams that

are used to price stocks as well as a risk-free bond and then to obtain returns for a stock, rst , and for a riskless

asset, rft . This environment is very flexible in that we can study different degrees of identification and it has

become somewhat of a standard. Using this set-up, Stock and Wright (2000) considered the GMM under weak

identification, Wright (2003) proposed a test for detecting a lack of identification (see also the recent contribution

by Inoue and Rossi (2008)) and Kleibergen (2005) suggested a framework for testing parameters in the GMM

that allows unidentification. In a GEL context, Guggenberger and Smith (2005) studied the properties of GEL

estimators with respect to identification in an i.i.d. setting, Otsu (2006) and Guggenberger and Smith (2008)

extended their results to the case of dependent data. Finally, and closest to our work, Caner (2007) looked at

tests of structural change under the GMM with different degrees of identification.

The design of the experiment follows Tauchen (1986), Kocherlakota (1990), Hansen et al. (1996) and the
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data generating process uses the methods of Tauchen and Hussey (1991)6. In particular, their method fits a 16

states Markov chain to the law of motion for consumption growth and dividend growth. This law of motion

is calibrated to approximate a V AR(1). Letting δ be the discount factor, γ the coefficient of risk aversion, ι

a G × 1 vector of ones, Ct consumption and Rt a G × 1 vector of asset returns we have the following Euler

equations

h(xt, θ) = δ(Ct+1/Ct)
−γRt+1 − ι

or using the notation of section 2.1

g(xt, θ) = [δ(Ct+1/Ct)
−γRt+1 − ι]⊗ Zt

where Zt is a K-dimensional vector of instruments and θ = (γ, δ)′. The function g(xt, θ) then maps the G Euler

equations into GK ≡ q moment conditions. The V AR(1) approximation for the log of consumption growth and

of dividend growth is given by the general formulation

xt = A0 +A1xt−1 + et

or [
ct

dt

]
=

[
0.021

0.004

]
+

[
−0.161 0.017

0.414 0.117

][
ct−1

dt−1

]
+

[
ect

edt

]

with a variance/covariance matrix for the error terms set to

Σ =

[
0.0012 0.00177

0.00177 0.014

]
.

For the size properties we study designs that differ in their treatment of θ = (γ, δ)′. We consider the case of

one asset, three instruments (designs 3 and 4 in Caner (2007) are not looked at) and one estimated parameter,

the coefficient of risk aversion γ. The discount factor δ is set to its true value as it is the most easily identifiable

parameter. The designs are presented in Table 1. We considered designs with more instruments/assets or with

more estimated parameters but the computational burden increased substantially7. The layout of the designs

is similar to those found in Stock and Wright (2000) and Caner (2007). For example, designs W1 and W2 focus

on weak identification. Designs S1 and S2 consider standard identification (these are the designs 5 and 6 in

Caner (2007)). For example, design S1 takes W1 and replaces Σ by 2Σ and design S2 takes W1 and replaces the

covariance between ect and edt by 0.0039. Samples of sizes 250 (first row in Tables 2 to 4) and 500 observations

(second row) are studied while the number of Monte Carlo replications is set to 10008. The results are presented

in Tables 2 to 4. We use a nominal size of 5% and a trimming rule with s = 0.15.

6We thank Mehmet Caner for providing us with his computer code for the data generating process.
7A small scale study revealed that results deteriorate as p or q increased. Those results are available from the authors upon

request. See for instance Hansen et al. (2008) and Cattaneo et al. (2015) for estimation and inference problems with many

instruments and regressors
8We only report results with 250 observations for the cases of mixed identification and different break location under the

alternative.

21



Power properties are studied by considering a partial break in the parameters (only one parameter is affected).

The coefficient of risk aversion is allowed to switch at mid sample (we also report in Table 4 results for a break

at one fourth of the sample size). Unadjusted power properties for designs S2 and W2 are reported in Table 3.

For S2, the value of γ changes from 1.3 to 3 while for W2 it moves from 13.7 to 9. We also consider the case were

we move from standard identification (S1) to weak identification as well as allowing for a change in γ (a change

from 1.3 to 3). This ‘mixed’ case is reported in the lower panel of Table 3. As in Stock and Wright (2000),

the errors have a martingale difference property so that smoothing is not required (k = 0 in all experiments).

The effects of smoothing are under consideration in a separate paper. Before discussing our results we provide

a justification on our choice of GEL estimator.

Our choice of GEL estimator is based on prior theoretical research and simulation results. The exponential

tilting estimator is found by setting ρ(φ) = − exp(φ), the empirical likelihood estimator considers ρ(φ) = ln(1−φ)

while the continuously updated estimator is obtained using the quadratic function ρ(φ) = −(1 + φ)2/2. On

the theoretical side, Newey and Smith (2004) showed that the EL estimator removes asymptotically a bias

component that the ET and CU estimators do not remove. Indeed, EL uses an efficient weighted average in the

estimation of the optimal weighting matrix in contrast to ET and CU. This efficient weighted average removes

the asymptotic bias resulting from the third moments of the moment conditions. This result also holds in

the time series context for the EL estimator using the truncated kernel (see Anatolyev, 2005). However, the

small sample properties of the EL estimator can suffer from misspecification due to the computation of the

implied probabilities. Imbens, Spady and Johnson (1998) mentioned that the ET estimators are more robust

to misspecification. Schennach (2007) formalized this issue by showing that the EL estimators’ asymptotic

properties can suffer greatly, even with a small amount of misspecification. The problem originates from the

computation of ρ1(·) appearing in the first order conditions which can become unbounded under misspecification.

In contrast, the ET estimator does not suffer from this problem.

On the simulation side, Guggenberger (2008) studied the properties of the ET, EL and CU estimators in

linear models and found that their properties are almost identical. Caner (2010) found that tests based on ET

estimators performed well in simulation studies involving weak instruments. Further, in a previous version of

our paper, we looked at the exponential tilting, empirical likelihood and continuously updated estimators as

little was known on their finite sample properties and computational performances. The simulated environment

was identical to the one found in Guay and Lamarche (2012) who proposed test statistics to detect structural

change that are based on the estimated weights of a GEL problem. This environment, also used by Ghysels

et al. (1997) and by Hall and Sen (1999), consists of a time series characterized by an autoregressive process

of order one. Overall, tests computed with exponential tilting performed best and were much less sensitive to

misspecifications than tests obtained with either empirical likelihood or the continuously updated estimators9.

In a related paper (Guay and Lamarche, 2012), we use the theoretical results derived here to propose alternative

structural change tests in the GEL setting but based on implied probabilities.

Two groups of tests are studied in our simulation experiments. The first group contains tests that are valid

9The results for these simulations are available upon request.
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under standard identification (upper panels in Tables 2 to 4) while the second contains tests robust to weak

identification (lower panels in Tables 2 to 4). For the first group of tests, we consider Andrews-type tests aimed

at a structural change in the parameters (GELW , GELM , GELR, GELIPSI) as well as Hall and Sen-type

tests targeting a violation in the moment conditions themselves (GELO, GELMO, GELIPSO). The tests with

a GMM label are computed using a continuously updated GMM procedure for comparison purposes. All other

tests are GEL-based, including the tests based on implied probabilities proposed by Guay and Lamarche (2012),

GELIPSI and GELIPSO. All robust tests are valid for changes in the parameters only and the experiments

are such that only parameter changes are allowed. For this reason, the O-type tests should have worst finite

sample properties under H1. GMM-based tests performed consistently worst than all other tests and are not

discussed in many details.

For the case of weak identification, the GELR test is based on the renormalized objective functions of

each subsample while an asymptotically equivalent test to it is the GELMR, which is based on the Lagrange

multipliers of each subsample. These tests have asymptotic bounds that depend on the number of moment

conditions which can be quite high. These tests are similar to the supS test of Caner (2007), SGMM in our

tables, but for the GEL context. Although two versions of the GELK tests were computed in the simulations,

we only report the results for the GELK tests computed using the covariance matrices displayed after Theorem

3.4. The results with covariance matrices computed using implied probabilities had more distortions (see Guay

and Lamarche (2012) for more on this subject). We also report the K test computed under GMM. We can

then evaluate the performance of the widely used LR under weak identification as well as the performance of

different estimation techniques. The LR-type test of Caner (2007), computed for the GEL framework, is labeled

as GELRCR. As in Caner (2007), this version of the LR test does not perform well at all.

Under standard identification, designs S1 and S2 (upper panel of Table 2), the classical tests often used

empirical applications (GELW , GELM , O, GELO) record empirical sizes that are relatively close to the

nominal size of 5%. The test based on implied probabilities aimed at instability in the parameters overrejected

substantially while the GELIPSO test performed quite well. Tests that are robust to weak identification have

a tendency to underrejects quite badly and we can see that this problem is not solved when the sample size is

increased. The GEL-based tests GELR and GELIPSR show, by far, the best results.

Designs W1 and W2, reflecting the case of weak identification (lower panel of Table 2), can yield considerable

size distortions for the classical tests. For example, nominal sizes for the GELM test increase (under W2) while

those for the O decrease (under W1). Interestingly, the GELW and the O tests are not affected significantly

by the identification assumption. The same can be said about the tests robust to this assumption. The GELR,

GELK and GELIPSR tests perform very well under weak identification, much better than those suggested by

Caner (2007), the SGMM and KGMM tests.

When the coefficient of risk aversion (the parameter that is not well identified) is allowed to change at mid

sample, the rejection frequencies increase (as they should) for all tests (Table 3). Because we are presenting

size-unadjusted frequencies the reader must be careful when looking at the power of the tests that overrejected

greatly under the null hypothesis (the GELIPSI test for example). One should also note that, under standard
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identification (upper panel of Table 3), the frequencies for the tests valid for changes in the overidentifying

restrictions (all the O-type tests) are much smaller than those of tests that target instability in the parameter.

The classical tests (those targeting instability in the parameters) have the most power, followed by the robust

tests and the O-tests. For all, except the O-tests, increasing the sample size increases power. Once again, the

tests computed under GEL and those robust to identification perform best.

Allowing for weak identification substantially distorts the rejection frequencies, increasing them for the most

part and by a very large amount for the O-tests (middle panel of Table 3). A few interesting features come

out. First, we see that the robust tests have higher power than the standard tests with the GELIPSR test

performing very well. Second, we see that the robust test GELK is not affected very much by identification

with rejection frequencies (for a sample size of 250) going from 0.51 to 0.49. This is a very nice feature of a

test statistic as it can be trusted no matter the type of identification suspected. Finally, when both the type

of identification and the value of the parameter change (lower panel of Table 3) all tests have some difficulty

disentangling the change in the parameter properly. This finding comes as no surprise since the tests considered

in this paper are designed to have power against parameter change first. However, the GEL-based tests and

those robust to identification did very well.

Our last experiment considers the location of the break. We move the break from mid sample to a break

located earlier in the sample (quarter of the sample, Table 4). We see that the robust tests seem to pick up

the break earlier in the sample at least as well as a break located mid sample, and so regardless of the type of

identification. On the other hand, the standard tests are more sensitive to the location of the break.

5 Conclusion

In this paper we have studied tests for structural change that are based on generalized empirical likelihood

methods and applicable to a time series context. Given the recent developments of generalized empirical

likelihood methods as an alternative to GMM, it is important to study structural change tests for these methods

of estimation.

We introduced a class of partial-sample GEL estimators and showed that estimators of the Lagrange multi-

plier parameters weakly converge to a function of Brownian motions uncorrelated to the asymptotic distribution

of the vector of parameters. These asymptotic distributions are derived under the null hypothesis of stability

and general alternatives of structural change for an unknown breakpoint. These results allowed us to derive

the asymptotic distributions of structural change tests in the GEL context. Specifically targeted tests, either

to a structural change in the parameters or to a structural change in the overidentifying restrictions used to

estimate them, were considered. For the former, we showed that, in a time series context, our test statistics

based on the GEL method followed the same asymptotic distribution as in the GMM context (Andrews, 1993).

For the latter, test statistics equivalent to Hall and Sen’s (1999) statistics in the GMM context were adapted

to the GEL method for smoothed moment conditions. Further, we proposed two new tests specific to the GEL

framework to detect instability in the overidentifying restrictions. We showed that these new statistics have
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the same asymptotic distribution at first order as the one derived by Hall and Sen (1999). We also presented

stability tests, computed in the GEL context, that are robust to weak identification.

Our simulation study, based on the widely used design of Stock and Wright (2000) and makes use of the

exponential tilting estimation procedure. We found that the GEL-based robust tests (for example our GELR,

GELIPSR and GELK tests) performed well in terms of: 1) the presence and location of a structural change and

2) the nature of identification. These test statistics should then be added to the Pearson-type statistics based

on implied probabilities to detect structural change presented by Guay and Lamarche (2012) to complement

the specification and testing arsenal of the practitioners.
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6 Appendix

6.1 Assumptions

We10 consider triangular arrays because they are required to derive asymptotic results under the Pitman drift

alternatives. Define X to be the domain of g (·, θ) which includes the support of xT,t,∀t, ∀T . Let B0 and ∆0

denote compact subsets of Rr and Rν that contains neighborhoods of β0 and δ0 in the parameter spaces B and

∆. Finally, let µT,t denote the distribution of xT,t and let µ̄T = (1/T )
∑T
t=1 µT,t. Throughout the Appendix,

w.p.a.1 means with probability approaching one; p.s.d. denotes positive semi-definite; ‖·‖ denotes the Euclidean

norm of a vector or matrix;
p→ and

d→ denote respectively convergence in probability and in distribution and

⇒ denotes weak convergence as defined by Pollard (1984, pp. 64-66). Finally, C denotes a generic positive

constant that may differ according to its use.

Assumption 6.1. {xT,t : t ≤ T, T ≥ 1} is a triangular array of X-valued rv’s that is L0-near epoch dependent

(NED) on a strong mixing base {YT,t : t = . . . , 0, 1, . . . ;T ≥ 1}, where X is a Borel subset of Rk, and {µT,t :

T ≥ 1} is tight on X11.

Define the smoothed moment conditions as:12

gtT (β, δ) =
1

MT

t−1∑
m=t−T

k

(
m

MT

)
g (xT,t−m, β, δ)

for an appropriate kernel and MT is a bandwidth parameter. From now on, we consider the uniform kernel

proposed by Kitamura and Stutzer (1997):

gtT (β, δ) =
1

2KT + 1

KT∑
m=−KT

g (xT,t−m, β, δ) .

Assumption 6.2. KT /T
2 → 0 and KT →∞ as T →∞ and KT = Op

(
T

1
2η

)
for some η > 113.

Assumption 6.3. For some d > max
(

2, 2η
η−1

)
, {g (xT,t, β0, δ0) : t ≤ T, T ≥ 1} is a triangular array of

mean zero Rq-valued rv’s that is L2-near epoch dependent of size − 1
2 on a strong mixing base {YT,t : t =

. . . , 0, 1, . . . ;T ≥ 1}, of size −d/(d− 2) and sup ‖g (xT,t, β0, δ0) ‖d <∞.

Assumption 6.4. V ar
(

1√
T

∑Ts
t=1 g (xT,t, β0, δ0)

)
→ sΩ ∀s ∈ [0, 1] for some positive definite q × q matrix Ω.

The above assumptions are sufficient to yield weak convergence of the standardized partial sum of the

smoothed moment conditions under the null and the alternatives (see Lemmas 1.1 and 1.2). In the following,

xt is used to denote xT,t for notational simplicity.

10An additional document contains lemmas and a longer version of the proofs. It can be found at http://coffee.econ.brocku.

ca/jfl/research.
11For a definition of Lp-near epoch dependence and tightness, see Andrews (1993, p. 829-830). For a presentation of the concept

of near epoch dependence, we refer the reader to Gallant and White (1988) (chapters 3 and 4).
12Note here that gtT denotes the smoothed moment conditions and xT,t a triangular array of random variables.
13This assumption is slightly different than that in Smith, 2011 but facilitates the proofs at no real cost.
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Assumption 6.5. g̃ (β0, δ0) = 0 with (β0, δ0) ∈ B×∆ where g̃ (β0, δ0) = limT→∞
∑T
t=1Eg (xt, β, δ) and B and

∆ are bounded subsets of Rr and Rν , g(xt, β, δ) is continuous in x for all (β, δ) ∈ B ×∆ and is continuous in

(β, δ) uniformly over (β, δ, x) ∈ B ×∆× ζ for all compact sets ζ ⊂ X.

Assumption 6.6. For every neighborhood Θ0 ⊂ Θ of θ0, infs∈S
(
infθ∈Θ/Θ0

‖g(θ, s)‖
)
> 0 where g(θ, s) =

(sg̃(β1, δ)
′, (1− s)g̃(β2, δ)

′)
′
.

Assumption 6.7. (a) ρ(·) is twice continuously differentiable and concave on its domain, an open interval Φ

containing 0, ρ1 = ρ2 = −1; (b) λ(s) ∈ Λ̂T (s) where Λ̂T (s) = {λ(s) : ‖λ(s)‖ ≤ D
(
T/((2KT + 1)2

)−ζ} for some

D > 0 with 1
2 > ζ > 1

d(1−1/η) .

Assumption 6.7 (b) parallels the assumption in Newey and Smith, 2011 and Smith, 2011 but for λ(s) =

(λ′1, λ
′
2)
′
. It specifies bounds on λ(s) and with the existence of higher than second moments in Assumption 6.3

leads to the arguments λ(s)′gtT (θ, s) being in the domain Φ of ρ(·) w.p.a.1 in the first subsample for all β1, δ

and 1 ≤ t ≤ [Ts] and in the second subsample for all β2, δ and [Ts] + 1 ≤ t ≤ T (see Lemma 1.3).

Under Assumptions 6.1, 6.2, 6.3, 6.5, 6.6 and 6.7, we show for the partial-sample GEL estimator that

sups∈S ‖θ̂T (s) − θ0‖
p→ 0, sups∈S ‖λ̂T (s)‖ p→ 0, ‖λ̂T (s)‖ = Op

(
T/(2KT + 1)2

)−1/2
and

sups∈S ‖ 1
T

∑T
t=1 gtT (θ̂T (s), s)‖ = Op(T

−1/2).

The consistency of the full-sample GEL estimator is obtained by slight modifications of Assumptions 6.6 and

6.7 (b). Assumption 6.6 must be modified by a simplified version with g̃(β, δ) instead of g(θ, s). Assumption

6.7 (b) holds but for the full-sample Lagrange multiplier λ. The consistency result that θ̃T
p→ θ0 is then derived

under weaker conditions than in Smith, 2011.

The following high level assumptions are sufficient to derive the weak convergence under the null of the

PS-GEL estimators θ̂T (s) and λ̂T (s). These assumptions are similar to the ones in Andrews (1993).

Assumption 6.8. sups∈S ‖Ω̂iT (s)−Ω‖ p→ 0 where Ω is defined in Section 2.1 and S whose closure lies in (0, 1)

for i = 1, 2.

Assumption 6.8 holds under conditions given in Andrews (1991) and Lemma A.3 in Smith, 2011. To respect

these conditions, Assumption 6.3 can be replaced by the following assumption:

Assumption 6.3′. {g (xt, β0, δ0) : t ≤ T, T ≥ 1} is a triangular array of mean zero Rq-valued rv’s that is α-

mixing with mixing coefficients
∑∞
j=1 j

2α(j)(ν−1)/ν <∞ for some ν > 1 and supt≤T,T≥1E‖g (xt, β0, δ0) ‖d <∞

for some d > max
(

4ν, 2η
η−1

)
.

Assumptions 6.3′ and 6.8 guarantee for the full-sample and partial-sample GEL that

Ω̃T =
2K + 1

T

T∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′
p→ Ω

and

Ω̂T (s) =
2K + 1

T

T∑
t=1

gtT (θ̂T (s), s)gtT (θ̂T (s), s)′
p→ Ω(s).
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Now, let G(β, δ) = limT→∞
1
T

∑T
t=1E [∂g(xt, β, δ)/∂ (β′, δ′)] and G = G(β0, δ0).

Assumption 6.9. g(x, β, δ) is differentiable in (β, δ) ,∀ (β, δ) ∈ B0 ×∆0 ∀x ∈ X0 ⊂ X for a Borel measurable

set X0 that satisfies P (xt ∈ X0) = 1∀t ≤ T, T ≥ 1, g(x, β, δ) is Borel measurable in x ∀ (β, δ) ∈ B0 × ∆0,

∂g(xt, β, δ)/∂ (β′, δ′) is continuous in (x, β, δ) on X×B0 ×∆0,

sup
1≤t≤T

E

[
sup

(β,δ)∈B0×∆0

‖∂g(xt, β, δ)/∂ (β′, δ′) ‖d/(d−1)

]
<∞

and rank(G) = r + ν.

Assumption 6.10. limT→∞
1
T

∑Ts
t=1EgtT (β, δ) exists uniformly over (β, δ, s) ∈ B × ∆ × S and equals

s limT→∞
1
T

∑T
t=1Eg(xt, β, δ) = sg̃(β, δ).

Assumption 6.11. limT→∞
1
T

∑Ts
t=1E∂gtT (β0, δ0)/∂ (β′, δ′) exists uniformly over s ∈ S and equals sG ∀s ∈ S

and S whose closure lies in (0, 1).

Assumption 6.12. G(s)′Ω(s)−1G(s) is nonsingular ∀s ∈ S and has eigenvalues bounded away from zero ∀s ∈ S
and S whose closure lies in (0, 1).

Assumptions 6.10 and 6.11 are asymptotic covariance stationary conditions and follow directly from EgtT (β, δ) =

Eg(xt, β, δ) + op(1) and E∂gtT (β0, δ0)/∂ (β′, δ′) = E∂g(xt, β0, δ0)/∂ (β′, δ′) + op(1) for the uniform kernel. As-

sumption 6.12 guarantees that the partial-sample GEL estimators θ̂T (s) has a well defined asymptotic variance

∀s ∈ S and holds if Gβ and Gδ are full rank.

6.2 Proofs of Theorems

Proof of Theorem 2.1

The outline of the proof is similar to that of Lemma A.6 and Theorem 2.2 in Smith, 2011 except that the

results have to be established uniformly in s ∈ S and by taking into account of the differences in Assumptions

6.2, 6.3 and 6.7 with respect to the corresponding assumptions in Smith, 2011.

First, we show that sups∈S ‖ĝT (θ̂T (s), s)‖2 = Op(T
−1) which allows us to show that sups∈S ‖θ̂(s)− θ0‖

p→ 0.

By arguments similar to Smith, 2011, we can show that
∑T
t=1 gtT (θ̂T (s), s)gtT (θ̂T (s), s)′/T = Op(1). Fol-

lowing Newey and Smith (2001) and Smith, 2011, Assumptions 6.5, and 6.2, Lemmas 1.3 and 1.5, we can

show sups∈S ‖ĝT (θ̂T (s), s)‖ = Op(T
−1/2). By the result that sups∈S ‖ĝT (θ̂T (s), s‖ = Op(T

−1/2) we have

sups∈S ĝT (θ̂T (s), s)
p→ 0. By Lemma 1.4, sups∈S supθ∈Θ ‖ĝT (θ, s)−g(θ, s)‖ p→ 0 and g̃(β, δ) is continuous by As-

sumption 6.5. The triangular inequality then gives that sups∈S g(θ̂T (s), s)
p→ 0. Since g̃(β, δ) = 0 has a unique

zero at β0 and δ0 (by Assumption 6.6), for every neighborhood Θ0(∈ Θ) of θ0, infs∈S
(
infθ∈Θ/Θ0

‖g(θ, s)‖
)
> 0,

then sups∈S ‖θ̂T (s)− θ0‖
p→ 0.

The proof to show that sups∈S ‖λ̂T (s)‖ = Op

((
T/(2K + 1)2

)−1/2
)

and sups∈S ‖λ̂T (s)‖ p→ 0 is similar to the

one for Theorem 2.2 in Smith, 2011 but uniformly for s ∈ S.
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Proof of Theorem 2.2

By a mean-value expansion of the former first-order conditions for the partial-sample GEL where

ΞT =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′, λ̂1T (s)′

2KT+1 ,
λ̂2T (s)′

2KT+1

)′
and Ξ0 = (β′0, β

′
0, δ
′
0, 0, 0)

′
with the latter first-order conditions

yields:

0 = −T 1/2

(
0

1
T

∑T
t=1 gtT (θ0, s)

)
+ M̄(s)T 1/2

(
Ξ̂T (s)− Ξ0

)
where

M̄(s) =
1

T

T∑
t=1

[
0 M̄12(s)

M̄21(s) M̄22(s)

]

with M̄12(s) = ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)′, M̄21(s) = ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
GtT (θ̄T (s), s)′ and

M̄22(s) = (2KT + 1) ρ2

(
λ̄T (s)′gtT (θ̂T (s), s)

)
gtT (θ̄T (s), s)gtT (θ̂T (s), s)′ and θ̄T (s) is a random vector on the

line segment joining θ̂T (s) and θ0 and λ̄T (s) is a random vector joining λ̂T (s) to (0′, 0′)′ that may differ from

row to row.

Now, we need to show that M̄(s)
p→M(s) where

M(s) = −

[
0 G(s)′

G(s) Ω(s)

]
.

By Lemma 1.3; sups∈S sup1≤t≤T |λ̂T (s)′gtT (θ̂T (s), s)| p→ 0 and sups∈S sup1≤t≤T |λ̄T (s)′gtT (θ̄T (s), s)| p→ 0

which implies

sup
s∈S

max
1≤t≤T

|ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
− ρ1(0)| p→ 0

sup
s∈S

max
1≤t≤T

|ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
− ρ1(0)| p→ 0

and sups∈S max1≤t≤T |ρ2

(
λ̂T (s)′gtT (θ̂T (s), s)

)
− ρ2(0)| p→ 0. To show that

sup
s∈S

1

T

T∑
t=1

ρ1

(
λ̄T (s)′gtT (θ̂T (s), s)

)
GtT (θ̄T (s), s)

p→ −G(s)

and

sup
s∈S

1

T

T∑
t=1

ρ1

(
λ̂T (s)′gtT (θ̂T (s), s)

)
GtT (θ̂T (s), s)

p→ −G(s),

it remains to show that

sup
s∈S

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ̄T (s), s)−G(s)

∥∥∥∥∥ p→ 0 (6)
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and

sup
s∈S

∥∥∥∥∥ 1

T

T∑
t=1

GtT (θ̂T (s), s)−G(s)

∥∥∥∥∥ p→ 0. (7)

This can be easily shown using arguments in Andrews (1993).

Moreover, Assumptions 6.8 implies that

2KT + 1

T

[Ts]∑
t=1

gtT (β̄1T , δ̄T )gtT (β̂1T , δ̂T )′
p→ sΩ

and

2KT + 1

T

T∑
t=[Ts]+1

gtT (β̄2T , δ̄T )gtT (β̂2T , δ̂T )′
p→ (1− s)Ω

which yields

2KT + 1

T

T∑
t=1

ρ2

(
λ̄T (s)′gtT (θ̂T (s), s)

)
gtT (θ̄T (s), s)gtT (θ̂T (s), s)′

p→ −Ω(s).

By Assumption 6.12, this gives

M(s)−1 =

[
−Σ(s) H(s)

H(s)′ P (s)

]

where Σ(s) =
(
G(s)′Ω(s)−1G(s)

)−1
, H(s) = Σ(s)G(s)′Ω(s)−1 and P (s) = Ω(s)−1−Ω(s)−1G(s)Σ(s)G(s)′Ω(s)−1.

As M̄(s) is positive definite w.p.a.1, we obtain:

√
T (ΞT (s)− Ξ0) = −M̄−1(s)

(
0,−
√
T

1

T

T∑
t=1

gtT (θ0, s)
′

)
+ op(1)

= − (H(s)′, P (s))
′√
T

1

T

T∑
t=1

gtT (θ0, s) + op(1).

We also have by Lemma 1.1, 1√
T

∑T
t=1 gtT (θ0, s)⇒ J(s) for s ∈ S. Combining the results above yields:

√
T
(
θ̂T (s)− θ0

)
= −

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1 1√

T

T∑
t=1

gtT (θ0, s) + op(1)

⇒ −
(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1J(s)

and

√
T

2KT + 1
λ̂T (s) = −

(
Ω−1(s)− Ω−1(s)G(s)

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1

) 1√
T

T∑
t=1

gtT (θ0, s) + op(1)

⇒ −
(

Ω−1(s)− Ω−1(s)G(s)
(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1

)
J(s).

Proof of Theorem 2.3
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This is a direct implication of Lemma 1.2 and the proof of Theorem 2.2.

Proof of Theorem 3.1

Using results derived above, we get for terms in the GELWT (s) statistic:

Ĝβ1,tT (s) =
1

[Ts]

[Ts]∑
t=1

∂g(xt, β̂1T (s), δ̂T (s))

∂β′1
+ op(1),

Ĝβ2,tT (s) =
1

T − [Ts]

T∑
t=[Ts]+1

∂g(xt, β̂2T (s), δ̂T (s))

∂β′2
+ op(1),

Ω̂1T (s)
p→ Ω1(s), Ω̂2T (s)

p→ Ω2(s)

and terms in the LM statistic:

ĝ1T (θ̃T , s) =
1

T

[Ts]∑
t=1

g(xt, β̃T , δ̃T ) + op(1),

G̃βtT =
1

T

T∑
t=1

∂g(xt, β̃T , δ̃T )

∂β′
+ op(1),

Ω̃T
p→ Ω.

The asymptotic distributions for the GELWT (s) and GELMT (s) under the null can then be directly derived

using the expressions above from similar arguments than in the proof of Theorem 3 in Andrews (1993). The

asymptotic distribution under the alternative is a direct implication of Theorem 2.3. For the GELRT (s)

statistic, expanding the partial-sample GEL objective function evaluated at the unrestricted estimator about

λ = 0 yields,

2T

(2KT + 1)

1

T

T∑
t=1

ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s) = − 2T

(2KT + 1)

1

T

T∑
t=1

λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)−

T

(2KT + 1)

1

T

T∑
t=1

λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)gtT (θ̂T (s), s)′λ̂T (θ̂T (s), s)

+ op(1)

since ρ1(·) p→ −1 and ρ2(·) p→ −1.

By the fact that Ω̂T (s) = 2KT+1
T

∑T
t=1 gtT (θ̂T (s), s)gtT (θ̂T (s), s)′ is a consistent estimator of Ω(s) and by

√
T/(2KT + 1)λ̂T (s) = −Ω(s)−1 1√

T

∑T
t=1 gtT (θ̂T (s), s)) + op(1), we get

2T

(2KT + 1)

1

T

T∑
t=1

ρ(λ̂T (θ̂T (s), s)′gtT (θ̂T (s), s)) = TgT (θ̂T (s), s)′Ω(s)−1gT (θ̂T (s), s) + op(1).

Similarly, the expansion of the partial-sample GEL objective function but evaluated at the restricted estimator

yields:

2T

(2KT + 1)

1

T

T∑
t=1

ρ(λ̂T (θ̃T , s)
′gtT (θ̃T , s)) = TgT (θ̃T , s)

′Ω(s)−1gT (θ̃T , s) + op(1)
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since that Ω̃T (s) = 2KT+1
T

∑T
t=1 gtT (θ̃T , s)gtT (θ̃T , s)

′ is a consistent estimator of Ω(s) under the null. The

GELRT (s) is then asymptotically equivalent to the LR statistic defined in Andrews (1993) for the standard

GMM.

Proof of Theorem 3.3

First, for the statistic OT (s), the asymptotic equivalence between
∑[Ts]
t=1 gtT (β̂1T (s)) with∑[Ts]

t=1 g(xt, β̂1T (s)) and
∑T
t=[Ts]+1 gtT (β̂2T (s)) with

∑T
t=[Ts]+1 g(xt, β̂2T (s)) is a direct implication of the Lemmas

1.1 and 1.2 and by the asymptotic consistency of the estimator Ω̂1T (s) and Ω̂2T (s) for Ω, the result under the

null and alternative follows directly from proofs for Theorems 2.2 and 2.3 and subsection A.2 in Hall and Sen

(1999).

Second, for the statistic GELOT (s), as in the proof of Theorem 3.2, we can show that:

2[Ts]

2KT + 1

[Ts]∑
t=1

[
ρ(λ̂1T (β̂1T (s), s)′gtT (β̂1T (s)))− ρ(0)

]
[Ts]

= GELO1T (s) + op(1)

and

2(T − [Ts])

2KT + 1

T∑
t=[Ts]+1

[
ρ(λ̂2T (β̂2T (s), s)′gtT (β̂2T (s)))− ρ(0)

]
T − [Ts]

= GELO2T (s) + op(1).

The asymptotic distribution under the null and the alternative follows directly.

Finally, for the statistic GELMOT (s), the have the following asymptotic equivalences:√
[Ts]

(2KT + 1)
λ̂1T (β̂1T (s), s) = −Ω(s)−1([Ts])−1/2

[Ts]∑
t=1

gtT (β̂1T (s)) + op(1)

√
T − [Ts]

(2KT + 1)
λ̂2T (β̂2T (s), s) = −Ω(s)−1(T − [Ts])1/2

T∑
t=[Ts]+1

gtT (β̂2T (s)) + op(1)

which implies directly the asymptotic distribution of this statistic under the null and the alternative.

Proof of Theorem 3.4

Since θ̃T (s) minimizes the restricted partial sample GEL for all s ∈ S, this implies for all s ∈ S and all T ,

P̂ (θ̃T (s), λ̂T (θ̃T (s), s) ≤ P̂ (θ0, λ̂T (θ̃T (s), s), s).

The limit for P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s) is then bounded by the limit of P̂ (θ0, λ̂T (θ̃T (s), s), s). Let λ̂T (θ0, s) =

arg maxλs∈Λ̂T (θ0,s)
P̂ (θ0, λ(s), s) and λ̇T (s) = τ λ̂T (s), 0 ≤ τ ≤ 1. Thus, P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s)

≤ P̂ (θ0, λ̂T (θ̃T (s), s), s) ≤ P̂ (θ0, λ̂T (θ0, s), s). By a second-order Taylor expansion with Lagrange remainder
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and using (2KT + 1)
∑T
t=1 ρ2(λ̇(s)′gtT (θ0, s))gtT (θ0, s)gtT θ0, s)

′/T
p→ −Ω(s),

1

2KT + 1
P̂ (θ0, λ̂T (θ0, s), s) = −

(
λ̂T (θ0, s)

2KT + 1

)′
ĝT (θ0, s)

+

(
λ̂T (θ0, s)

2KT + 1

)′( T∑
t=1

ρ2

(
λ̇T (s)′gtT (θ0, s)

)
gtT (θ0, s)gtT (θ0, s)

′/T

)
λ̂T (θ0, s)/2

= ĝT (θ0, s)
′Ω(s)−1ĝT ((θ0, s)− ĝT (θ0, s)

′Ω(s)−1ĝT (θ0, s)/2 + op(1)

= ĝT (θ0, s)
′Ω(s)−1ĝT (θ0, s)/2 + op(1)

w.p.a.1 where the second equality holds by 1
2KT+1 λ̂T (θ0, s) = −Ω(s)−1ĝT (θ0, s) + op(1). The asymptotic dis-

tribution of the statistic 2T
2KT+1 P̂ (θ̃T (s), λ̂T (θ̃T (s), s), s) is then asymptotically bounded for all s ∈ S by the

asymptotic distribution of T ĝT (θ0, s)
′Ω(s)−1ĝT (θ0, s). By using Lemma 1.1, the result under the null fol-

lows. Lemma 1.2 yields the asymptotic distribution under the alternative. The equivalence for the statistic

GELMR
T (θ̃T (s), s) is straightforward to show.

Proof of Theorem 3.5

To prove this Theorem, additional assumptions are needed. Let

Σ(β0) = lim
T→∞

var

(
1

T

T∑
t=1

(gt(β0)′, vec(Gt(β0))′)

)′
a (q + qr)× (q + qr) positive semi-definite symmetric matrix and

Σ(β0) =

[
Ω(β0) ΩgG(β0)

ΩGg(β0) ΩGG(β0)

]

where ΩgG(β0) = ΩGg(β0)′ is a (q × qr) matrix and ΩGG(β0) is a (qr × qr) matrix.

We define the estimators under the null of no structural change

Σ̂1T (β0, s) =
2KT + 1

[Ts]

[Ts]∑
t=1

(gt(β0)′, vec(Gt(β0))′)
′
(gt(β0)′, vec(Gt(β0)− EGtT (β0))′)

Σ̂2T (β0, s) =
2KT + 1

T − [Ts]

T∑
t=[Ts]+1

(gt(β0)′, vec(Gt(β0))′)
′
(gt(θ0)′, vec(Gt(β0)− EGtT (β0))′) .

Assumption 6.8′. Under the true value of the parameters θ0, sups∈S ‖Σ̂iT (β0, s) − Σ(β0‖
p→ 0 with S whose

closure lies in (0, 1) for i = 1, 2.

Assumption 6.3′′. Under the true value of the parameters θ0, {g (xTt, β0) , vec (G (xTt, β0)− EG (xTt, β0)) :

t ≤ T, T ≥ 1} is a triangular array of mean zero Rq-valued rv’s that is α-mixing with mixing coefficients∑∞
j=1 j

2α(j)(ν−1)/ν <∞ for some ν > 1 with supt≤T,T≥1E‖g (xTt, β0) ‖d <∞ and supt≤T,T≥1E‖G (xTt, β0) ‖d <

33



∞ for some d > max
(

4ν, 2η
η−1

)
.

Assumptions 6.3′′ and 6.8′ guarantee for the restricted partial-sample GEL that

Ω̂Gg,1T (β0, s) =
2K + 1

T

[Ts]∑
t=1

vec (GtT (β0)) gtT (β0)′
p→ sΩGg(β0), (8)

Ω̂Gg,2T (β0, s) =
2K + 1

T

T∑
t=[Ts]+1

vec (GtT (β0)) gtT (θ0)′
p→ (1− s)ΩGg(β0), (9)

and

Ω̂GG,1T (β0, s) =
2K + 1

T

[Ts]∑
t=1

vec (GtT (β0)) vec (GtT − EGtT (β0))
′ p→ sΩGG(β0),

Ω̂GG,2T (β0, s) =
2K + 1

T

T∑
t=[Ts]+1

vec (GtT (β0)) vec (GtT (β0)− EGtT (β0))
′ p→ (1− s)ΩGG(β0).

Lemma 1.1 can be shown for the derivatives of the smoothed moment conditions under Assumptions 6.1,

6.2, 6.3′′ and 6.8′ as shown for the smoothed moment conditions. Thus, the asymptotic distribution of the

derivatives of the centered smoothed moment conditions under the null is given by:

1√
T

[Ts]∑
t=1

vec (GtT (β0)− EGtT (β0))⇒ ΩGG(β0)1/2Bqr(s) (10)

where Bqr(s) is a qr-dimensional vector of standard Brownian motion. Using Lemma 1.1, this yields for the

whole vector (gtT (β0)′, (vec(GtT (β0)− EGtT (β0)))′)
′

T−1/2

[Ts]∑
t=1

(gtT (β0)′, (vec(GtT (β0)− EGtT (β0)))′)
′ ⇒ Σ(β0)1/2Bq+qr(s) (11)

where BG(s) is a ((q + qr)× 1)-vector of standard Brownian motion.

We also need the following assumptions:

Assumption 6.13. Suppose Assumption 6.9 but for ∂g(xt, β)/∂βi for i = 1, . . . , r.

Let D̂1T (β0, s) =
[
D̂1,1T (β0, s), D̂2,1T (β0, s), . . . , D̂r,1T (β0, s)

]
with D̂i,1T (β, s) =

1
T

∑[Ts]
t=1 ρ1(λ̂1T (β, s)′gtT (β))Gi,tT (β, s) for i = 1, . . . , p and respectively for D̂2T (β0, s). By a Taylor expansion

of D̂i,1T (β0, s) and D̂i,2T (β0, s) around λ̂1T (β0, s) = 0 and λ̂2T (β0, s) = 0 respectively yields

D̂i,1T (β0, s) = − 1

T

[Ts]∑
t=1

Gi,tT (β0) +
2K + 1

T

[Ts]∑
t=1

Gi,tT (β0)gtT (β0)′Ω̂1T (β0, s)
−1 1

[Ts]

[Ts]∑
t=1

gtT (β0) + op(1)

D̂i,2T (β0, s) = − 1

T

T∑
t=[Ts]+1

Gi,tT (β0) +
2K + 1

T

T∑
t=[Ts]+1

Gi,tT (β0)gtT (β0)′Ω̂2T (β0, s)
−1 1

T − [Ts]

T∑
t=[Ts]+1

gtT (β0) + op(1)
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using 1
2KT+1 λ̂1T (β0, s) = −Ω̂1T (β0, s)

−1 1
[Ts]

∑[Ts]
t=1 gtT (β0) + op(1) and 1

2KT+1 λ̂2T (β0, s) =

− Ω̂2T (β0, s)
1

T−[Ts]

∑T
t=[Ts]+1 gtT (β0) + op(1) with sups∈S max1≤t≤T |ρ2(λ̂iT (β0, s)

′gtT (β0)) − ρ2(0)| p→ 0 for

i = 1, 2.

Using (8), (9), (10), (11), Lemma 1.1 and with G(β0) = limT→∞

[
T−1

∑T
t=1GtT (β0)

]
, we obtain that[

Iq 0

− 2K+1
T

∑[Ts]
t=1 vec (GtT (β0)) gtT (β0)′Ω̂1T (β0)−1 Iqr

]
×

[
1√
T

∑[Ts]
t=1 gtT (β0)

1√
T

∑[Ts]
t=1 vec (GtT (β0)− EGtT (β0))

]

=

 1√
T

∑[Ts]
t=1 gtT (β0)

−
√
T
(
D̂1T (β0, s)− sG(β0)

) ⇒ [
Ω(β0)1/2Bq(s)

ΩD(β0)1/2B2.1(s)

]

with ΩD(β0)1/2B2.1(s) = ΩGG(β0)1/2Bqr(s) − ΩGg(β0)Ω(β0)−1Ω(β0)1/2Bq(s), ΩD(β0) =

ΩGG(β0) − ΩGg(β0)Ω(β0)−1ΩGg(β0) and B2.1(s) is independent of Bq(s). This result is true for any value

of G(β0). Thus, G(β0) can be of full rank value, weak value such that GT (β0) = C1

T 1/2 for q × r matrix C1 or

G(β0) = 0 in the case of no identification.

This implies that

√
T
(
D̂1T (β0, s)− sG(β0)

)
⇒ −ΩD(β0)1/2B2.1(s)

and

√
T
(
D̂2T (β0, s)− (1− s)G(β0)

)
⇒ −ΩD(β0)1/2(B2.1(1)−B2.1(s)).

Since D̂1T (β0, s) and D̂2T (β0, s) are respectively independent of 1
T

∑[Ts]
t=1 gtT (β0) and 1

T

∑T
t=[Ts]+1 gtT (β0)

this yields (
D̂1T (β0)′Ω̂1T (β0)−1D̂1T (β0)

)−1/2

D̂1T (β0)′Ω̂1T (β0)−1 1√
T

[Ts]∑
t=1

gtT (β0)⇒ Br(s) (12)

and (
D̂2T (β0)′Ω̂2T (β0)−1/2D̂2T (β0)

)−1

D̂2T (β0)′Ω̂2T (β0)−1 1√
T

T∑
t=[Ts]+1

gtT (β0)⇒ Br(1)−Br(s) (13)

where Br(s) is a r-vector of standard Brownian motion.

Since θ̃K,T (s) =
(
β̃K,T (s)′, β̃K,T (s)′

)′
minimize the objective function

GELKT (s) = K1T (β̃K,T (s), s) +K2T (β̃K,T (s), s) ≤ K1T (β0, s) +K2T (β0, s)

for all s ∈ S and all T . The result follows directly under the null. The derivation under the alternative can be

easily obtained. The proof for GELMKR
T (s) is straightforward considering that

√
T/(2KT + 1)λ̂1T (β, s) = −Ω̂1T (β)

1√
T

[Ts]∑
t=1

gtT (β) + op(1),

and

√
T/(2KT + 1)λ̂2T (β, s) = −Ω̂2T (β)

1√
T

T∑
t=[Ts]+1

gtT (β) + op(1).
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Table 1: Designs for the data generating processes

Design (γ, δ) Assets Rt Instruments Zt Moment conditions q

W1 (1.3,0.97) rst 1, rst−1, ct−1 3

W2 (13.7,1.139) rst 1, rst−1, ct−1 3
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Table 2: Rejection frequencies under the null hypothesis

Standard identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

S1 0.0767 0.0800 0.0633 0.1400 0.2267 0.0500 0.0033 0.0900 0.0200 0.0467

0.0700 0.0367 0.0600 0.0967 0.1933 0.0900 0.0167 0.0933 0.0300 0.0633

S2 0.0700 0.0700 0.0967 0.2900 0.3233 0.0733 0.0033 0.0467 0.0267 0.0367

0.0600 0.0800 0.0933 0.2900 0.3300 0.1100 0.0267 0.0267 0.0333 0.0367

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

S1 0.0333 0.0900 0.0133 0.0700 0.0000 0.0133 0.0600 0.0100

0.0333 0.0833 0.0100 0.0767 0.0000 0.0233 0.0233 0.0033

S2 0.0633 0.1500 0.0267 0.1200 0.0000 0.0100 0.0667 0.0067

0.0533 0.1000 0.0300 0.0900 0.0000 0.0433 0.0567 0.0200

Weak identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

W1 0.0800 0.0800 0.0733 0.1867 0.3200 0.0567 0.0100 0.0833 0.0367 0.0433

0.1000 0.0833 0.0800 0.1433 0.2367 0.0600 0.0167 0.0567 0.0067 0.0300

W2 0.0833 0.0667 0.2033 0.1633 0.2267 0.0833 0.0100 0.1033 0.0467 0.0500

0.0900 0.0700 0.1767 0.1733 0.2600 0.1167 0.0300 0.0867 0.0333 0.0567

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

W1 0.0467 0.1233 0.0133 0.1000 0.0000 0.0100 0.0600 0.0100

0.0300 0.0800 0.0167 0.0633 0.0000 0.0133 0.0733 0.0133

W2 0.0600 0.1033 0.0100 0.1067 0.0100 0.0133 0.0933 0.0167

0.0567 0.1000 0.0067 0.1033 0.0000 0.0133 0.1100 0.0167
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Table 3: Rejection frequencies under the alternative hypothesis (break located at mid point of sample)

Standard identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

S2 0.6100 0.5800 0.4633 0.7667 0.8200 0.3267 0.0100 0.2800 0.1667 0.2667

0.8733 0.8500 0.6200 0.9167 0.9500 0.4333 0.0333 0.3000 0.2400 0.2567

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

S2 0.3833 0.5833 0.3500 0.5367 0.0367 0.1733 0.5100 0.2600

0.6967 0.7733 0.6367 0.7433 0.1967 0.4200 0.7267 0.6233

Weak identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

W2 0.7500 0.6667 0.6067 0.9933 1.0000 1.0000 0.9867 1.0000 0.9833 1.0000

0.9467 0.9000 0.8000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

W2 1.0000 1.0000 0.9633 1.0000 0.0367 0.9733 0.4867 0.2267

1.0000 1.0000 1.0000 1.0000 0.0200 1.0000 0.4900 0.5033

Mixed identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

S1/W2 0.4300 0.3200 0.3033 0.5133 0.6700 0.2267 0.0100 0.3333 0.1600 0.2067

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

S1/W2 0.3367 0.4867 0.2567 0.4600 0.0200 0.0767 0.4167 0.1833
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Table 4: Rejection frequencies under the alternative hypothesis (break located at quarter of sample)

Standard identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

S2 0.3833 0.2567 0.4500 0.7267 0.8533 0.3867 0.0100 0.3467 0.2667 0.3433

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

S2 0.6067 0.7433 0.5600 0.7200 0.0467 0.1967 0.5133 0.2700

Weak identification

DGP

GELW WGMM GELM GELR GELIPSI O OGMM GELO GELMO GELIPSO

W2 0.7867 0.6200 0.6800 0.9800 1.0000 1.0000 0.9233 1.0000 1.0000 1.0000

GELMR GELR GELRCR GELIPSR LRGMM SGMM GELK KGMM

W2 1.0000 1.0000 0.9800 1.0000 0.0200 0.9167 0.5033 0.3267
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