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Supplemental Material

Appendix A presents the rank condition for the local, statistical identification of SVAR processes

with asymmetric structural shocks. Appendix B details the analytical partial derivatives involved

in the Jacobian matrices related to the rank condition. Appendix C derives the rank condition.

Appendix D contains the derivation of the asymptotic distribution of the rank test and a justification

of the bootstrap procedure when r∗ > 0. Appendix E documents the empirical sizes and powers of

rank tests for symmetry. Appendix F reports the estimates of the structural parameters involved

in system (30).

Appendix A: Identication under asymmetric structural shocks

The appendix elaborates the rank condition for a case which exploits only the skewness of the struc-

tural shocks. For this case, the relation between the reduced-form innovations and the structural

shocks is partitioned as:

νt =
(
Θs Θns

)( εs,t
εns,t

)
, (A.1)

where εs,t and εns,t contain the ms and (n−ms) asymmetric and symmetric structural shocks.

Here, the number of parameters to identify is η = n2 + ms because there are n2 and ms

parameters to identify in Θ and Sε. From the reduced form, ρ =
[
n(n+1)

2

]
+
[
n(n+1)(n+2)

6

]
since

there are n(n+1)
2 and n(n+1)(n+2)

6 distinct elements in Σν and Sν . The information contained in Sν

contributes to identify the parameters in Θs and Sε, whereas Σν contains specific information to

identify the parameters in Θns.

The sufficient rank condition holds when r = η. Under the short-run restrictions Rθns = q, the

rank condition is verified if:

rk[J+] = rk
[
J+
θs

J+
θns

J+
sε

]
= rk

Jσν ,θs Jσν ,θns Jσν ,sε
Jsν ,θs Jsν ,θns Jsν ,sε

0 R 0

 = η, (A.2)

where J+ is the augmented Jacobian matrix, J+
θs

=
[
J ′σν ,θs J ′sν ,θs 0′

]′
, J+

θns
=
[
J ′σν ,θns J ′sν ,θns R′

]′
,

J+
sε =

[
J ′σν ,sε J ′sν ,sε 0′

]′
, and Jy,x = ∂y

∂x′ . Moreover, the vector σν vectorizes the lower triangular

part of the symmetric covariance matrix Σν , and the vector sν collects the distinct elements of the

coskewness matrix Sν . Finally, the vector θs stacks the columns of the matrix Θs in system (A.1),

the vector θns contains the elements of the matrix Θns and the vector sε includes the non-zero

elements of the skewness matrix Sε.

1



When no restrictions are placed on the structural parameters (R = 0), the rank of J is given

by

rk[J ] = rk
[
Jθs Jθns Jsε

]
= rk

[
Jσν ,θs Jσν ,θns Jσν ,sε
Jsν ,θs Jsν ,θns Jsν ,sε

]
which is equal to r = rs + rns + rsε with rs = rk[Jθs ] = n × ms, rns = rk[Jθns ] = n(n+1)

2 −
ms(ms+1)

2 , and rsε = rk [Jsε ] = ms as we show below. Consequently, the entire structural system is

locally, statistically identified (η = r) when at least all, but one, structural shocks display non-zero

skewnesses. Also, whether or not η = r, the parameters involve in Θs and Sε are locally, statistically

identified through the information contained in Σν and Sν . Hence, if the structural shocks of

interest are asymmetric, then their effects are identified. When some restrictions are imposed

on the structural parameters (R 6= 0), then the entire structural system is locally, statistically

identified when (η − r) linearly independent restrictions are imposed on the structural parameters

contained in θns. Thus, if the structural shocks of interest are symmetric, then their effects can

only be determined when (η − r) restrictions are placed on Θns.

Appendix B: Analytical derivatives involved in the Jacobian ma-
trices

This appendix presents the analytical partial derivatives involved in the Jacobian matrices for the

cases (A.2), (17) and (18). First, the partial derivatives of the second unconditional moments of

the reduced-form innovations with respect to the structural parameters are:

Jσν ,θi = 2D+
σ (Θ⊗ In)Υθi ,

Jσν ,sε = 0,

Jσν ,κeε = 0,

where i = s, ns in (A.1), i = κ, nκ in (17), and i = ss, κκ, sκ, nsκ in (18). The vectorization

of the distinct elements of the second moments yields σν = D+
σ vec(Σν), where σν = vech(Σν),

D+
σ = (D′σDσ)−1D′σ, and Dσ is the

(
n2 × n(n+1)

2

)
duplication matrix such that Dσσν = vec(Σν).

Using this vectorization, we obtain ∂σν
∂θ′i

= D+
σ
∂vec(Σν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

. Equation (11) leads to vec(Σν) = (Θ⊗

Θ)vec(In), so that ∂vec(Σν)
∂vec(Θ)′ = 2(Θ⊗In) (see Lütkepohl, 2007, p. 363). Also, ∂vec(Θ)

∂θ′i
= Υθi is a matrix

containing the values one and zero such that only the partial derivatives with respect to the elements

of the vector θi are selected. As an example, consider the relation (A.1) with n = 2 and ms = 1

(where the asymmetric structural shock is ordered first), then the (n2 × nms) selection matrix

corresponds to Υθs =

(
1 0 0 0
0 1 0 0

)′
and θs = vec(Θs). Moreover, ∂σν

∂s′ε
= D+

σ
∂vec(Σν)
∂vec(Sε)′

∂vec(Sε)
∂s′ε

,

where ∂vec(Σν)
∂vec(Sε)′

= 0 given that Σν is not a function of the skewnesses of the structural shocks.

Likewise, ∂σν
∂κe′ε

= D+
σ
∂vec(Σν)
∂vec(Ke

ε )′
∂vec(Ke

ε )
∂κe′ε

with ∂vec(Σν)
∂vec(Ke

ε )′ = 0.
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Next, the partial derivatives of the third unconditional moments of the reduced-form innovations

with respect to the structural parameters are:

Jsν ,θi = D+
s {(In2 ⊗ΘSε)[(In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′)⊗ In2)]Cn,n]

+[(Θ⊗Θ)S′ε ⊗ In]}Υθi ,

Jsν ,sε = D+
s (Θ⊗Θ⊗Θ)Υsε ,

Jsν ,κeε = 0,

where i = s, ns in (A.1) and i = ss, κκ, sκ, nsκ in (18). The vectorization of the distinct elements

of the third moments corresponds to sν = D+
s vec(Sν), where D+

s = (D′sDs)
−1D′s, and Ds is the(

n3 × n(n+1)(n+2)
6

)
matrix such that Dssν = vec(Sν). As an example, for a bivariate system with

n = 2, then:

Ds =



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


.

Using the above vectorization, we have ∂sν
∂θ′i

= D+
s
∂vec(Sν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

with ∂vec(Θ)
∂θ′i

= Υθi . Rewriting

equation (12) as vec(Sν) = [(Θ ⊗ Θ) ⊗ Θ]vec(Sε), then ∂vec(Sν)
∂vec(Θ)′ = (In2 ⊗ ΘSε)

∂vec(Θ′⊗Θ′)
∂vec(Θ)′ + [(Θ ⊗

Θ)S′ε ⊗ In], where ∂vec(Θ′⊗Θ′)
∂vec(Θ)′ = (In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′) ⊗ In2)]∂vec(Θ

′)
∂vec(Θ)′ with

∂vec(Θ′)
∂vec(Θ)′ = Cn,n (see Magnus and Neudecker, 2007, pp. 208–209), and Cn,m is a (nm × nm)

commutation matrix implying that Cn,mvec(A) = vec(A′) for the arbitrary (n×m) matrix A. Note

that ∂sν
∂θ′i

= 0 for i = ns in (A.2) and for i = κκ, nsκ in (18), since Sν is not a function of the

structural parameters relating the reduced-form innovations to the symmetric structural shocks.

Furthermore, ∂sν
∂sε

= D+
s
∂vec(Sν)
∂vec(Sε)′

∂vec(Sε)
∂sε′

, where ∂vec(Sν)
∂vec(Sε)′

= (Θ ⊗ Θ ⊗ Θ) and ∂vec(Sε)
∂sε′

= Υsε is a

(n3 ×ms) matrix selecting the partial derivatives with respect to the non-zero elements of sε. In

particular, for a system with n = ms = 2, then Υsε has values one for the (1,1) and (8,2) elements,

and zero elsewhere. For the system with n = 2 and ms = 1, then Υsε has values one for the (1,1)

element, and zero elsewhere. Moreover, ∂sν
∂κeε

= D+
s
∂vec(Sν)
∂vec(Ke

ε )′
∂vec(Ke

ε )
∂κeε
′ , where ∂vec(Sν)

∂vec(Ke
ε )′ = 0 given that

Sν is not a function of the excess kurtoses of the structural shocks.

Let us now examine the rank of the matrices Jσν ,θs , Jsν ,θns and Jsν ,sε . As illustration, consider

a system with n = 2, (
ν1,t

ν2,t

)
=

(
θ11 θ12

θ21 θ22

)(
ε1,t
ε2,t

)
(A.1)
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For this example, the Jacobian matrix of the derivatives of the covariance matrix with respect to

the parameters Θ is given by

Jσν ,θ =

2θ11 0 : 2θ12 0
θ21 θ11 : θ22 θ12

0 2θ21 : 0 2θ22

 .
where θ = vec(Θ). For a full rank matrix Θ, this matrix Jσν ,θ is of rank n(n+1)

2 and each n(n+1)
2 ×n

submatrix corresponding to the derivatives of Jσν ,θ with respect to a column of the matrix Θ is of

rank equals to n and this holds for ∀ n. Also, the Jacobian matrix of the coskewness Jsν ,θ with

respect to Θ for (A.1) is

Jsν ,θ =


3θ2

11sε,1,11 0 : 3θ2
12sε,2,22 0

2θ11θ21sε,1,11 θ2
11sε,1,11 : 2θ12θ22sε,2,22 θ2

12sε,2,22

θ2
21sε,1,11 2θ21θ11sε,1,11 : θ2

22sε,2,22 2θ12θ
2
22sε,2,22

0 3θ2
21sε,1,11 : 0 3θ2

22sε,2,22

 .
For a full rank matrix Θ, the Jacobian matrix Jsν ,θ of dimension n(n+1)(n+2)

6 ×n2 is of rank n×ms

which equals the rank of the matrix Jsν ,θs since Jsν ,θs = Jsν ,θΥθs . In the case above, for ms = 1 (for

instance when sε,1,11 6= 0 and sε,2,22 = 0), the matrix Jsν ,θs corresponds to the first two columns of

Jsν ,θ, whereas Jsν ,θns corresponds to the two last columns of Jsν ,θ. The rank of Jsν ,θs and Jsν ,θ is

equal to n×ms = 2. For ms = 2, Jsν ,θs = Jsν ,θ and the rank is n×ms = 4. For the general case,

rearranging the rows of the matrix Jsν ,θ corresponding to the k-th column vector θ•,k of the matrix

Θ, leads to the following n(n+1)(n+2)
6 × n matrix

J∗sν ,θ•,k =


B1k

B2k

. . .
Bnk
Ck

 sε,k,kk

where the matrix Ci is of dimension
(
n(n+1)(n+2)

6 − n2
)
× n for n > 2. The n × n matrices Blk

are given by Blk =
∂sν,l,l,j
∂θ′•,k

for k, l, j = 1, . . . , n and Ck contains the derivatives of sν,i,j,l respective

to θ′•,k for all i < j < l for i, j, l = 1, . . . , n. Note that the column rank of Jsν ,θ•,k is the same as

J∗sν ,θ•,k . Each matrix Blk has the term θ2
lksε,k,kk on its diagonal except at the element l, k which

is 3θ2
lksε,k,kk. The matrices Blk are then of full column rank for all θlk 6= 0. Given that Θ is of

full rank, J∗sν ,θ•,k (and then Jsν ,θ•,k) is necessarily of full rank for sε,k,kk 6= 0 and Jsν ,θ•,k cannot be

collinear with Jsν ,θ•,k for k 6= l, sε,k,kk 6= 0 and sε,l,ll 6= 0. This shows that the Jacobian matrix

Jsν ,θ is of rank equals to n×ms. For the illustration with n = 2, we get

Jsν ,θ =

[
B11 B12

B21 B22

]
.
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where Blk are 2 × 2 matrices for k, l = 1, 2. For this case, n(n+1)(n+2)
6 − n2 = 0, so that there is

no matrix Ck. We see that for each submatrix Blk, the diagonal elements are function of θ2
lksε,k,kk.

For a full rank matrix Θ, the first two columns corresponding to B11 and B21 are of full rank (when

sε,1,11 6= 0) and they cannot be colinear with the last two columns corresponding to B12 and B22

(when sε,2,22 6= 0).

For the Jacobian matrix Jsν ,sε , the rank can be easily shown. The expression (Θ ⊗ Θ ⊗ Θ) is

a square full rank matrix, so (Θ ⊗ Θ ⊗ Θ)Υsε is of the same column rank than Υsε , namely ms.

Since D+
s is a full column rank, D+

s (Θ⊗Θ⊗Θ)Υsε has a rank equals to ms.
1 For (A.1),

Jsν ,sε =


θ3

11 : θ3
12

θ2
11θ21 : θ2

12θ22

θ11θ
2
21 : θ12θ

2
22

θ3
21 : θ3

22

Υsε .

The rank of this matrix equals the rank of Υsε which equals ms. However, the rank of [Jsν ,θ Jsν ,sε ]

equals the rank of the matrix Jsν ,θ namely n×ms given that Jsν ,θ•,k × θ•,k = 3sε,k,kkJsν ,sε,k where

k indexes the column of the respective matrix. This holds for ∀ n for a full rank matrix Θ.

Finally, the partial derivatives of the fourth unconditional moments of the reduced-form inno-

vations with respect to the structural parameters are:

Jκeν ,θi = D+
κ {(In2 ⊗ΘKe

ε )(In2 ⊗ Cn,n2 ⊗ In)[(In4 ⊗ vec(Θ′))(In ⊗ Cn,n ⊗ In)× [(In2 ⊗ vec(Θ′)

+(vec(Θ′)⊗ In2)]Cn,n + (vec(Θ′ ⊗Θ′)⊗ In2)Cn,n] + [(Θ⊗Θ⊗Θ)Ke′
ε ⊗ In]}Υθi ,

Jκeν ,sε = 0,

Jκeν ,κeε = D+
κ (Θ⊗Θ⊗Θ⊗Θ)Υκeε ,

where i = κ, nκ in (17) and i = ss, κκ, sκ, nsκ in (18). The vectorization of the distinct ele-

ments of the fourth moments is κeν = D+
κ vec(K

e
ν), where D+

κ = (D′κDκ)−1D′κ, and Dκ is the

1If A is a full column rank matrix and B is conformable for the multiplication AB, the rk(AB) = rk(B).
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(
n4 × n(n+1)(n+2)(n+3)

24

)
matrix such that Dκκ

e
ν = vec(Ke

ν). For example, when n = 2, then:

Dκ =



1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1



.

Using the above vectorization, we have ∂κeν
∂θ′i

= D+
κ
∂vec(Ke

ν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

with ∂vec(Θ)
∂θ′i

= Υθi . Given that

equation (13) implies vec(Ke
ν) = [(Θ⊗Θ⊗Θ)⊗Θ]vec(Ke

ε ), then ∂vec(Ke
ν)

∂vec(Θ)′ = (In2⊗ΘKe
ε )∂vec(Θ

′⊗Θ′⊗Θ′)
∂vec(Θ)′ +

[(Θ′ ⊗ Θ′ ⊗ Θ′)Ke′
ε ⊗ In], where ∂vec(Θ′⊗Θ′⊗Θ′)

∂vec(Θ)′ = (In2 ⊗ Cn,n2 ⊗ In)[
(In4 ⊗ vec(Θ′))∂vec(Θ

′⊗Θ′)
∂vec(Θ)′ + [vec(Θ′ ⊗Θ′)⊗ In2 ]

]
∂vec(Θ′)
∂vec(Θ)′ , and, as shown above, ∂vec(Θ′⊗Θ′)

∂vec(Θ)′ =

(In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′) ⊗ In2)]∂vec(Θ
′)

∂vec(Θ)′ and ∂vec(Θ′)
∂vec(Θ)′ = Cn,n. Note that ∂κeν

∂θ′i
= 0

for i = nκ in (18) and for i = ss, nsκ in (19), since Ke
ν is not a function of the structural pa-

rameters relating the reduced-form innovations to the mesokurtic structural shocks. Moreover,
∂κeν
∂sε

= D+
κ
∂vec(Ke

ν)
∂vec(Sε)′

∂vec(Sε)
∂sε′

, where ∂vec(Ke
ν)

∂vec(Sε)′
= 0 given that Ke

ν is not a function of the skewnesses of

the structural shocks. In addition, ∂κeν
∂κeε

= D+
κ
∂vec(Ke

ν)
∂vec(Ke

ε )′
∂vec(Ke

ε )
∂κeε
′ , where ∂vec(Ke

ν)
∂vec(Ke

ε )′ = (Θ⊗Θ⊗Θ⊗Θ)

and ∂vec(Ke
ε )

∂κeε
′ = Υκeε is a (n4 × mκ) matrix selecting the partial derivatives with respect to the

non-zero elements of κeε . For example, when n = mκ = 2, then Υκeε has values one for the (1,1) and

(16,2) elements, and zero elsewhere. For the system with n = 2 and mκ = 1, then Υκeε has values

one for the (1,1) element, and zero elsewhere.

Similarly to the case with skewed structural shocks, we can show that rk[Jκeν ,θ] = n×mκ and

rk[Jκeν ,κeε ] = mκ for a full rank matrix Θ. In particular, the matrix Jκeν ,θ•,k has a form similar

to the matrix Jsν ,θ•,k with elements function of θ3
lk on the diagonal of the block Blk. Moreover,

rk
[
Jκeν ,θ Jκeν ,κeε

]
= n × mκ by noting that Jκeν ,θ•,k × θ•,k = 4κeε,kk,kkJκeν ,κeε ,i where k indexes the

column of the respective matrix.
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Appendix C: Rank condition

Let us now show that rk[J ] = r = rs+rns+rsε , as mentioned in appendix A. We need the following

results for the rank of upper triangular block matrix :

Lemma 1 Given that A is a m× n matrix, B is a s× t matrix and C is a m× t matrix,

1.

rk(A) + rk(B) ≤ rk
([
A C
0 B

])
≤ rk(A) + rk

([
C
B

])
,

2.

rk(A) + rk(B) ≤ rk
([
A C
0 B

])
≤ rk

([
A C

])
+ rk(B).

In Appendix B, it is shown that rk [Jsν ,θ] = rk [Jsν ,θs ] = n × ms, rk [Jsν ,sε ] = ms and

rk [Jsν ,θ Jsν ,sε ] = n × ms. Moreover, each n(n+1)
2 × n submatrix of Jσν ,θ corresponding to each

column of the matrix Θ is of rank equals to n. Now, we need to know the rank of the matrix

of the derivative of the covariance matrix with respect to the parameters of the impact matrix

Jσν ,θs and Jσν ,θns . The rank of the first submatrix rk[J ′σν ,θs ] = n(n+1)
2 − (n−ms)(n−ms+1)

2 and for

the second submatrix, the rank is equal to rk[J ′σν ,θns ] = n(n+1)
2 − (ms)(ms+1)

2 . To understand this

result, consider that ms = 1. In this case, the n×n symmetric covariance matrix of the n-variables

resulting from the skewed structural shock is of rank equals to one. Since only one row (column) is

linear independent of the others rows (columns), this symmetric covariance matrix contains only n

independent elements. The n×n symmetric covariance matrix of the n-variables resulting from the

other structural shocks contains n−ms = n− 1 linear independent rows (columns) which implies

that this matrix has n(n + 1)/2 − 1 idependent elements. For instance, suppose that n = 3 and

ms = 1 (where ε1,t is the skewed structural shock), we get the following relationship:

Σms
ν =

σ1
ν,11 σ1

ν,12 σ1
ν,13

σ1
ν,12 σ1

ν,22 σ1
ν,23

σ1
ν,13 σ1

ν,23 σ1
ν,33.

 =

 θ2
11 θ11θ21 θ11θ31

θ21θ11 θ2
21 θ21θ31

θ31θ11 θ31θ21 θ2
31

 =

θ11

θ21

θ31

 [θ11 θ21 θ31

]
E(ε21t).

The rank of this matrix is equal to one because there is only one source of randomness; the skewed

structural shock ε1,t. Consequently, only one row is linear independent of the other ones. This row

contains n linear independent elements namely n(n+1)
2 − (n−ms)(n−ms+1)

2 = 6− 3 = 3. The elements

of the two other rows are linear combinations of this row. The rank of the symmetric covariance

matrix for the n-variables induced by the two other structural shocks, denoted Σn−ms
ν , is :

Σn−ms
ν =

σ2
ν,11 σ2

ν,12 σ2
ν,13

σ2
ν,12 σ2

ν,22 σ2
ν,23

σ2
ν,13 σ2

ν,23 σ2
ν,33

 .
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Since the rank of this submatrix is equal to the number of non-skewed structural shocks, there are

two linear independent rows which contain n(n+1)
2 − (ms)(ms+1)

2 = 6−1 = 5 independent elements for

any combination of two rows of the matrix Σn−ms
ν . In the case where ms = 2, there are two linear

independent rows for the matrix Σms
ν which implies n(n+1)

2 − (n−ms)(n−ms+1)
2 = 6−1 = 5 independent

elements and the matrix Σn−ms
ν contains n(n+1)

2 − (ms)(ms+1)
2 = 6−1 = 3 independent elements. As a

result, the rank of Jacobian matrix Jθs =
[
J ′σν ,θs J ′sν ,θs

]′
equals n×ms by using rk[Jsν ,θs ] = n×ms

and rk[Jsν ,θs ] ≥ rk[Jσν ,θs ]. Now the rank of the Jacobian matrix Jθns =
[
J ′σν ,θns J ′sν ,θns

]′
is equal

to the rank of the Jacobian matrix Jσν ,θns which is n(n+1)
2 − (ms)(ms+1)

2 since Jsν ,θns is a matrix

of zeros. Finally, the rank of the matrix Jsε =
[
J ′σν ,sε J ′sν ,sε

]′
is equal to the rank of the

matrix Jsν ,sε because only the coskewness matrix gives information about the third moment of the

structural shocks. The rank of Jsε is rk (Jsν ,sε) = ms. The rank of the complete matrix of the

Jacobian J respective to the structural parameters :

J =

[
Jσν ,θs Jσν ,θns 0
Jsν ,θs 0 Jsν ,sε

]
(C.1)

can then be shown to be equal to rk[J ] = r = rs + rns + rsε , where rs = n ×ms, rns = n(n+1)
2 −

ms(ms+1)
2 and rsε = ms. First, consider the rank of the following block diagonal submatrix[

Jσν ,θns 0
0 Jsν ,sε

]
. (C.2)

The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, namely

rk(Jσν ,θns) + rk(Jsν ,sε) = n(n+1)
2 − (ms)(ms+1)

2 +ms.

Second, the rank of (C.1) equal the rank of (C.2) plus the rank of Jθs except if there exists at

least one linear combination of the columns from the matrix Jθs which corresponds to a column

of (C.2). In the following, it is shown that such linear combination does not exist for a full rank

matrix Θ. We show that such linear combination does not exist in two steps : i) there is no linear

combination of Jθs which yields a column of Jθns and ii) there is no linear combination of Jθs which

yields a column of Jsε . For i), consider the submatrix [Jθs Jθns ] which is

Jθ =

[
Jσν ,θs Jσν ,θns
Jsν ,θs 0

]
.

The rank of Jθ equal to the rank of the submatrix Jsν ,θs plus the rank of the submatrix Jσν ,θns .

Thus rk(Jθ) = n × ms + n(n+1)
2 − (ms)(ms+1)

2 . Indeed, the rank of the bloc matrix Jθ is equal

to the rank of the matrix
[
J ′σν ,θs J ′sν ,θs

]′
plus the rank of the matrix Jσν ,θns using the following

inequalities for the rank of upper triangular block matrix (Lemma 1):

rk(Jσν ,θns) + rk(Jsν ,θs) ≤ rk(Jθ) ≤ rk(Jσν ,θns) + rk

([
Jσν ,θs
Jsν ,θs

])
.
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Here, we have

rk(Jσν ,θns) + rk(Jsν ,θs) = rk(Jσν ,θns) + rk

([
Jσν ,θs
Jsν ,θs

])
.

For ii), we show that there is no linear combination of Jθs that yields a column of Jsε . In the

preceding section, we show that rk [Jsν ,θs Jsν ,θns Jsν ,sε ] = rk [Jsν ,θs ] which implies that it exists an

appropriated matrix A of dimension (n ·ms)×ms such that [Jsν ,θs ]A = Jsν ,sε since the submatrix

Jsν ,θns = 0 is a matrix of zeros. Define each column of the matrix A by Ai for i = 1, . . . ,ms.
2

For a matrix Θ of full rank, all n(n+1)
2 × n submatrices

[
Jσν ,θi,s

]
are necessarily of full rank so

there is no vector such as
[
Jσν ,θi,s

]
Ai = 0 for ∀i where i indexes the elements of the vector θs

corrresponding to the column i of the matrix Θs. This implies that the rank of the matrix J equals

n×ms + n(n+1)
2 − (ms)(ms+1)

2 +ms. Given that
[
Jσν ,θi,s

]
Ai 6= 0 for i = 1, . . . ,ms and that Jsν ,θs is

of full rank, there is no linear combination of the columns of the matrix Jθs that that corresponds

to a column of the matrix (C.2) since the Jacobian matrix respective of the structural parameter

Jθ is of full rank. This completes the proof.

The same results hold for the case which exploits only the fourth moments of the structural

shocks by modifying properly the dimension of the matrices and the notation.

For the general case

J =

Jσν ,θss Jσν ,θκκ Jσν ,θsκ Jσν ,θnsκ Jσν ,sε Jσν ,κeε
Jsν ,θss Jsν ,θκκ Jsν ,θsκ Jsν ,θnsκ Jsν ,sε Jsν ,κeε
Jκeν ,θss Jκeν ,θκκ Jκeν ,θsκ Jκeν ,θnsκ Jκeν ,sε Jκeν ,κeε


which equals

J =

Jσν ,θss Jσν ,θκκ Jσν ,θsκ Jσν ,θnsκ 0 0
Jsν ,θss 0 Jsν ,θsκ 0 Jsν ,sε 0

0 Jκeν ,θκκ Jκeν ,θsκ 0 0 Jκeν ,κeε

 (C.3)

First, consider the block diagonal submatrix containing the last subgroup of columnsJσν ,θnsκ 0 0
0 Jsν ,sε 0
0 0 Jκeν ,κeε

 . (C.4)

The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, rk(Jσν ,θnsκ)+

rk(Jsν ,sε) + rk(Jκeν ,κeε ) = n(n+1)
2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)

2 +ms +mκ.

By an argument similar to the one above, the rank of the submatrixJσν ,θss Jσν ,θκκ Jσν ,θsκ
Jsν ,θss 0 Jsν ,θsκ

0 Jκeν ,θκκ Jκeν ,θsκ

 (C.5)

2From Appendix B, Ai corresponds to the column of matrix θs divided by 3 times the respective measure of
skewness.
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equals the sum of rank of the submatrix
[
J ′σν ,θss J ′sν ,θss

]′
and the rank of

[
Jκeν ,θκκ Jκeν ,θsκ

]
, using

Lemma 1 and the fact that rk [Jθκκ Jθsκ ] = rk
[
Jκeν ,θκκ Jκeν ,θsκ

]
= n × mκκ + n × msκ. The

rank of (C.5) is then n × mss + n × mκκ + n × msκ. Now, one needs to show that the rank

of the complete Jacobian matrix (C.3) is the sum of the rank of (C.4) and (C.5). First, the

rank of the submatrix containing (C.5) and
[
J ′σν ,θnsκ 0′ 0′

]′
equals the rank of (C.5) plus the

rank of Jσν by the lower triangular block structure of this submatrix (by Lemma 1) which is

n×mss + n×mκκ + n×msκ + n(n+1)
2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)

2 . By a proof similar to the

one to the case under asymmetry only, for a full rank matrix Θ, there is no linear combination of

(C.5) that can yield a column of the last two submatrices of (C.4), i.e. 0 0
Jsν ,sε 0

0 Jκeν ,κeε

 .
The rank of J is then equals to rk[Jθss ] + rk[Jθκκ ] + rk[Jθsκ ] + rk[Jθnsκ ] + rk[Jsν ] + rk[Jκeε ] =

n×mss + n×mκκ + n×msκ +
(
n(n+1)

2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)
2

)
+ms +mk.

Finally, Corollary 1 results from that there is no linear combination of (C.5) that can yield a

column of the last two submatrices of (C.4)

Appendix D: Asymptotic Distribution of the Rank Test

First, we derive the asymptotic distribution of the statistics ĈRT
LR

r∗ and ĈRT
W

r∗ . Under the

assumption in section 3.1 for Ke
ε , E[‖εt‖8] <∞ and the estimator K̂e

u is a root-T consistent for the

n × n3 excess cokurtosis matrix Ke
u of the normalized reduced-form innovations. In this context,

the asymptotic distribution of K̂e
u is

T 1/2vec(K̂e
u −Ke

u)
L−→ N(0,Γ)

where Γ is finite.

Now, suppose that the matrix Ke
u is of rank r∗ ≤ n. The singular value decomposition of Ke

u

gives Ke
u = CΛD′ where Λ is a diagonal matrix with the singular values on the diagonal. Let

λ1, λ2, . . . , λn be the singular values of the matrix Λ ordered in decreasing values. For a matrix Ke
u

of rank equal to r∗, the first r∗ singular values are different from zero and the last n− r∗ singular

values are equal to zero. Thus

C ′Ke
uD =

[
C ′r∗K

e
uDr∗ C ′r∗K

e
uDn3−r∗

C ′n−r∗K
e
uDr∗ C ′n−r∗K

e
uDn3−r∗

]
= Λ.

The submatrix C ′n−r∗K
e
uDn3−r∗ corresponds to the null space of Ke

u which is the object of interest

(see Al-Sadoon, 2017). We have

n∑
i=r∗+1

λ̂2
i = ‖vec(Ĉ ′n−r∗K̂e

u,cD̂n3−r∗)‖2 = ‖vec(Ĉn−r∗Ĉ ′n−r∗K̂e,b
u,cD̂n3−r∗D̂

′
n3−r∗)‖

2
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where Un−r∗ = Cn−r∗C
′
n−r∗ and Vn3−r∗ = Dn3−r∗D

′
n3−r∗ are the orthogonal projectors onto the

space spanned by the left and the right null space singular vectors.3

The vectorization of this matrix yields

vec
(
Ûn−r∗K̂

e
uV̂n3−r∗

)
=
(
V̂n3−r∗ ⊗ Ûn−r∗

)
vec(K̂e

u).

Since T 1/2vec(K̂e
u − Ke

u) → N(0,Γ), the convergence in probability of the orthogonal projectors

Ûn−r∗
P−→ Un−r∗ and V̂n3−r∗

P−→ Vn3−r∗
4 and Γ̂

P−→ Γ, this implies that

T 1/2
(
V̂n3−r∗ ⊗ Ûn−r∗

)′
vec(K̂e

u −Ke
u)

L−→ N (0, (Vn3−r∗ ⊗ Un−r∗) Γ (Vn3−r∗ .⊗ Un−r∗))

Statistics ĈRT
LR

r∗ and ĈRT
W

r∗ converge asymptotically to

Tr(Xr∗X
′
r∗) + op(1) = vec(Xr∗)

′vec(Xr∗) + op(1)

where Xr∗ = T 1/2
(
V ′n3−r∗ ⊗ U

′
n−r∗

)
vec(K̂e

u − Ke
u). Both statistics have a limiting distribution

given by
∑t∗

i=1 δ
r∗
i Z

2
i where δr

∗
1 ≥ . . . ≥ δr

∗
t∗ are the non-zero ordered eigenvalues of the matrix

(Vn3−r∗ ⊗ Un−r∗) Γ (Vn3−r∗ ⊗ Un−r∗) and {Zi}t
∗
i=1 are independent N(0, 1) variates. The limiting

distribution is then a weighted sum of t∗ independent chi-squared variables with one degree of

freedom and the weights are given by the non-zero eigenvalues δr
∗
i for i = 1, . . . , t∗. An estimator of

the cumulative distribution function is obtained using the estimated counterparts of the matrices

Un−r∗ , Vn3−r∗ and Γ and the c.d.f. of the corresponding weighted sum of Z2
i for i = 1, . . . , t∗ which

can be easily evaluated by simulation.

Now we show that the subvector ubr∗,t obtained by bootstrapping the vector ωb
′
r∗,t = Ĉ ′r∗ ût for

b = 1, . . . , B implies that λ̂bi
P−→ λ̂i where λ̂bi are the bootstrap estimators of the r∗ largest singular

values and λ̂i are the sample estimators. Suppose a vector z with the following relation with a

vector u:

zt = C ′ut

where C is orthonormal. We have the following relation for the excess cokurtosis

Ke
z = C ′Ke

u (C ⊗ C ⊗ C)

3Unlike to Robin and Smith (2000) and Bura and Yang (2011) but similarly to Portier and Delyon (2014), we
consider orthogonal projection matrices Un−r∗ and Vn3−r∗ . The orthogonal projection matrices are invariant to the
choice of a basis while the singular vectors in Cn−r∗ and Dn3−r∗ are uniquely defined only up to post-multiplication by
an orthogonal matrix in a case of a multiplicity of singular values. Moreover, the orthogonal projection is continuous
in the elements of the matrix, a necessary condition to guarantee the convergence in probability (see Dufour and
Valéry, 2012).

4See Al-Sadoon, 2017, Theorem 1.
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For the quadratic form of the excess cokurtosis

Ke
zK

e′
z = C ′Ke

u (C ⊗ C ⊗ C)
(
C ′ ⊗ C ′ ⊗ C ′

)
Ke′
u C = C ′Ke

u,cK
e′
u C.

By the eigenvalue decompositionKe
u,K

e′
u = CΛ2C ′ which impliesKe

zK
e′
z = Ξ = diag(λ2

1, . . . , λ
2
r∗ , 0, . . . , 0)

for a matrix Ke
u of rank r∗ with the eigenvalues in descending order, where the eigenvalues are the

square of the singular values λi. Thus, linear combinations of the normalized reduced-form inno-

vations ωr∗ = Ĉ ′r∗ ût capture the excess cokurtosis of the vector of the normalized reduced-form

innovations where Ĉ∗r are the first r∗ columns of Ĉ corresponding to the singular values λ1, . . . , λr∗ .

The subvector ubr∗,t is generated by bootstrapping the vector ω′r∗,t = Ĉ ′r∗ ût for b = 1, . . . , B. Thus,

for a consistent estimator of the excess cokurtosis K̂e
ub
r∗

of ubr∗,t for b = 1, . . . , B, a given matrix Ĉr∗

and by the continuity of the singular values, λ̂bi(K̂
e
ub
r∗
K̂e′

ub
r∗

)
P−→ λ̂i(Ĉ

′
r∗K̂

e
uK̂

e′
u Ĉr∗) for i = 1, . . . , r∗.

Appendix E: Empirical sizes and powers of rank tests for symmetry

This appendix reports the empirical sizes and powers of rank tests for symmetry. Table E.1 shows

the empirical sizes. The Wald test with asymptotic distributions has empirical sizes that slightly

deviate from the nominal ones, and the likelihood-ratio test with limiting distributions has empirical

sizes that are substantially smaller than the nominal counterparts. In contrast, both the Wald and

likelihood-ratio tests with finite-sample distributions feature empirical sizes that are almost identical

to the nominal sizes, regardless of the number of observations in the sample.

Table E.2 displays the empirical powers. For the Wald and likelihood-ratio tests with finite-

sample distributions, the powers substantially improve as the sample size increases and as the

structural shocks become more skewed.
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Table E.1. Empirical Sizes of Rank Tests: Skewness

Asymptotic Distributions Finite-Sample Distributions

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 8.72 3.92 0.53 2.68 0.63 0.01 9.42 4.65 0.98 9.56 4.85 1.01
200 9.99 4.66 0.80 5.81 1.91 0.12 10.17 5.25 0.98 10.19 5.20 1.00
500 9.93 4.69 0.81 7.97 3.36 0.41 10.14 5.04 1.10 10.29 4.99 1.12

1, 000 9.73 4.63 0.70 8.65 3.94 0.52 9.82 4.91 0.92 9.87 4.90 0.92
5, 000 10.03 5.22 1.09 9.90 4.97 1.02 10.02 5.10 1.12 9.98 5.11 1.11

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 11.83 5.79 1.52 7.86 3.22 0.51 11.41 6.35 1.47 11.41 6.35 1.47
200 10.87 5.30 1.18 8.60 3.66 0.53 9.11 4.86 1.42 9.11 4.86 1.42
500 10.89 5.20 1.06 9.74 4.42 0.63 9.29 4.55 1.07 9.29 4.55 1.07

1, 000 9.97 4.82 1.03 9.45 4.36 0.86 8.39 4.26 1.02 8.39 4.26 1.02
5, 000 10.61 5.59 1.02 10.05 5.47 0.99 9.20 4.68 0.96 9.20 4.68 0.96

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic and finite-sample distributions

under the null hypothesis that rk[Su] = r∗. The empirical sizes are evaluated for the bivariate specification (1)–

(2), where the parameters are set as follows: α1= −0.5, α2= 0.5 and ω1= ω2= 1. Also, the distributions are

ε2,t∼ N(0, 1), and i) ε1,t∼ N(0, 1) under r∗= 0 or ii) 2.1755× ε1,t∼ N(1, 1) with probability 0.7887 and

2.1755× ε1,t∼ N(−3.7326, 1) with probability 0.2113 under r∗= 1. For each parametrization, 10,000 simulated

samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and the likelihood-

ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the critical values. The asymptotic critical values are

computed as shown in Appendix D. The finite-sample critical values are computed by the bootstrap procedure

elaborated in Section 4.2.
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Table E.2. Empirical Powers of Rank Tests with Finite-Sample Distributions: Skewness

Skewness = −0.5231 Skewness = −0.9907

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 20.71 11.44 2.42 20.88 11.46 2.53 72.05 46.66 10.43 69.95 44.82 10.53
200 41.02 26.70 8.50 40.58 26.40 8.15 99.35 96.85 74.28 99.23 96.33 67.90
500 82.98 71.28 42.66 82.82 70.93 41.24 100.0 100.0 100.0 100.0 100.0 100.0

1, 000 99.11 97.66 88.94 99.10 97.64 88.51 100.0 100.0 100.0 100.0 100.0 100.0

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 16.35 8.05 1.31 16.35 8.05 1.31 88.27 78.73 41.91 89.15 78.75 41.91
200 41.12 27.24 8.06 41.12 27.24 8.06 99.70 99.20 94.65 99.70 99.20 94.65
500 86.85 78.10 53.80 86.85 78.10 53.80 100.0 100.0 100.0 100.0 100.0 100.0

1, 000 99.49 98.65 94.17 99.49 98.65 94.17 100.0 100.0 100.0 100.0 100.0 100.0

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions under the

null hypothesis that rk[Su] = r∗. The empirical powers are evaluated for the bivariate specification (1)–(2), where

the parameters are set as follows: α1= −0, 5, α2= 0.5 and ω1= ω2= 1. For r∗= 0, the distributions are: i)

ε2,t∼ N(0, 1) as well as 1.6808× ε1,t∼ N(1, 1) with probability 0.5 and 1.6808× ε1,t∼ N(−1, 2.65) with

probability 0.5 when ε1,t exhibits a skewness of−0.5231, and ii) ε2,t∼ N(0, 1) as well as 2.1755× ε1,t∼ N(1, 1)

with probability 0.7887 and 2.1755× ε1,t∼ N(−3.7326, 1) with probability 0.2113 when ε1,t exhibits a skew-

ness of −0.9907. For r∗= 1, the distributions are: i) 1.6808× ε2,t∼ N(1, 1) and 1.6808× ε1,t∼ N(1, 1) with

probability 0.5 as well as 1.6808× ε2,t∼ N(−1, 2.65) and 1.6808× ε1,t∼ N(−1, 2.65) with probability 0.5

when each shock exhibits a skewness of −0.5231, and ii) 2.1755× ε2,t∼ N(1, 1) and 2.1755× ε1,t∼ N(1, 1)

with probability 0.7887 as well as 2.1755× ε2,t∼ N(−3.7326, 1) and 2.1755× ε1,t∼ N(−3.7326, 1) with

probability 0.2113 when each shock exhibits a skewness of −0.9907. For each parametrization, 10,000 simu-

lated samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and

the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the finite-sample critical values, where the

latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Appendix F: Estimates of the structural parameters

Table F.1 shows the estimates of the structural parameters involved in system (31).

Table F.1. Parameter Estimates
Parameter α2 = 0 α1 = 2.08 β1 = 0

α1 1.9409∗∗∗ 2.0800† 1.8359∗∗

α2 0.0000† −0.5711∗ 0.0728
β1 0.3797∗∗ −0.1482∗ 0.0000†

β2 −0.0015 0.0095∗ −0.0030
γ1 −0.0013 −0.0021 0.0002
γ2 0.0439 0.3235∗∗∗ 0.2516∗∗∗

ωτ 0.0474∗∗∗ 0.0473∗∗∗ 0.0474∗∗∗

ωg 0.0064∗∗∗ 0.0071∗∗∗ 0.0068∗∗∗

ωy 0.0050∗∗∗ 0.0048∗∗∗ 0.0048∗∗∗

κeε,11,11 2.8284∗∗∗ 2.8135∗∗∗ 2.8114∗∗∗

Notes. Entries correspond to the estimates of the parameters of system (31). ∗, ∗∗, and ∗ ∗ ∗ indicate, respectively,

that the 90, 95, and 99 percent confidence interval does not include zero, where the confidence intervals are computed

from 5,000 bootstrap samples. † indicates that the parameter is constrained. The restrictions α2= 0, α1= 2.08,

and β1= 0 imply that θ12= α1θ32, θ13= α1θ33, and θ23= 0.
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