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Supplemental Material

Appendix A presents the rank condition for the local, statistical identification of SVAR processes
with asymmetric structural shocks. Appendix B details the analytical partial derivatives involved
in the Jacobian matrices related to the rank condition. Appendix C derives the rank condition.
Appendix D contains the derivation of the asymptotic distribution of the rank test and a justification
of the bootstrap procedure when r* > 0. Appendix E documents the empirical sizes and powers of
rank tests for symmetry. Appendix F reports the estimates of the structural parameters involved

in system (30).

Appendix A: Identication under asymmetric structural shocks

The appendix elaborates the rank condition for a case which exploits only the skewness of the struc-
tural shocks. For this case, the relation between the reduced-form innovations and the structural

shocks is partitioned as:

ve= (05 Ons) (e&t > , (A.1)

€Ens,t

where €5, and €ps; contain the mg and (n — m,) asymmetric and symmetric structural shocks.

Here, the number of parameters to identify is 7 = n? + mg because there are n? and m

parameters to identify in ® and S.. From the reduced form, p = [n(n;l)] + |:n(n+1g(n+2):|

n(n+1)
2

since

there are and n(n+1g)(n+2) distinct elements in ¥, and .S,. The information contained in S,
contributes to identify the parameters in ©4 and S, whereas Y, contains specific information to
identify the parameters in ©;.

The sufficient rank condition holds when r = 7. Under the short-run restrictions Rf,s; = g, the

rank condition is verified if:

JO'mes Ja'wens Jo'wse
rk[JY) =rk [T Ji JE] =rk {Jo0. Jebne Jesc| =1, (A.2)
0 R 0
where J7T is the augmented Jacobian matrix, Jet = [T, 0. i 0. 0’]/, JQJ;S = [0 00 o R’]/,
JE =170, Tis. O’]/, and Jy o = %. Moreover, the vector o, vectorizes the lower triangular

part of the symmetric covariance matrix ¥, and the vector s, collects the distinct elements of the
coskewness matrix S,. Finally, the vector 65 stacks the columns of the matrix ©; in system (A.1),
the vector 6, contains the elements of the matrix ©, and the vector s. includes the non-zero

elements of the skewness matrix S..



When no restrictions are placed on the structural parameters (R = 0), the rank of J is given
by

— _ JO'V,HS JJV,9n5 JUU7SE
rk[J) =1k [Jo, Jo,, Js]=rk P A
which is equal to r = 75 + s + s, With rs = rk[Jp,] = n X mg, Tns = TE[Jp,.] = n(n;l) -

W, and rs, = rk[Js.] = ms as we show below. Consequently, the entire structural system is

locally, statistically identified (7 = r) when at least all, but one, structural shocks display non-zero
skewnesses. Also, whether or not 1 = r, the parameters involve in ©4 and S, are locally, statistically
identified through the information contained in 3, and S,. Hence, if the structural shocks of
interest are asymmetric, then their effects are identified. When some restrictions are imposed
on the structural parameters (R # 0), then the entire structural system is locally, statistically
identified when (1 — r) linearly independent restrictions are imposed on the structural parameters
contained in 6,s. Thus, if the structural shocks of interest are symmetric, then their effects can

only be determined when (7 — r) restrictions are placed on ©;.

Appendix B: Analytical derivatives involved in the Jacobian ma-
trices

This appendix presents the analytical partial derivatives involved in the Jacobian matrices for the
cases (A.2), (17) and (18). First, the partial derivatives of the second unconditional moments of

the reduced-form innovations with respect to the structural parameters are:
Jo, 00 = 2D:(®®In)T9i’
Jau,se = 07

= O’

Jay,nf

where i = s,ns in (A.1), i = k,nk in (17), and i = ss, kK, sk,nsk in (18). The vectorization
of the distinct elements of the second moments yields o, = D}vec(X,), where o, = vech(%,),
D} = (D! D,)"'D! and D, is the (n2 X W) duplication matrix such that D,o, = vec(¥,).

Using this vectorization, we obtain %‘;Z = Df gzzcc((é;,) 8”3%9). Equation (11) leads to vec(X,) = (O0®

©)vec(Iy,), so that 21;?0%‘3,) = 2(0®1,) (see Liitkepohl, 2007, p. 363). Also, 8”209(29) = Ty, is a matrix

containing the values one and zero such that only the partial derivatives with respect to the elements

of the vector 6; are selected. As an example, consider the relation (A.1) with n = 2 and ms = 1

(where the asymmetric structural shock is ordered first), then the (n? x nmy) selection matrix

!/
100 0 5, 6
corresponds to Ty, = <O 1 0 O> and 05 = vec(©s). Moreover, %‘;Z = Df gzzg((se)), 6v%cs(é5),
where gﬁi(fgf))f = 0 given that ¥, is not a function of the skewnesses of the structural shocks.

: : do, _ 1+ Ovec(By) Ovec(KE) _ . Ovec(Ey)
Likewise, ortr = Do goeatkey —one with FoecKE) = 0.
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Next, the partial derivatives of the third unconditional moments of the reduced-form innovations

with respect to the structural parameters are:

Jsp.0: = DIH{(I2 ®08)[(I, @ Cpp @ I)[(I2 @ vec(©)) + (vec(®') ® 1,,2)]Ch )
+[(©®©)S. ® I,]} To,,

Jo,se. = DFO2O620)T,,

Jsp e = 0,

(18). The vectorization of the distinct elements

(S,), where DI = (D.D,)"'D., and Dy is the
<n3 X M) matrix such that Dgs, = vec(S,). As an example, for a bivariate system with
n = 2, then:

where i = s,ns in (A.1) and i = ss, kK, Sk, nsk in

of the third moments corresponds to s, = Dfvec

10 0 0
01 00
0100
0010
D = 0100
0010
0010
0 001
Using the above vectorization, we have %"92 = Df gzzgg”)? 8”22(26) with 8”26929) = Ty,. Rewriting

equation (12) as vec(S,) = [(© ® ©) ® Blvec(Se), then 3222%’)2 = (I,2 ® @Se)%{gﬁy) +[(O®
©)S. ® I, where 254EES) — (I, © Cpup ® 1,)[(L2 ® vee(8)) + (vec(®') @ I,2)] 54 with
gzzgg)z = Cyn (see Magnus and Neudecker, 2007, pp. 208-209), and C,,,, is a (nm x nm)
commutation matrix implying that C), ,,,vec(A) = vec(A’) for the arbitrary (n x m) matrix A. Note

that ‘3597 = 0 for i = ns in (A.2) and for i = kk,nsk in (18), since S, is not a function of the

structural parameters relating the reduced-form innovations to the symmetric structural shocks.
ds, __ Ovec(Sy) Ovec(Se Ovec(Sy) __ Ovec(Se) p
Furthermore, 8‘; = Djavec((se)), 855, ), where avec((se)), = (O® 06 ®0) and 85E/ ) _ T, is a

3 X my) matrix selecting the partial derivatives with respect to the non-zero elements of s.. In

(n
particular, for a system with n = mgs = 2, then T;_ has values one for the (1,1) and (8,2) elements,
and zero elsewhere. For the system with n = 2 and ms = 1, then Y,_ has values one for the (1,1)

element, and zero elsewhere. Moreover, gf;g =D} aay Zecc(([‘gzg, avg';(ef,( <) where %ﬁz;, = 0 given that

S, is not a function of the excess kurtoses of the structural shocks.

Let us now examine the rank of the matrices Jy;, 6., Js, 6, and Js, .. As illustration, consider

Vit 011 012\ (€1
)= ’ Al
<V2,t> <921 922) (62¢) (A.1)

a system with n = 2,



For this example, the Jacobian matrix of the derivatives of the covariance matrix with respect to

the parameters © is given by

2011 0 1 2019 0
Jo,0= | 021 611 : b Or12
0 2921 : 0 2922

n+1
5 Xn

where § = vec(0). For a full rank matrix ©, this matrix Jy, ¢ is of rank 2t and each n(”2+1)
submatrix corresponding to the derivatives of J,, g with respect to a column of the matrix © is of
rank equals to n and this holds for V n. Also, the Jacobian matrix of the coskewness J,, o with

respect to O for (A.1) is

2 ) 2
391186’1,11 0 : 39128672’22 0
2 ) 2
Jo g = 20110215111 0715¢,1,11 0 20120025c2922 0795¢ 222
S0 = 2 i 2 2
v 0315¢1,11 20210118111 @ 0535220 20120595¢ 2,22
2 ) 2
0 39218671711 : 0 39228672722
n(n+1)(n+2)

For a full rank matrix ©, the Jacobian matrix Jy, ¢ of dimension 5 x n? is of rank n X mg
which equals the rank of the matrix J;, g, since Jg, g, = Js, 9Yp,. In the case above, for mg = 1 (for
instance when s¢ 1,11 # 0 and s¢ 222 = 0), the matrix J;, o, corresponds to the first two columns of
Js, 0, whereas J g, corresponds to the two last columns of J,, 9. The rank of J,, g, and J;, g is
equal to n X mg = 2. For ms = 2, J,, 9, = J,, ¢ and the rank is n x ms = 4. For the general case,
rearranging the rows of the matrix J;, ¢ corresponding to the k-th column vector 0, ;, of the matrix

0, leads to the following M X n matrix
sze.’k = . Se,k,kk

where the matrix C; is of dimension (M — n2> x n for n > 2. The n X n matrices By

. DSy 115 . : o .
are given by By, = 29’/’1’3 for k,1,j = 1,...,n and C}, contains the derivatives of s, ; ;; respective
ok

to 0, , foralli < j < [ for i,J,0 =1,...,n. Note that the column rank of Js, g, , is the same as

*
Suyeo,k'

is 3912,{567;97%. The matrices By are then of full column rank for all 8, # 0. Given that © is of
full rank, J7

weo,k

collinear with Jg, g, , for k # I, scprr # 0 and s¢yy # 0. This shows that the Jacobian matrix

Each matrix By, has the term Glzkse,kykk on its diagonal except at the element [, k which
and then J; ¢ is necessarily of full rank for s¢x 1x 7 0 and Js, g, ., cannot be
viVe,k SRy viVe k

Js, 0 is of rank equals to n x m,. For the illustration with n = 2, we get

Jo g = [311 312]
v Byy Baa|



where By are 2 x 2 matrices for k,l = 1,2. For this case, w —n? = 0, so that there is

no matrix C%. We see that for each submatrix By, the diagonal elements are function of G?ks€7k7kk.
For a full rank matrix O, the first two columns corresponding to Bj; and Bs are of full rank (when
5¢,1,11 # 0) and they cannot be colinear with the last two columns corresponding to By and Bay
(when s 292 # 0).

For the Jacobian matrix J,, s , the rank can be easily shown. The expression (0 ® © ® 0) is
a square full rank matrix, so (0@ ® © ® ©)Y;, is of the same column rank than T, , namely m.
Since D7 is a full column rank, D (© ® © ® ©)Y,_ has a rank equals to m,." For (A.1),

9:1)’1 : 9%2

o 9%1921 . 9%2922
JSU’SG_ 0119%1 : 0129%2 TSE'

‘9%1 : 932

The rank of this matrix equals the rank of T, which equals m,. However, the rank of [J;, ¢ J, 5]

equals the rank of the matrix Js, g namely n x ms given that Js, g, , X Oe r = 35¢ k kx5, 5.,k Where

k indexes the column of the respective matrix. This holds for V n for a full rank matrix ©.
Finally, the partial derivatives of the fourth unconditional moments of the reduced-form inno-

vations with respect to the structural parameters are:

Juc o, = Di{(L2 ®OKE) (L2 ® Cppz @ In)|[(Ina @ vec(®))(In @ Cpp @ 1) X (L2 ® vec(©')
+(vec(©®') @ I,2)]Crpmn + (vec(® ® ©) @ 1,2)Chyu] + (O @ © ® ©O)KE @ I,]} Ty,
Jeese = 0,

Jeewe = DI (ORO0®O®0O)T,,

where i = k,nk in (17) and i = ss, kK, sk,nsk in (18). The vectorization of the distinct ele-
ments of the fourth moments is k¢ = Dfvec(KE), where DF = (D'.D,)"'D. and D, is the

'Tf A is a full column rank matrix and B is conformable for the multiplication AB, the rk(AB) = rk(B).



<n4 X n(”H)(gf)(nH)) matrix such that Dyx¢ = vec(KE). For example, when n = 2, then:

SO O ORrRr PR OO, OHFHOOO
O R P ORFRPR OO0 FrROOOOoOOoO oo
—_— OO OO0 oo oo

O O DD DO DD DD OO OO0 OO
OO DD DDODDODOHODOO O FFO

. . . Ok _ 4+ Ovec(KE) Ovec(©) _ ..1 Ovec(O) .
Using the above vectorization, we have a0, = Dy vec(®) 00 with a0 = Ty,. Given that

equation (13) implies vec(K}) = [(OR0®0)®0Ovec(KE), then %f}e;c((g? = (In2®@K§)%®(g;i®@l)

(@ ® 0 ® O)KY ® I,], where %ﬁg;i@@/) = (L2 ® Chp2 ® Ip)

[(In4 ® U@c(@’))%(gﬁy) + [vec(®' ® ©') @ I,,2] 2522832, and, as shown above, %(g)(?/) =
(In ® Cop @ 1) (T2 ® vec(®)) + (vec(8') @ I,2)] 32XE) and G480 = C,, . Note that ggz{f —0

for i = nk in (18) and for ¢ = ss,nsk in (19), since K¢ is not a function of the structural pa-

rameters relating the reduced-form innovations to the mesokurtic structural shocks. Moreover,
OKS 4 Ovec(KE) Ouec(Se) Ovec(KE) . e : .
95 = Di Goea(s57 a5 where BoeclSY = 0 given that K7 is not a function of the skewnesses of

the structural shocks. In addition, g:g = D} 88::5((1[((5))/ ngfgffe ) where % - (OR0R010)
Avec(K¢E) 4

oreT T = Tye is a (n* x my) matrix selecting the partial derivatives with respect to the

and

non-zero elements of x¢. For example, when n = m,, = 2, then Te has values one for the (1,1) and
(16,2) elements, and zero elsewhere. For the system with n = 2 and m, = 1, then Yc has values
one for the (1,1) element, and zero elsewhere.

Similarly to the case with skewed structural shocks, we can show that rk[Je 9] = n X m, and
rk[Jee xe] = my for a full rank matrix ©. In particular, the matrix Jie 6., has a form similar

to the matrix Jg, g, , with elements function of H?k on the diagonal of the block Bj,. Moreover,

ok
rk [J,.gsﬂ JHS#E] = n X my by noting that Jee g, , X Oar = 4K 11 11 ke wei Where k indexes the

column of the respective matrix.

_l’_



Appendix C: Rank condition

Let us now show that rk[J| = r = rg+r,s+7s,, as mentioned in appendix A. We need the following

results for the rank of upper triangular block matrix :

Lemma 1 Given that A is a m X n matriz, B is a s X t matriz and C is a m X t matriz,

1.

rR(A) + rk(B) < rk ({’3 g]) <rk([A C])+rk(B).

In Appendix B, it is shown that rk[Js, ¢] = rk[Js, 0] = n X mg, rk[Js, s.] = ms and
rk[Js, 0 Js,,s.] = n x ms. Moreover, each % x n submatrix of J;, g corresponding to each
column of the matrix © is of rank equals to n. Now, we need to know the rank of the matrix
of the derivative of the covariance matrix with respect to the parameters of the impact matrix
Jo,0, and Jg, g, The rank of the first submatrix rk[J , ]| = "(n;l) — ("_ms)(g_mSH) and for

the second submatrix, the rank is equal to rk] </7u 9ns] = n(n;l) — (ms)(gnﬁl). To understand this

result, consider that m, = 1. In this case, the n X n symmetric covariance matrix of the n-variables
resulting from the skewed structural shock is of rank equals to one. Since only one row (column) is
linear independent of the others rows (columns), this symmetric covariance matrix contains only n
independent elements. The n x n symmetric covariance matrix of the n-variables resulting from the
other structural shocks contains n — ms = n — 1 linear independent rows (columns) which implies
that this matrix has n(n + 1)/2 — 1 idependent elements. For instance, suppose that n = 3 and

ms = 1 (where €; + is the skewed structural shock), we get the following relationship:

1 1 1 2
J11,11 012 ‘71{,13 07, 010 611031 011 ,
ms __ 1 _ 2 _
S = |0p12 0o Opos| = 021011 03 02631 | = (021 [11 O 0] E(ef,).
J13,13 ‘711/,23 Ui,33- 031011 031021 9?%1 031

The rank of this matrix is equal to one because there is only one source of randomness; the skewed

structural shock €1 ;. Consequently, only one row is linear independent of the other ones. This row

contains n linear independent elements namely n("2+1) - ("_ms)(g_msﬂ) =6 —3 = 3. The elements
of the two other rows are linear combinations of this row. The rank of the symmetric covariance
matrix for the n-variables induced by the two other structural shocks, denoted 7,7 is :
2 2 2
05,11 05,12 0,13
M = oy12 Ou2n 003

Op13 9p23 9,33
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Since the rank of this submatrix is equal to the number of non-skewed structural shocks, there are
n(n+l)  (ms)(ms+1)
2 2

two linear independent rows which contain = 6—1 = 5 independent elements for

any combination of two rows of the matrix X727, In the case where my = 2, there are two linear
n(n+l) (n—ms)(n—ms+1) _ 6
2 2 -

independent rows for the matrix 37" which implies

n(";l) - (ms)(;n'gﬂ) = 6—1 = 3 independent elements. Asa

—1 = 5 independent

elements and the matrix X7~ contains

;uﬂs]/ equals n xmg by using rk[Js, 9.] = n xmg

| > rk[Js, 6,]. Now the rank of the Jacobian matrix Jp,, = [J}
nt) ()i £1)

result, the rank of Jacobian matrix Jp, = [/ 0 0s
and rk[Js, ¢

to the rank of the Jacobian matrix Jy, g,,, which is

ns

]/ is equal

s su,0ns

ns

since Js, g, iS a matrix

of zeros. Finally, the rank of the matrix J;, = [J] ! ]/ is equal to the rank of the

Ov,Se Sv,Se
matrix J, ;. because only the coskewness matrix gives information about the third moment of the
structural shocks. The rank of J,, is 7k (Js,s.) = ms. The rank of the complete matrix of the

Jacobian J respective to the structural parameters :

— JUU79S Ja’u,ens 0
J_[JWS . J} (1)

can then be shown to be equal to rk[J] = r = rs + rys + rs., where rg = n X mg, rps = w —

W and 75, = mg. First, consider the rank of the following block diagonal submatrix

Ja'u,ens O
[ : J] | (c2)

The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, namely
n(n+1 ms)(ms+1
rk(JUV70ns) + Tk:(‘]suﬁe) = ( 2 ) - ( )(2 ) + ms.
Second, the rank of (C.1) equal the rank of (C.2) plus the rank of Jy, except if there exists at

least one linear combination of the columns from the matrix .Jy, which corresponds to a column
of (C.2). In the following, it is shown that such linear combination does not exist for a full rank
matrix ©. We show that such linear combination does not exist in two steps : i) there is no linear
combination of Jy, which yields a column of Jp, ; and ii) there is no linear combination of Jp, which

yields a column of Js_. For i), consider the submatrix [Jp, Jp, ] which is

— Jau,es ']Uu,ens
Jy = [JWS : } .

The rank of Jy equal to the rank of the submatrix J,, g, plus the rank of the submatrix J,, g,...
Thus rk(Jp) = n X ms + n(n;l) - (ms)(;nerl). Indeed, the rank of the bloc matrix Jp is equal

/
to the rank of the matrix [ ! J! } plus the rank of the matrix J,, g, using the following

ov,0s Su,0s OUns

inequalities for the rank of upper triangular block matrix (Lemma 1):

,rk(‘]g'l/,@ns) + Tk(‘]su,gs) S Tk(J@) S Tk(Ja'u,gns) + Tk; (|:JO-V798:|> :

Su,0s



Here, we have

Jo
Tk(JU”’Hn‘S) + Tk(JSlMOS) = ’rk(JO'u,ens) + rk <|: V’98:|> ‘

Sv,0s

For ii), we show that there is no linear combination of Jp, that yields a column of Js_. In the

preceding section, we show that rk [Js, ¢, Js, 0

Uns

Js,.s.) = 7k [Js, 0.] which implies that it exists an

appropriated matrix A of dimension (n - mg) x mg such that [Js, 9,] A = Jg, s, since the submatrix

Js,.0,. = 0 is a matrix of zeros. Define each column of the matrix A by A4; for i = 1,...,ms.>
For a matrix © of full rank, all w X n submatrices [Jou,ei,s} are necessarily of full rank so

there is no vector such as [Jowg ] A; = 0 for Vi where i indexes the elements of the vector 6,

corrresponding to the column ¢ of the matrix ©. This implies that the rank of the matrix J equals
n x mg+ "(n;l) - (ms)(;n“’ﬂ) +ms. Given that [J,, g, ] Ai # 0 for i = 1,...,m and that Jy, g, is

of full rank, there is no linear combination of the columns of the matrix .Jy, that that corresponds

to a column of the matrix (C.2) since the Jacobian matrix respective of the structural parameter
Jp is of full rank. This completes the proof.

The same results hold for the case which exploits only the fourth moments of the structural
shocks by modifying properly the dimension of the matrices and the notation.

For the general case

']Uu’ess Jouyenn Jguyesn ']Uu’ensn JUV75€ JO’IMK‘E
J = Js Js,,,@,m Js Js sz,se Js
J,{le/ vgss JKS 79m< Jlif) 793n JN Jng »Se JHIeJ 7’{2

vi0ss vi0sk viOnsk vyRE

Svgnsn

which equals

JUV7955 Jguaamn Jauyesn Jo'luensn 0 0
J = Jsuyess 0 Jsuﬁsn 0 J5V7se O (Cg)
0 Jﬁzﬁnenn J’ffnesn 0 0 Jlﬁg,lﬁ?g

First, consider the block diagonal submatrix containing the last subgroup of columns

Jauyensn 0 O
0 s, e 0 . (C.4)
0 0 Jre re
The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, 7&k(Jy, 4,.,. )+
’rk(!]sl,,se) + Tk(Jngﬁg) — n(n;‘l) _ (mss“l‘mmm"l‘msﬁ)(727155+mmm+m5ﬁ+1) + ms + M.
By an argument similar to the one above, the rank of the submatrix
Jgu)ess Ja’l/aenn Ja'lnesn
Jsuyess O JSV705K (05)

O Jnsagnn Jn]e/798.‘1

2From Appendix B, A; corresponds to the column of matrix 6, divided by 3 times the respective measure of
skewness.



/
equals the sum of rank of the submatrix [J;V’gss Jé,,,ess} and the rank of [J,i;i 9 J,ﬁgm], using

Lemma 1 and the fact that rk[Jg.,. Jo..] = rk [J,ig,@m J,igje_m} = n X My + N X Mge. The
rank of (C.5) is then n X mgs + n X Mgk + n X mg,. Now, one needs to show that the rank
of the complete Jacobian matrix (C.3) is the sum of the rank of (C.4) and (C.5). First, the
o’ O’}/ equals the rank of (C.5) plus the
rank of J,, by the lower triangular block structure of this submatrix (by Lemma 1) which is

"(";1) — (m”+m““+m“)(;n”+m““+m“+1). By a proof similar to the

rank of the submatrix containing (C.5) and [J’

Uuyansn

X Mgg + N X Myge + M X Mgy +

one to the case under asymmetry only, for a full rank matrix ©, there is no linear combination of

(C.5) that can yield a column of the last two submatrices of (C.4), i.e.

0 0
sz,se 0
0 Jngaﬁg

The rank of J is then equals to rk[Jy,,| + rk[Jy,..] + rk[Jo,.] + rk[Js,..]

+ k[ Js,| + mk[Jee] =
n(n2+1) _ (mss‘f'mmm‘f'msn)(g”ss'f'mmm'f'msn'i‘l)) + Mg + my.

nxmss—i-nxmm—i—nxms,{—i—(
Finally, Corollary 1 results from that there is no linear combination of (C.5) that can yield a

column of the last two submatrices of (C.4)

Appendix D: Asymptotic Distribution of the Rank Test

_—~_LR — W
First, we derive the asymptotic distribution of the statistics CRT,. and CRT,.. Under the
assumption in section 3.1 for K¢, E[||/|®] < oo and the estimator K€ is a root-T consistent for the

3

n x n° excess cokurtosis matrix K of the normalized reduced-form innovations. In this context,

the asymptotic distribution of I?f; is
TY2pec(KE — K¢) 5 N(0,T)

where I is finite.

Now, suppose that the matrix K7, is of rank 7* < n. The singular value decomposition of K
gives K¢ = CAD’ where A is a diagonal matrix with the singular values on the diagonal. Let
A1, A2, ..., Ap be the singular values of the matrix A ordered in decreasing values. For a matrix K
of rank equal to 7*, the first r* singular values are different from zero and the last n — r* singular
values are equal to zero. Thus

C'KD — Cl.KED,~ Cl.KED,3_ A
v Cl_K:Dp C)_ W KED,3_ .
The submatrix C},_,..KE¢D,s_, corresponds to the null space of K¢ which is the object of interest
(see Al-Sadoon, 2017). We have

n
S 82 = vee(@) e KG Dys )| = [vee(CryeCly o KDy u Dl )|

r n—r*
i=r*4+1

10



where Up_p» = CppxCl_ . and Vyz_ .« = Dn3—r*D:~b3_r* are the orthogonal projectors onto the
space spanned by the left and the right null space singular vectors.3

The vectorization of this matrix yields
vee (Un-p KWy ) = (Voo @ O ) wee(RY).

Since Tl/zvec(l?s — K&) — N(0,T"), the convergence in probability of the orthogonal projectors
Up—ye 2, Up—r= and XA/ns,T* Ll V3_pt and r 2 I', this implies that

~ ~ / ~
T2 (Vn?,_r* ® Un_r*) vee(Ke — K&) 53 N (0,(Viys_e @ Un—p) T (Vigs_pe. @ Up—y))

Statistics CRT f*R and CRT Z‘*/ converge asymptotically to
Tr(XX,.) 4+ 0p(1) = vec(X,+) vec(Xy+) + 0p(1)

where X~ = T/? < e ® Uﬁ—r*) vec(K¢ — K©). Both statistics have a limiting distribution
given by Zf*zl 6" Z2 where 6 > ... > 4I. are the non-zero ordered eigenvalues of the matrix
(Viys_ye @ Up—p ) T (Viys_ye @ Up—pr) and {Z;}!_, are independent N(0,1) variates. The limiting
distribution is then a weighted sum of t* independent chi-squared variables with one degree of
freedom and the weights are given by the non-zero eigenvalues ¢; “fori=1,...,t". An estimator of
the cumulative distribution function is obtained using the estimated counterparts of the matrices
Un—, Vys_p» and T and the c.d.f. of the corresponding weighted sum of Z?2 for i = 1,...,t* which
can be easily evaluated by simulation.

Now we show that the subvector ulr’*yt obtained by bootstrapping the vector wff;’t = @{* 1y for
b=1,..., B implies that X? L \; where 5\27 are the bootstrap estimators of the r* largest singular
values and 5\Z are the sample estimators. Suppose a vector z with the following relation with a

vector u:
Zt = C'ut
where C' is orthonormal. We have the following relation for the excess cokurtosis

Ki=CK.(C®C®0)

3Unlike to Robin and Smith (2000) and Bura and Yang (2011) but similarly to Portier and Delyon (2014), we
consider orthogonal projection matrices U,,—,+ and V,3_,«. The orthogonal projection matrices are invariant to the
choice of a basis while the singular vectors in Cy,—+ and D,;s_,.« are uniquely defined only up to post-multiplication by
an orthogonal matrix in a case of a multiplicity of singular values. Moreover, the orthogonal projection is continuous
in the elements of the matrix, a necessary condition to guarantee the convergence in probability (see Dufour and
Valéry, 2012).

4See Al-Sadoon, 2017, Theorem 1.
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For the quadratic form of the excess cokurtosis
KK = C'K;(CoC®0)(C'eC'aC)K{C=CK; KC.

By the eigenvalue decomposition K¢ K¢ = CA*C’ which implies K¢{K¢ = = = diag(A\], ..., A2.,0,...,0)
for a matrix K of rank r* with the eigenvalues in descending order, where the eigenvalues are the
square of the singular values );. Thus, linear combinations of the normalized reduced-form inno-
vations wpx = A,’,*ﬁt capture the excess cokurtosis of the vector of the normalized reduced-form
innovations where CA';‘ are the first * columns of C corresponding to the singular values A1, ..., A\p=.
The subvector u?m is generated by bootstrapping the vector wy. , = 57{* ay for b=1,...,B. Thus,

for a consistent estimator of the excess cokurtosis K7, of ub, , for b=1,..., B, a given matrix C
r* ’

A~ o~

and by the continuity of the singular values, S\i’(f(zb I?Z; ) Ll 5\1( A;* e ;’&*) fori=1,...,r%

Appendix E: Empirical sizes and powers of rank tests for symmetry

This appendix reports the empirical sizes and powers of rank tests for symmetry. Table E.1 shows
the empirical sizes. The Wald test with asymptotic distributions has empirical sizes that slightly
deviate from the nominal ones, and the likelihood-ratio test with limiting distributions has empirical
sizes that are substantially smaller than the nominal counterparts. In contrast, both the Wald and
likelihood-ratio tests with finite-sample distributions feature empirical sizes that are almost identical
to the nominal sizes, regardless of the number of observations in the sample.

Table E.2 displays the empirical powers. For the Wald and likelihood-ratio tests with finite-
sample distributions, the powers substantially improve as the sample size increases and as the

structural shocks become more skewed.
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Table E.1. Empirical Sizes of Rank Tests: Skewness

Asymptotic Distributions

Finite-Sample Distributions

r*=0 r*=0
Wald LR Wald LR
T 0% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 8.72 392 0.53 2.68 0.63 0.01 942 4.65 0.98 9.56 4.85 1.01
200 9.99 4.66 0.80 5.81 191 0.12 10.17 5.25 0.98 10.19 5.20 1.00
500 993 469 081 797 3.36 0.41 10.14 5.04 1.10 10.29 4.99 1.12
1,000 9.73 4.63 0.70 8.65 3.94 0.52 9.82 491 0.92 9.87 490 0.92
5,000 10.03 5.22 1.09 9.90 4.97 1.02 10.02 5.10 1.12 9.98 5.11 1.11
r*=1 r*=1
Wald LR Wald LR
T 0% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 11.83 5.79 1.52 7.86 3.22 0.51 11.41 6.35 1.47 1141 6.35 1.47
200 10.87 5.30 1.18 8.60 3.66 0.53 9.11 4.86 142 9.11 4.86 1.42
500 10.89 5.20 1.06 9.74 4.42 0.63 9.29 4.,55 1.07 9.29 455 1.07
1,000 9.97 4.82 1.03 945 4.36 0.86 839 426 1.02 839 4.26 1.02
5,000 10.61 5.59 1.02 10.05 5.47 0.99 9.20 4.68 0.96 9.20 4.68 0.96

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic and finite-sample distributions
under the null hypothesis that Tk[Su] = 1" The empirical sizes are evaluated for the bivariate specification (1)—
(2), where the parameters are set as follows: a;= —0.5, o= 0.5 and wi1= wo= 1. Also, the distributions are
€24~ N(0,1), and i) €14~ N(0,1) under 7*= 0 or ii) 2.1755 X €1 4~ N(1,1) with probability 0.7887 and
2.1755 x €147~ N(—3.7326, 1) with probability 0.2113 under 7*= 1. For each parametrization, 10,000 simulated
samples of size I are generated to compute the proportions of time that the Wald statistic C/R\T :1/ and the likelihood-
ratio (LR) statistic @f* associated with S, exceed the critical values. The asymptotic critical values are
computed as shown in Appendix D. The finite-sample critical values are computed by the bootstrap procedure

elaborated in Section 4.2.
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Table E.2. Empirical Powers of Rank Tests with Finite-Sample Distributions: Skewness

Skewness = —0.5231 Skewness = —0.9907
r*=0 r* =0
Wald LR Wald LR
T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 20.71 11.44 2.42 20.88 11.46 2.53 72.05 46.66 10.43 69.95 44.82 10.53

200 41.02 26.70 850 40.58 26.40 8.15 99.35 96.85 74.28 99.23 96.33 67.90
500 8298 71.28 42.66 82.82 70.93 41.24 100.0 100.0 100.0 100.0 100.0 100.0
1,000 99.11 97.66 8894 99.10 97.64 88.51 100.0 100.0 100.0 100.0 100.0 100.0

r* =1 r*=1
Wald LR Wald LR
T 10% 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 16.35 8.05 1.31 16.35 8.05 1.31 88.27 78.73 4191 89.15 78.75 41.91
200 41.12 27.24 8.06 41.12 27.24 8.06 99.70 99.20 94.65 99.70 99.20 94.65
500 86.85 78.10 53.80 86.85 78.10 53.80 100.0 100.0 100.0 100.0 100.0 100.0
1,000 99.49 98.65 94.17 99.49 98.65 94.17 100.0 100.0 100.0 100.0 100.0 100.0

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions under the
null hypothesis that Tk[Su] = 7", The empirical powers are evaluated for the bivariate specification (1)—(2), where
the parameters are set as follows: o= —0,5, o= 0.5 and wi= wo= 1. For r*= 0, the distributions are: i)
€247~ N(0,1) as well as 1.6808 x €1, N(1,1) with probability 0.5 and 1.6808 x €147~ N(—1,2.65) with
probability 0.5 when €1 ¢ exhibits a skewness of —0.5231, and ii) €2 ¢~ N(O, 1) as well as 2.1755 X €1 ¢~ N(l, 1)
with probability 0.7887 and 2.1755 X €1 4~ N(—3.7326, 1) with probability 0.2113 when €1,¢ exhibits a skew-
ness of —0.9907. For r*= 1, the distributions are: i) 1.6808 x €3 ;~ N(1,1) and 1.6808 x € ;~ N(1,1) with
probability 0.5 as well as 1.6808 X €9 1~ N(—1,2.65) and 1.6808 x €147~ N(—1,2.65) with probability 0.5
when each shock exhibits a skewness of —0.5231, and ii) 2.1755 X €24~ N(l, 1) and 2.1755 X €1,t7 N(l, 1)
with probability 0.7887 as well as 2.1755 X €34~ N(—3.7326, 1) and 2.1755 X €1 4~ N(—3.7326,1) with
probability 0.2113 when each shock exhibits a skewness of —0.9907. For each parametrization, 10,000 simu-
lated samples of size T are generated to compute the proportions of time that the Wald statistic C/R\T Z[: and
the likelihood-ratio (LR) statistic @ T*R associated with S, exceed the finite-sample critical values, where the

latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Appendix F: Estimates of the structural parameters

Table F.1 shows the estimates of the structural parameters involved in system (31).

Table F.1. Parameter Estimates

Parameter ar=0 a1 =208 B =0
a; 1.9409***  2.0800T 1.8359%*
Qs 0.0000f  —0.5711* 0.0728
I3 0.3797**  —0.1482*  0.0000f
B —0.0015  0.0095* —0.0030
" —0.0013  —0.0021  0.0002
Y2 0.0439 0.3235%*  0.2516™**
Wy 0.0474**  0.0473**  0.0474***
Wy 0.0064**  0.0071***  0.0068***
wy 0.0050***  0.0048***  0.0048"***

KE1101 2.8284***  2.8135**  2.8114***

Notes. Entries correspond to the estimates of the parameters of system (31). *, **, and * * * indicate, respectively,
that the 90, 95, and 99 percent confidence interval does not include zero, where the confidence intervals are computed
from 5,000 bootstrap samples. { indicates that the parameter is constrained. The restrictions co= 0, a1= 2.08,

and 51: 0 imply that O19= a1932, 013= a1933, and f93= 0.
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