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1. Introduction

Econometric methods for simultaneous equation models highlight the importance of verifying the

identification before proceeding to the estimation of the structural parameters. Namely, it is only

after verifying global and local identification that it becomes feasible to estimate all the structural

parameters. In this vein, this paper pursues two objectives. First, we derive a sufficient condition

for local, statistical identification of Structural Vector Autoregressive (SVAR) processes through

higher unconditional moments. Second, we develop a tractable method to verify whether a SVAR

process is identified, prior to the estimation of the structural parameters.

A first strand of the SVAR literature relies on the standard assumption that the structural

shocks are orthogonal and extracts the information contained in the unconditional covariances

of the reduced-form innovations to identify the structural parameters. As is well known, this

information is insufficient to identify all the parameters, so that short-run restrictions (e.g. Sims,

1980), long-run restrictions (e.g. Blanchard and Quah, 1989), and/or sign restrictions (e.g. Uhlig,

2005) need to be placed. If the restrictions are economically motivated, then the imposition of

enough restrictions gives rise to economic identification in the sense that the dynamic responses

become interpretable given that the structural shocks are economically meaningful. However, it is

not possible to verify jointly the validity of all the restrictions by applying formal statistical tests.

A second strand of the literature exploits the information related to certain statistical properties

of the data, in addition to the unconditional covariances of the reduced-form innovations (see

Kilian and Lütkepohl, 2017, Chapter 14). If this information is rich enough then this strategy

yields local identification, without resorting to any identifying restrictions, and, hence, the dynamic

response matrices are unique up to changes in sign and permutations of columns. It also produces

statistical (rather than economic) identification as nothing guarantees that the dynamic responses

and structural shocks have an economic interpretation. In this framework, it is possible to verify

the validity of certain classes of restrictions (e.g. short- and long-run restrictions) that would have

been required if only the unconditional covariances of the reduced-form innovations were taken into

account. This is convenient, for example, to formally select among alternative sets of restrictions

reflecting competing economic theories.

One method relying on the statistical properties of the data specifies the time-varying variances

of the structural shocks, while preserving the standard assumption that theses shocks are orthog-

onal. In this context, all the structural parameters involved in the SVAR are identified, without

placing any restrictions, when all but one, structural shocks display distinct time-varying variances.

Note, however, that the method requires to take a stand about whether the time-varying variances
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are determined by fixing a priori the dates of the structural breaks, are specified via GARCH pro-

cesses, or are modeled by regime switching processes with Markov chains or smooth transitions (e.g.

Rigobon, 2003; Normandin and Phaneuf, 2004; Lanne et al., 2010; Lütkepohl and Netšunajev, 2014;

Lütkepohl and Schlaak, 2018).1 Another approach is based on unconditional non-normal distribu-

tions of the structural shocks, but assumes that these shocks are independent. In this environment,

all the structural parameters are identified, when all but one, structural shocks are non-normally

distributed (see Comon, 1994; Eriksson and Koivunen, 2004; Herwartz, 2015; Gouriéroux et al.,

2017; Funovits, 2019).2 Observe, however, that the assumption of independent structural shocks is

more restrictive than the standard one stating that the shocks are orthogonal; that is, it is not al-

ways possible to recover independent structural shocks from non-normal reduced-form innovations

through linear transformations (see Kilian and Lütkepohl, 2017, Chapter 14).

A key goal of this paper is to determine the local, statistical identification conditions of SVAR

processes through the third and fourth unconditional moments of the reduced-form innovations.3

For this purpose, we assume that the structural shocks display zero cross-sectional covariances,

coskewnesses, and excess cokurtoses.4 Note that this can be viewed as a natural extension to the

third and fourth unconditional comoments of the standard assumption that the structural shocks

are orthogonal. Moreover, our assumption admits the possibility that the structural shocks exhibit

time-varying conditional variances (although we do not need to specify the process governing these

variances) and is milder than the assumption stating that the shocks are independent.5 In our

context, not only the covariances of the reduced-form innovations, but also the coskewnesses and

excess cokurtoses of these innovations can be exploited to identify extra structural parameters, and,

hence, to relax some of the identifying restrictions required when the information contained in the

third and fourth moments is ignored. Formally, we derive a sufficient (rank) condition for local,

statistical identification by extending the developments of Lütkepohl (2007, Chapter 9). We further

express this rank condition in terms of simple formulas, which exclusively involve the numbers of

1Lewis (2019) proposes an identification strategy based on time-varying volatility of general form without speci-
fying a particular parametric model.

2Alternatively, Gouriéroux et al. (2018) show that all structural parameters are identified under the assumptions
that the reduced-form innovations are strong white noises and the structural shocks are mutually independent and
have finite moments of order four.

3Gospodinov and Ng (2015) also consider third- and fourth-order cumulants for the identification and estimation
of possibly nonivertible moving average models.

4We assume that the first four unconditional moments of the structural shocks exist. This assumption is commonly
invoked to demonstrate that the ordinary least square and maximum likelihood estimators of VAR parameters are
consistent and asymptotically normal, and that bootstrap inference is valid (see Lütkepohl, 2007, Chapter 3; Kilian
and Demiroglu, 2000). This assumption is also used in the specification of the pseudo likelihood function associated
with SVAR processes with independent structural shocks (e.g. Gouriéroux et al., 2017).

5See also Kilian and Lütkepohl, 2017, Chapter 14, page 514, for an example where the structural shocks display
zero cross-sectional covariances and excess cokurtoses but they are not mutually independent.
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structural shocks displaying non-zero skewnesses and excess kurtoses. Given this information, it is

most easy for empirical researchers to determine whether or not the structural system is identified.

Our results regarding the identification of the entire structural system parallel the existing

results. That is, all the structural parameters are identified when all but one, structural shocks

exhibit non-zero skewnesses and/or excess kurtoses (see Comon, 1994 and Keweloh, 2020). Our

findings further provide novel insights when the entire SVAR process is not identified by the second,

third and fourth unconditional moments as they highlight which subset of structural parameters

is identified and which is not according to the sufficient condition. This leads to three important

implications. First, one can establish which structural subsystem is identified. Note that this

subsystem generates the dynamic responses of all the variables included in the SVAR process to

the structural shocks which are asymmetric and/or non-mesokurtic.6 Second, one can determine

the structural parameters on which some restrictions must be placed on in order to achieve the

identification of the entire system. Third, one can test the validity of economic and statistical

restrictions (by treating these as overidentifying restrictions) that are commonly placed on the

structural subsytem that is identified through higher unconditional moments.

Another prime aim of this paper is to elaborate a tractable testing procedure to verify whether

the identification condition holds, prior to the estimation of the structural parameters involved in

the SVAR process. As stated above, verifying our identification condition requires the knowledge

of the numbers of asymmetric and non-mesokurtic structural shocks. At first glance, this may seem

problematic for practitioners, as the structural shocks become measurable only once the structural

system is estimated.7 However, we demonstrate that the numbers of structural shocks displaying

non-zero skewnesses and excess kurtoses correspond to the ranks of the coskewness and excess

cokurtosis matrices of the reduced-form innovations, where these matrices are easily constructed

from sample estimates of the moments of the reduced-form residuals — without having to proceed

to the estimation of the structural system.

In this paper, we design a new bootstrap procedure to approximate the finite-sample distribu-

tions in order to test the ranks of the coskewness and excess cokurtosis matrices of the reduced-form

innovations. We show that this procedure allows to overcome size distortions. Specifically, both the

Wald and likelihood-ratio tests with bootstrap critical values feature empirical sizes that are almost

6For briefness, throughout the text symmetric (asymmetric) and mesokurtic (non-mesokurtic) variables refer to
variables with symmetric (asymmetric) and mesokurtic (non-mesokurtic) distributions. Also, a symmetric (asym-
metric) distribution implies a zero (non-zero) skewness, whereas a mesokurtic (non-mesokurtic) distribution implies
a zero (non-zero) excess kurtosis.

7As a result, existing studies do not verify whether the structural shocks are asymmetric or non-mesokurtic before
proceeding to the estimation of the structural system; see for example Moneta et al. (2013), Lanne et al. (2017),
Gouriéroux et al. (2017), Lanne and Luoto (2019) and Keweloh (2020). They instead verify whether the reduced-form
innovations are asymmetric or non-mesokurtic.
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identical to the nominal ones, regardless of the number of observations in the sample. In sharp

contrast, the tests with asymptotic distributions have empirical sizes that are often substantially

smaller than the nominal counterparts, even for large samples.

Finally, we illustrate our developments by identifying the effects of fiscal policies on economic

activity; a topic that has received renewed interest in light of the recent Great Recession. For

this purpose, we perform the analysis on a trivariate SVAR process which includes taxes, public

spending, and output for the U.S. The empirical results for the Wald and likelihood-ratio bootstrap

versions for the rank tests indicate that all the structural shocks are symmetric and only one

structural shock is non-mesokurtic. Based on this information, the identification condition and the

estimation results reveal that the subsytem relating all the variables to the tax shock is identified. In

contrast, the subsytem relating the variables to the public spending shock is under-identified. Also,

we show that the restrictions invoked in the seminal study of Blanchard and Perotti (2002) imply

that the subsytem relating the variables to the spending shock becomes over-identified. We further

document that the effects of the spending shock highly depend on the nature of the identifying

restrictions used.

Recently, third and fourth unconditional moments are also be used to identify and estimate

the entire system of a SVAR. Lanne and Luoto (2019) have proposed a GMM estimator of SVAR

which primarly relies on the excess kurtosis of the structural shocks. As our proposed identification

condition, they do not assume the structural shocks to be mutually independent. The GMM

estimator proposed by Lanne and Luoto (2019) uses a sufficient number of moment restrictions

based on subset of cokurtosis conditions implied by independence. The assumption of zero cross-

sectional coskewnesses and excess cokurtoses of the structural shocks is not necessary to achieve

the local identification of the entire SVAR process. Indeed, a sufficient subset of these restrictions

related to the excess cokurtosis could be imposed for estimation purpose. However, it appears

difficult to select (statistically or economically) which excess cokurtoses should be set to zero and

which not. Keweloh (2020) assumes independent and non-Gaussian shocks to show that these

assumptions imply orthogonal, zero cosknewesses and zero excess-kurtoses structural shocks and

that these conditions are sufficient to locally identify structural parameters. This allows him to

introduce a parsimonious variant of the GMM estimator. These two recent papers are interested

by the GMM estimation of the entire SVAR process when all structural parameters are locally

identified by higher order moments. Moreover, neither of these two papers develops a testing

procedure to verify the identification conditions for the structural shocks.

This paper is organized as follows. Section 2 motivates, from a simple example, the local, statis-

tical identification through the third and fourth unconditional moments. Section 3 derives the rank
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condition for the identification of the structural parameters involved in SVAR processes. Section

4 develops a tractable procedure to test whether the identification condition holds, before the esti-

mation of the structural parameters. Section 5 presents an application related to the identification

of the structural parameters determining the dynamic responses of output to fiscal shocks. Section

6 concludes.

2. Motivation

This section motivates how local, statistical identification of SVAR processes can be achieved

through higher unconditional moments. To do so, we provide a simple example in which the

information related to the fourth moments is exploited. Specifically, we consider the following

bivariate SVAR process (in innovation form):

νy,t = αdνp,t + ωdϵd,t, (1)

νp,t = αsνy,t + ωsϵs,t. (2)

Here, νy,t and νp,t correspond to the reduced-form innovations associated with the logarithms of the

quantity and price of a good. The terms ϵd,t and ϵs,t are the structural demand and supply shocks

with the following unconditional scedastic structure: E[ϵ2d,t] = 1, E[ϵ2s,t] = 1, and E[ϵd,tϵs,t] = 0.

The parameters αd and αs are related to the slopes of the demand and supply curves, whereas the

parameters ωd and ωs are related to the shifts of the curves following the structural shocks.

System (1)–(2) involves four parameters that have to be identified: αd, αs, ωd, and ωs. This

system can be rewritten as: (
νy,t
νp,t

)
=

(
θ11 θ12
θ21 θ22

)(
ϵd,t
ϵs,t

)
= Θϵt.

As well known, only three of the four structural parameters can potentially be identified through

the distinct elements of the unconditional covariance matrix of the reduced-form innovations:

E[ν2y,t], E[ν2p,t], and E[νy,tνp,t]. Importantly, the whole set of parameters could potentially be

identified through higher unconditional moments, reflecting, for example, asymmetric and non-

mesokurtic distributions of the structural shocks.

As a starting point, consider a parametrization of equations (1)–(2) for which the structural

shocks have zero skewnesses and excess kurtoses: αd = −.5, αs = 0.5, ωd = ωs = 1.0, ϵd,t ∼ N(0, 1),

and ϵs,t ∼ N(0, 1). Figure 1a) shows the scatter plot of simulated series generated from 10,000

draws for the parametrization with two gaussian shocks. For this case, the simulated reduced-form

innovations form a spherical cloud in the (νy,t, νp,t) plan. In this context, shifts in the demand and
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supply curves are as likely to generate the realizations of νy,t and νp,t. Consider now a rotation of

Θ by an orthogonal matrix :

Q =

(
cos(−π/4) sin(−π/4)
− sin(−π/4) cos(−π/4)

)
such that QQ′ = I. Figure 1b) shows the scatter plot for the same generated shocks but with the

orthogonal transformation Θ∗ = ΘQ. The two scatter plots are indistinguishables. Consequently,

these two sets of realizations are not informative about the respective slope of the two curves. In

this context, possible identification strategies are to impose one short-run or long-run restriction

to identify αs (e.g. Sims, 1980; Blanchard and Quah, 1989). For example, the short-run restriction

θ12 = 0 implied that the four structural parameters αd, αs, ωd, and ωs can be recovered.

In contrast, contemplate a parametrization where the shock ϵd,t is symmetric, but displays a

positive excess kurtosis: 1.291 × ϵd,t ∼ t(5). The fourth moment of ϵd,t translates into a large

positive excess kurtosis for νy,t and a small excess kurtosis for νp,t which generates pronounced

leftward and rightward shifts of the demand curve (relative to those associated with the supply

curve). These shifts of the demand curve imply movements along the supply curve, so that it

becomes possible to identify the slope of the supply, αs. Figure 1c) shows that this occurs because

the extreme realizations of ϵd,t compared to those of ϵs,t. Figure 1d) shows the scatter plot for the

same generated shocks but with the orthogonal rotation Θ∗ = ΘQ. Now, the two scatter plots

have a different shape such that it becomes possible to identify the slope of the demand and the

supply curves. In other words, Θ is unique respective to all orthogonal matrices Q (up to changes in

sign and permutations of columns) in presence of excess kurtosis which implies that the structural

parameters are locally identified.

It is now well known that all structural parameters are locally, statistically identified when

ϵd,t is non-normally distributed (see Common, 1994; Eriksson and Koivunen, 2004; Herwartz, 2015;

Gouriéroux et al., 2017). Our example suggests that a specific feature of the non-normality, namely

the existence of excess kurtosis, is sufficient to ensure the identification of the structural shocks

and their generated dynamics. For example, the impact matrix Θ is locally, statistically identified

when ϵd,t exhibits a time-varying conditional variance (e.g. Normandin and Phaneuf, 2004; Lanne

et al., 2010; Lütkepohl and Netšunajev, 2014; Lütkepohl and Schlaak, 2018). This is because

conditional heteroskedasticity typically implies positive unconditional excess kurtosis (even for the

case of conditional mesokurtic distributions), and, as discussed above, it is precisely the presence

of the unconditional non-mesokurtic shock ϵd,t that leads to the identification.

Taken altogether, this example suggests that exploiting the information of the structural shocks

related to higher unconditional moments help to identify additional parameters of a SVAR process
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(relative to the case where only the second unconditional moments are considered).

3. Identification

In this section, we first present the SVAR specification. We then derive the sufficient condition of

local, statistical identification through higher unconditional moments.

3.1 Specification

We consider a structural system that takes the form of the following p-order SVAR process:

Φxt = Φ0 +

p∑
τ=1

Φτxt−τ + ϵt. (3)

The (n × 1) vector xt includes the variables of interest. The (n × 1) vector ϵt contains the struc-

tural shocks. These shocks are assumed to display zero cross-sectional unconditional covariances,

coskewnesses, and excess cokurtoses. The (n× 1) vector Φ0 incorporates n unrestricted intercepts.

The non-singular (n× n) matrix Φ captures n2 unrestricted contemporaneous interactions among

the variables. The (n × n) matrix Φτ contains n2 unrestricted dynamic feedbacks between the

variables.

The first four unconditional moments of the structural shocks of system (3) are obtained from

the following expressions:

Mϵ = E[ϵt], (4)

Σϵ = E[ϵtϵ
′
t], (5)

Sϵ = E[ϵtϵ
′
t ⊗ ϵ′t], (6)

Ke
ϵ = Kϵ −Kϵ̃ = E[ϵtϵ

′
t ⊗ ϵ′t ⊗ ϵ′t]− E[ϵ̃tϵ̃

′
t ⊗ ϵ̃′t ⊗ ϵ̃′t], (7)

where E is the unconditional expectation operator, ⊗ denotes the Kronecker product and ϵ̃t

are hypothetical structural shocks following a multivariate normal distribution. As is common

practice, the (n × 1) vector of expectations is fixed to Mϵ = [µϵ,i] = 0 and the (n × n) co-

variance matrix is set to Σϵ = [σϵ,ij ] = I (for i, j = 1, . . . , n), where the latter expression im-

plies that all covariances are assumed to be null, σϵ,ij = 0 (for i ̸= j). Also, the (n × n2)

coskewness matrix concatenates n symmetric (n × n) submatrices: Sϵ = [Sϵ,1, . . . , Sϵ,n], where

Sϵ,k = [sϵ,k,ij ] = [E[ϵk,tϵi,tϵj,t]]. The n unconstrained skewnesses of the structural shocks may be

non-zero, sϵ,k,kk ̸= 0, whereas all coskewnesses are assumed to be null, sϵ,k,ii = sϵ,k,ij = 0 (for

i, j ̸= k). Finally, the (n × n3) excess cokurtosis matrix, Ke
ϵ , is the difference between the cokur-

tosis matrix, Kϵ, of the true structural shocks, ϵt, and the cokurtosis matrix, Kϵ̃, associated with
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hypothetical structural shocks, ϵ̃t, following a multivariate normal distribution. The excess cokur-

tosis matrix stacks n2 symmetric (n×n) submatrices: Ke
ϵ = [Ke

ϵ,11, . . . ,K
e
ϵ,1n, . . . ,K

e
ϵ,n1, . . . ,K

e
ϵ,nn],

where Ke
ϵ,kℓ = [κeϵ,kℓ,ij ] = [E[ϵk,tϵℓ,tϵi,tϵj,t]− E[ϵ̃k,tϵ̃ℓ,tϵ̃i,tϵ̃j,t]]. The n unconstrained excess kur-

toses may be non-zero, κeϵ,kk,kk ̸= 0, whereas the excess cokurtoses are assumed to be null,

κeϵ,kk,ii = κeϵ,kk,ki = κeϵ,kk,ij = κeϵ,kℓ,ij = 0.8

Next, the reduced form associated with system (3) corresponds to the following p-order VAR

process:

xt = Γ0 +

p∑
τ=1

Γτxt−τ + νt, (8)

where Γ0 = ΘΦ0, Γτ = ΘΦτ , and the non-singular matrix Θ = Φ−1 captures the impact responses

of the variables of interest to the various structural shocks, whereas νt includes the reduced-form

innovations. These innovations are related to the structural shocks as follows:

νt = Θϵt. (9)

Also, the first four unconditional moments of the reduced-form innovations are:

Mν = E[νt],= ΘMϵ, (10)

Σν = E[νtν
′
t] = ΘΣϵΘ

′, (11)

Sν = E[νtν
′
t ⊗ ν ′t] = ΘSϵ(Θ

′ ⊗Θ′), (12)

Ke
ν = Kν −Kν̃ = E[νtν

′
t ⊗ ν ′t ⊗ ν ′t]− E[ν̃tν̃

′
t ⊗ ν̃ ′t ⊗ ν̃ ′t] = ΘKe

ϵ (Θ
′ ⊗Θ′ ⊗Θ′). (13)

Here, Mν = [µν,i] = 0 given that Mϵ = 0 and Σν = [σν,ij ] = ΘΘ′ since Σϵ = I. Moreover, Sν =

[Sν,1, . . . , Sν,n] with Sν,k = [sν,k,ij ] = [E[νk,tνi,tνj,t]] andKe
ν = [Ke

ν,11, . . . ,K
e
ν,1n, . . . ,K

e
ν,n1, . . . ,K

e
ν,nn]

with Ke
ν,kℓ = [κeν,kℓ,ij ] = [E[νk,tνℓ,tνi,tνj,t]− E[ν̃k,tν̃ℓ,tν̃i,tν̃j,t]] where νt captures the true reduced-

form innovations and ν̃t contains hypothetical reduced-form innovations following a multivariate

normal distribution. As is well known, the symmetric matrix Σν contains n(n+1)
2 distinct elements.

Furthermore, the matrices Sν and Ke
ν include n(n+1)(n+2)

6 and n(n+1)(n+2)(n+3)
24 distinct elements.

The unconditional moments (11), (12) and (13) corresponds respectively to the second-order, third-

order and fourth-order cumulants of νt.

3.2 Identification

We now determine the conditions for local, statistical identification for the parameters associated

with the structural form (3) from the distinct elements associated with the reduced form (8). The

8Note that for the cokurtosis matrix Kϵ̃ associated to a multivariate normal distribution, κe
ϵ̃,kk,kk = 3, κe

ϵ̃,kk,ii = 1,
and κe

ϵ̃,kk,ki = κe
ϵ̃,kk,ij = κe

ϵ̃,kℓ,ij = 0 (for ℓ, i, j ̸= k).
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third and fourth order moments are nonlinear functions of the structural parameters, so verifying

identification is more challenging. To ease the exposition, we first consider a specific case that

exploits only the excess kurtoses of the structural shocks.9 Then, we comtemplate a general case

that allows for both the skewnesses and excess kurtoses of the structural shocks. For each case, we

elaborate the conditions required to identify the impact responses involved in Θ and the skewnesses

and/or excess kurtoses of the structural shocks included in Sϵ and/or Ke
ϵ from the unconditional

moments of the reduced-form innovations contained in Σν , Sν and/or Ke
ν .

10 For completeness, note

that, once these parameters are identified, it is trivial to identify the other structural parameters

included in Φ0 and Φτ (where τ = 1, . . . , p) through the relations Φ0 = Θ−1Γ0 and Φτ = Θ−1Γτ .

We denote by η and ρ the number of parameters involved in the structural form and the number

of distinct elements in the reduced form. For illustration purposes, we begin by examining our first

case which exploits only the excess kurtoses of the structural shocks. On the one hand, the number

of parameters in the structural form is η = n2 +mκ, given that there are n2 and mκ parameters to

identify in the impact response and excess kurtosis matrices, Θ and Ke
ϵ — where mκ is the number

of non-mesokurtic structural shocks. On the other hand, from relations (11) and (13): there are

ρ = n(n+1)
2 + n(n+1)(n+2)(n+3)

24 independent equations to identify the structural parameters.

Consider the partition of the relation (9) as:

νt =
(
Θκ Θnκ

)( ϵκ,t
ϵnκ,t

)
, (14)

where νt is a vector of the n reduced form innovations while ϵκ,t and ϵnκ,t contain the mκ and

(n−mκ) non-mesokurtic and mesokurtic structural shocks. Intuitively, the information contained

in Ke
ν contributes to identify the parameters in Θκ and Ke

ϵ , whereas Σν contains specific informa-

tion to identify the parameters in Θnκ. In particular, consider the configuration where n = 2 and

mκ = 1 (where ϵκ,t = ϵ1,t is non-mesokurtic). In this case, the five distinct elements involved in

Ke
ν — which correspond to κeν,11,11 = θ411κ

e
ϵ,11,11, κ

e
ν,11,12 = θ311θ21κ

e
ϵ,11,11, κ

e
ν,11,22 = θ211θ

2
21κ

e
ϵ,11,11,

κeν,12,22 = θ11θ
3
21κ

e
ϵ,11,11 and κeν,22,22 = θ421κ

e
ϵ,11,11 — contain information to identify the three struc-

tural parameters incorporated in Θκ = (θ11 θ21)
′ and Ke

ϵ . Also, the three distinct elements in Σν —

which are σν,11 = θ211 + θ212, σν,12 = θ11θ21 + θ12θ22, and σν,22 = θ221 + θ222 — allow the identification

of the remaining two parameters Θnκ = (θ12 θ22)
′ .

We next present the general case which takes into account both the skewnesses and excess

9The specific case that focuses exclusively on the skewness of the structural shocks is presented in Appendix A.
10Under local identification, the matrix Θ is unique up to changes in sign and permutations of columns.
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kurtoses of the structural shocks. To do so, the relation (9) is partitioned as follows:

νt =
(
Θss Θκκ Θsκ Θnsκ

)
ϵss,t
ϵκκ,t
ϵsκ,t
ϵnsκ,t

 . (15)

Here, the subvectors ϵss,t, ϵκκ,t, ϵsκ,t, and ϵnsκ,t contain, respectively, the mss, mκκ, msκ, and

(m −mss −mκκ −msκ) structural shocks that are exclusively skewed, only non-mesokurtic, both

asymmetric and non-mesokurtic, and both symmetric and mesokurtic. The numbers of skewed and

non-mesokurtic structural shocks are ms = mss +msκ and mκ = mκκ +msκ. In this environment,

η = n2 + [ms +mκ] and there are ρ =
[
n(n+1)

2

]
+

[
n(n+1)(n+2)

6

]
+

[
n(n+1)(n+2)(n+3)

24

]
independent

equations involved by (11), (12) and (13) to identify these parameters. Intuitively, Sν and Ke
ν

contribute to identify the parameters in Θss, Θκκ, Θsκ, Sϵ, and Ke
ϵ , whereas Σν contains specific

information to identify the parameters in Θnsκ. It is important to note that the number of reduced

form innovations that are only skewed, only non-mesokurtic, both asymmetric and non-mesokurtic,

or both symmetric and mesokurtic depends on the matrix Θ. For instance, a reduced form inno-

vation νit could be individually symmetric (but to be co-skewed with one or more reduced form

innovations) while being function of two asymmetric structural shocks. At the opposite, the whole

vector of reduced form innovations could be asymmetric while only one structural shock is skewed

(mss = 1 and msκ = 0). For this reason, the empirical validation of the local identification condi-

tion cannot be based on testing procedures applied to individual reduced form innovations νit. We

develop hereafter a testing procedure to verify whether the identification condition holds.

3.2.1 Rank Condition

In this section, we formally derive the rank condition and simple formulas which allow practitioners

to evaluate easily this sufficient condition. The rank condition r = η represents the sufficient

condition for the local, statistical identification of the entire structural system, where r corresponds

to the rank associated with the unconditional moment matrices of the reduced-form innovations.11

Extending the developments of Lütkepohl (2007, Chapter 9), we derive this condition from the

ranks of the Jacobian matrices associated with the structural parameters to identify.

If it turns out that the entire structural system is not identified according to the sufficient

condition, then our approach further allows to establish which structural parameters are identified

and which are not. This gives rise to two important implications. First, it permits to assess which

11For nonlinear system of equations, a sufficient condition for the local identification is that the Jocabian matrix is
of full colunm rank (see Dufour and Hsiao, 2008) but local identification is still possible using higher order derivatives
(see Sargan, 1983 and Donovon and Hall, 2018).
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structural subsystem is identified. This subsystem generates the effects induced by the asymmetric

and/or non-mesokurtic structural shocks. Second, it enables to determine the structural parameters

for which some restrictions must be placed on in order to achieve the identification of the entire

system. This is required to recover the effects of the symmetric and mesokurtic structural shocks.

As far as we know, these key implications have never been examined in previous studies.

Again, we first consider the case which exploits only the excess kurtoses of the structural shocks.

As explained above, the number of parameters involved in the structural form is η = n2+mκ. Also,

the rank associated with the reduced form is equal to the rank of the following Jacobian matrix:

J =
[
Jθκ Jθnκ Jκe

ϵ

]
=

[
Jσν ,θκ Jσν ,θnκ Jσν ,κe

ϵ

Jκe
ν ,θκ Jκe

ν ,θnκ Jκe
ν ,κ

e
ϵ

]
. (16)

Here, Jθκ =
[
J ′
σν ,θκ

J ′
κe
ν ,θκ

]′
, Jθnκ =

[
J ′
σν ,θnκ

J ′
κe
ν ,θnκ

]′
, Jκe

ϵ
=

[
J ′
σν ,κe

ϵ
J ′
κe
ν ,κ

e
ϵ

]′
, and Jy,x = ∂y

∂x′ .

Moreover, the vector σν vectorizes the lower triangular part of the symmetric covariance matrix

Σν , and the vector κeν collects the distinct elements of the excess cokurtosis matrix Ke
ν . Finally, the

vector θκ stacks the columns of the matrix Θκ in system (14), the vector θnκ contains the elements

of the matrix Θnκ and the vector κeϵ includes the non-zero elements of the excess kurtosis matrix

Ke
ϵ .

The rank of the Jacobian matrix (16), r = rk[J ], can be evaluated from the analytical deriva-

tives.12 From these derivatives, we deduce simple formulas to evaluate the rank r, which can

be easily assessed from the number of variables involved in the system, n, and the number of

non-mesokurtic structural shocks, mκ. Specifically, the rank corresponds to the sum of three

components: r = rκ + rnκ + rκe
ϵ
, with rκ = rk[Jθκ ] = n×mκ, rnκ = rk[Jθnκ ] =

n(n+1)
2 − mκ(mκ+1)

2 ,

and rκe
ϵ
= rk

[
Jκe

ϵ

]
= mκ. We show in Appendix C that the rank of the matrix J is equal to the

sum rκ + rnκ + rκe
ϵ
for all admissible impact matrix Θ.

The components rκ = n × mκ and rκe
ϵ
= mκ reveal that the information contained in the

second and fourth moments of the reduced-form innovations, Σν and Ke
ν , allows to identify all the

n × mκ elements of the matrix Θκ relating the reduced-form innovations to the non-mesokurtic

structural shocks, as well as all the mκ non-zero elements of the excess kurtosis matrix Ke
ϵ . The

intuition for this result can be gained from the two following features. First, rk[Jκe
ν ,θκ ] = n ×mκ

and rk[Jκe
ν ,κ

e
ϵ
] = mκ, but rk

[
Jκe

ν ,θκ Jκe
ν ,κ

e
ϵ

]
= n × mκ. This implies that the excess cokurtosis

matrix Ke
ν identifies the elements of Θκ and Ke

ϵ jointly, but not separately. To illustrate this,

consider the configuration where n = 2 and mκ = 1 (where ϵκ,t = ϵ1,t is non-mesokurtic), so that

Θκ =
(
θ11 θ21

)′
. In this context, the five distinct elements involved in Ke

ν — which correspond

12The derivatives are relegated in Appendix B.
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to κeν,11,11 = θ411κ
e
ϵ,11,11 κeν,11,12 = θ311θ21κ

e
ϵ,11,11, κ

e
ν,11,22 = θ211θ

2
21κ

e
ϵ,11,11, κ

e
ν,12,22 = θ11θ

3
21κ

e
ϵ,11,11, and

κeν,22,22 = θ421κ
e
ϵ,11,11 — identify the parameters θ11, θ21, and κeϵ,11,11 jointly, but not individually.

Second, Jσν ,θκ ̸= 0 whereas Jσν ,κe
ϵ
= 0. This implies that the covariance matrix Σν disentangles

the parameters involved in Θκ from those contained in Ke
ϵ , so that it becomes possible to identify

individually each parameter in Θκ and Ke
ϵ . Coming back to the previous example, the three distinct

elements in Σν — which are σν,11 = θ211 + θ212, σν,12 = θ11θ21 + θ12θ22, and σν,22 = θ221 + θ222 —

disentangle the parameters θ11 and θ21 from κeϵ,11,11, given that the variances and covariance are

related to θ11 and θ21 but not to κeϵ,11,11.

The component rnκ = n(n+1)
2 −mκ(mκ+1)

2 indicates whether the remaining information contained

in the second moments of the reduced-form innovations, Σν , allows to identify all the n× (n−mκ)

elements of the matrix Θnκ relating the reduced-form innovations to the mesokurtic structural

shocks. The intuition for this result is obtained from the following features: Jκe
ν ,θnκ = 0 and

Jσν ,θnκ ̸= 0. This implies that only the information captured in Σν , independent of that already

used to identify Θκ, can be exploited to identify the parameters included in Θnκ. More formally,

the covariance matrix of the reduced-form innovations can be rewritten as the sum of Σν = Σmκ
ν +

Σn−mκ
ν = ΘκΘ

′
κ + ΘnκΘ

′
nκ. The matrix Σn−mκ

ν corresponds to the contribution of the n − mκ

mesokurtic structural shocks. This n × n matrix is symmetric but of rank equals n − mκ. This

means that n − mκ columns (or rows) are linearly independent. For any of the n − mκ linearly

independent columns of the symmetric matrix Σn−mκ
ν , the number of independent elements equals

to n(n+1)
2 − mκ(mκ+1)

2 .

Our findings parallel the existing results. These results highlight that, under the more restrictive

assumption of independent structural shocks, all the structural parameters are locally, statistically

identified when at least all, but one, structural shocks are non-normally distributed (see Comon,

1994; Eriksson and Koivunen, 2004; Herwartz, 2015; Gouriéroux et al., 2017; Keweloh, 2020).

Our findings state that the entire structural system is locally, statistically identified when all but

one, structural shocks are non-mesokurtic. Specifically, when all structural shocks exhibit excess

kurtosis, mκ = n, then all the structural parameters are identified as η = r = n2 + n — where

η = n2 + mκ = n2 + n and r = rκ + rnκ + rκe
ϵ
, with rκ = n2, rnκ = 0, and rκe

ϵ
= n. When all,

but one, structural shocks are non-mesokurtic, mκ = n− 1, then all the structural parameters are

identified as η = r = n2 + n− 1, where rκ = n(n− 1), rnκ = n, and rκe
ϵ
= n− 1.

Importantly, our approach further provides insights when the entire structural system is not

identified. In particular, as already explained above, the moments Σν and Ke
ν allow to locally iden-

tify the n×mκ structural parameters included in Θκ and the mκ distinct elements involved in Ke
ϵ .

In general, this means that the structural parameters in mκ arbitrary columns of Θ are identified.
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For example, system (14), νt =
(
Θκ Θnκ

)
ϵt with ϵt =

(
ϵκ,t ϵnκ,t

)′
, orders the structural shocks

in a way that the parameters in the first mκ columns are identified. Alternatively, the system

νt =
(
Θnκ Θκ

)
ϵ∗t with ϵ∗t =

(
ϵnκ,t ϵκ,t

)′
changes the ordering of the structural shocks, such that

the parameters in the last mκ columns are identified. For a given ordering of the structural shocks,

the subsystem relating all the reduced-form innovations to the non-mesokurtic structural shocks is

identified.13 This subsystem traces the effects generated by the structural shocks displaying non-

zero excess kurtoses. The intuition for this result can be gained from the two following features.

First, rk[Jκe
ν ,θκ ] = n×mκ and rk[Jκe

ν ,κ
e
ϵ
] = mκ, but rk

[
Jκe

ν ,θκ Jκe
ν ,κ

e
ϵ

]
= n×mκ. This implies that

the excess cokurtosis matrix Ke
ν identifies the elements of Θκ and Ke

ϵ jointly, but not separately.

However, by considering the information in the covariance matrix Σν , rk
[
Jθκ Jκe

ϵ

]
= n×mκ+mκ

which is a sufficient condition to identify all structural parameters included in Θκ and the mκ

distinct elements involved in Ke
ϵ . This comes from the fact that the derivatives of upper submatrix

Jσν ,θκ of Jθκ depend on the expression Σmκ
ν defined above which is only a function of Θκ allowing

to disentangle the elements of Θκ from those of Ke
ϵ . Moreover, it can be shown that the matrix[

Jθκ Jκe
ϵ

]
does not depend on the unidentified parameters Θnκ, so the identification of the elements

of Θκ and Ke
ϵ is invariant to the unidentified elements of the matrix Θnκ. In the next section, we

present a simple method to estimate the matrix Θκ based on the singular value decomposition of

the coskewness and/or excess cokurtosis matrices of the reduced-form innovations.

The under-identification of the entire structural system occurs when the moments Σν do not

permit to identify all the n× (n−mκ) elements contained in Θnκ. As a result, certain restrictions

on these structural parameters must be imposed. For illustration purposes, consider the following

(linear) short-run restrictions Rθnκ = q. In this context, the rank condition holds when:

rk[J+] = rk
[
J+
θκ

J+
θnκ

J+
κe
ϵ

]
= rk

Jσν ,θκ Jσν ,θnκ Jσν ,κe
ϵ

Jκe
ν ,θκ Jκe

ν ,θnκ Jκe
ν ,κ

e
ϵ

0 R 0

 = η, (17)

where J+ is the augmented Jacobian matrix, J+
θκ

=
[
J ′
σν ,θκ

J ′
κe
ν ,θκ

0′
]′
, J+

θnκ
=

[
J ′
σν ,θnκ

J ′
κe
ν ,θnκ

R′
]′
,

and J+
κe
ϵ
=

[
J ′
σν ,κe

ϵ
J ′
κe
ν ,κ

e
ϵ

0′
]′
. The rank condition (17) states that (η − r) linearly independent

restrictions on θnκ are needed to ensure the local identification of the entire structural system.

Hence, if the structural shocks of interest are mesokurtic, then their effects can only be gauged

when (η − r) restrictions are placed on θnκ. In expression (17), the short-run restrictions imply

(η − r) constraints on the impact responses of the variables to the mesokurtic structural shocks.

13In practice, the ordering is implicitly determined by the analyst’s selection of the parameters κe
ϵ,ii,ii (capturing

the non-zero excess kurtosis of the structural shocks) to be estimated. For instance, if κe
ϵ,ii,ii ̸= 0 with i = 1, . . . ,mκ

are estimated then the parameters in the first mκ columns of Θ are identified, whereas if the κe
ϵ,ii,ii ̸= 0 with

i = (n−mκ + 1), . . . , n are estimated then the parameters in the last mκ columns are identified.
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It is straightforward to show that relevant long-run restrictions imply (η − r) constraints on the

dynamic responses (evaluated over an infinite horizon) of the variables to the mesokurtic shocks.

We now establish a proposition providing the rank condition for the identification of the struc-

tural parameters for the general case where the structural shocks display skewnesses and/or excess

kurtoses.

Proposition 1 For a full rank matrix Θ given the unconditional moments of the reduced-form

innovations, Σν , Sν , and Ke
ν , a sufficient condition to the system of equations (11)–(13) to have a

locally unique solution is

rk[J ] = rk
[
Jθss Jθκκ Jθsκ Jθnsκ Jsϵ Jκe

ϵ

]
= rk

Jσν ,θss Jσν ,θκκ Jσν ,θsκ Jσν ,θnsκ 0 0
Jsν ,θss 0 Jsν ,θsκ 0 Jsν ,sϵ 0

0 Jκe
ν ,θκκ Jκe

ν ,θsκ 0 0 Jκe
ν ,κ

e
ϵ

 = η, (18)

where the vector θss stacks by columns the n×mss parameters involved in the matrix Θss of system

(15), the vector θκκ contains the n×mκκ parameters of the matrix Θκκ, the vector θsκ includes the

n×msκ parameters of the matrix Θsκ, the vector θnsκ incorporates the n× [n− (mss+mκκ+msκ)]

parameters of the matrix Θnsκ, the vector sν collects the distinct elements of the coskewness matrix

Sν , the vector sϵ includes the non-zero elements of the skewness matrix Sϵ and η = n2 +ms +mκ

is the number of structural parameters to identify.

Appendix C shows that rk [J ] = r with r = rss + rκκ + rsκ + rnsκ + rsϵ + rκe
ϵ
, where rss =

rk[Jθss ] = n×mss, rκκ = rk[Jθκκ ] = n×mκκ, rsκ = rk[Jθsκ ] = n×msκ,

rnsκ = rk[Jθnsκ ] =
(
n(n+1)

2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)
2

)
, rsϵ = rk [Jsϵ ] = ms, and rκe

ϵ
=

rk
[
Jκe

ϵ

]
= mκ.

14 In this context, Proposition 1 has three implications. First, the entire struc-

tural system is statistically identified up to changes in sign and permutations of columns, that is

η = r, when all but one, structural shocks exhibit non-zero skewnesses and/or excess kurtoses.

Second, whether or not η = r, the subsystem relating all the reduced-form innovations to the asym-

metric and/or non-mesokurtic structural shocks is statistically identified up to changes in sign and

permutations of columns, given that the information contained in Σν , Sν , and Ke
ν always allows to

recover the structural parameters involved in Θss, Θκκ, Θsκ, Sϵ, and Ke
ϵ . This result is stated in

the following corollary.

Corollary 1 For a full rank matrix Θ given the unconditional moments of the reduced-form inno-

vations, Σν , Sν , and Ke
ν ,

rk
[
Jθss Jθκκ Jθsκ Jsϵ Jκe

ϵ

]
= [rss + rκκ + rsκ] + [rsϵ + rκe

ϵ
] (19)

14The analytical derivatives involved in the Jacobian matrix are detailed in Appendix B.
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and [rss + rκκ + rsκ] + [rsϵ + rκe
ϵ
] = [n × mss + n × mκκ + n × msκ] + [ms + mκ] the numbers of

structural parameters involved in Θss, Θκκ, Θsκ, Sϵ, and Ke
ϵ . Consequently, the subsystem relating

all the reduced-form innovations to the asymmetric and/or non-mesokurtic structural shocks is

statistically identified up to changes in sign and permutations of columns. Moreover, the matrices

of derivatives in (19) do not depend on the unidentified structural parameters in Θnsκ.

This result follows directly from Appendix C. Corollary 1 implies that the structural param-

eters involved in Θss, Θκκ, Θsκ, Sϵ, and Ke
ϵ can be estimated even if the parameters in the matrix

Θnsκ are unidentified and the effects induced by the asymmetric and/or non-mesokurtic structural

shocks can be recovered.

When some restrictions are placed on the structural parameters (R ̸= 0), these restrictions are

required if the remaining information captured in Σν does not allow to identify all the structural

parameters contained in Θnsκ — that is rnsκ < n× [n− (mss +mκκ +msκ)]. In this environment,

the next corollary states that the entire structural system becomes locally, statistically identified

under short-run restrictions if (η − r) linearly independent restrictions are imposed on Θnsκ.

Corollary 2 For a full rank matrix Θ given the unconditional moments of the reduced-form in-

novations, Σν , Sν , and Ke
ν , a sufficient condition to the system of equations (11)–(13) to have a

locally unique solution is

rk[J+] = rk

[
Jθss Jθκκ Jθsκ Jθnsκ Jsϵ Jκe

ϵ

0 0 0 R 0 0

]
= η

where the matrix R forms the short-run restrictions Rθnsκ = q.

Overall, these results reveal that the rank condition can be readily evaluated from the number

of variables involved in the system, n, and the numbers of asymmetric and/or non-mesokurtic

structural shocks, mss, mκκ, and msκ.

4. Testing Procedure

In this section, we elaborate a testing procedure to verify the symmetry and excess kurtosis of the

structural shocks, prior to the estimation of the SVAR process. Specifically, we develop a tractable

procedure to verify whether the rank condition hold by assessing the numbers of asymmetric and/or

non-mesokurtic structural shocks. We then outline a bootstrap procedure to improve the small-

sample properties of rank tests designed to verify the numbers of structural shocks displaying

non-zero skewnesses and/or excess kurtoses.
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4.1 Verification of the Rank Condition

As explained above, the rank condition can be verified from the numbers of asymmetric and/or

non-mesokurtic structural shocks. However, the structural shocks become measurable only once

the SVAR is estimated.15 To circumvent this problem, we develop a method to test the number of

asymmetric and/or non-mesokurtic structural shocks, which relies exclusively on the reduced-form

innovations — where the latter can be evaluated from the reduced form (8) before the estimation of

the structural form (3). Specifically, the number of skewed structural shocks, ms, corresponds to the

rank of the coskewness matrix of the reduced-form innovations, Sν . To see this, note that expression

(12) implies that rk[Sν ] = rk[Sϵ] given that Θ is a non-singular matrix and, as a result, (Θ′⊗Θ′) is

a full-rank matrix. Also, rk[Sϵ] = ms because the assumption of zero cross-sectional coskewnesses

of the structural shocks implies that the quadratic form of the corresponding skewness matrix is

SϵS
′
ϵ = diag

(
s2ϵ,1,11 · · · s2ϵ,n,nn

)
, and s2ϵ,i,ii ̸= 0 only for i = 1, . . . ,ms when ms structural shocks

are skewed.

Analogously, the number of non-mesokurtic structural shocks, mκ, is given by the rank of

the excess cokurtosis matrix of the reduced-form innovations, Ke
ν . That is, equation (13) im-

plies that rk[Ke
ν ] = rk[Ke

ϵ ] given that Θ is a non-singular matrix. Also, rk[Ke
ϵ ] = mκ since

the assumption of zero cross-sectional excess cokurtoses of the structural shocks leads to Ke
ϵK

e′
ϵ =

diag
(
(κeϵ,11,11)

2 · · · (κeϵ,nn,nn)
2
)
, and (κeϵ,ii,ii)

2 ̸= 0 only for i = 1, . . . ,mκ.

Based on the arguments developed above, we present a proposition to determine the number of

structural shocks displaying either non-zero skewnesses, excess kurtoses, or both.

Proposition 2 Given the unconditional third and fourth moments of the reduced-form innova-

tions, Sν and Ke
ν , the full rank of the impact matrix Θ and the assumption of zero cross-sectional

coskewnesses and excess cokurtoses of the structural shocks imply that the number of asymmetric

and/or non-mesokurtic structural shocks, mss + mκκ + msκ, is equal to the rank of the matrix

Ψν =
(
Sν Ke

ν

)
.

Proposition 2 is obtained as follows. First, equations (12) and (13) are used to highlight that

rk[Ψν ] = rk[Ψϵ] with Ψν =
(
ΘSϵ(Θ

′ ⊗Θ′) ΘKe
ϵ (Θ

′ ⊗Θ′ ⊗Θ′)
)
and Ψϵ =

(
Sϵ Ke

ϵ

)
, given

15Empirically, asymmetric (either postive or negative skewness) and leptokurtic behaviors have been extensively
documented for stock and bond returns as well as for exchange rates and commodity prices (see for example, Clark,
1973; Boothe and Glassman, 1987; Bekaert and Harvey, 1997; Fujiwara et al., 2013). Likewise, positive excess kurtosis
have been detected for several macroeconomic series, including indicators related to the economic activity — e.g. real
GDP, the components of the real aggregate expenditure, industrial production, and unemployment — as well as a
variety of indices of the cost of living — e.g. GDP deflator and CPI (see for example, Blanchard and Watson, 1986;
Kilian, 1998; Bai and Ng, 2005; Lanne et al., 2017; Gouriéroux et al., 2017; Lanne and Luoto, 2019 and Keweloh,
2020). Note that the studies just reported highlight the existence of skewness and/or excess kurtosis for the variables
of interest or for the reduced-form innovations related to these variables, but never for the structural shocks.
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that Θ is a non-singular matrix. Then, rk[Ψϵ] = mss + mκκ + msκ because the assumption of

zero cross-sectional coskewnesses and excess cokurtoses of the structural shocks leads to ΨϵΨ
′
ϵ =

diag
(
s2ϵ,1,11 + (κeϵ,11,11)

2 · · · s2ϵ,n,nn + (κeϵ,nn,nn)
2
)
, and s2ϵ,i,ii+(κeϵ,ii,ii)

2 ̸= 0 for the mss structural

shocks displaying exclusively non-zero skewnesses, the mκκ shocks exhibiting only non-zero excess

kurtoses, and the msκ shocks featuring both non-zero shewnesses and excess kurtoses.

In summary, the ranks of Sν , K
e
ν , and Ψν allow to determine ms, mκ, and mss + mκκ + msκ

before the estimation of the structural form (3). Then, the numbers of structural shocks displaying

exclusively non-zero skewnesses, mss, excess kurtoses, mκκ, and both, msκ, are readily deduced —

given that ms = mss +msκ and mκ = mκκ +msκ.
16

4.2 Bootstrap Procedure

The objective is to develop a strategy to test the rank of the coskewness and excess cokurtosis

matrices. Testing the rank of Sν and Ke
ν involves the computation of variance-covariance matrix of

the null space of theses matrices which is not of full rank, an assumption required in most of rank

tests.17,18 For these reason, we proceed with the rank test proposed by Robin and Smith (2000)

which does not require this assumption.

Let us define the estimate of the normalized reduced-form innovations corresponds to ût =

Ω̂−1ν̂t, where ν̂t represents the OLS residuals of the reduced form (8) and Ω̂ is a lower triangular

matrix obtained from the Cholesky decompostion of the estimated covariance matrix of the OLS

residuals; i.e. Σ̂ν = Ω̂Ω̂′. The rank test to determine ms, mκ, or mss+mκκ+msκ uses the following

likelihood-ratio (LR) and Wald (W) statistics:19

ĈRT
LR

r∗ = (T − p)

n∑
i=r∗+1

ln(1 + λ̂2
i ), (20)

ĈRT
W

r∗ = (T − p)
n∑

i=r∗+1

λ̂2
i , (21)

where λ̂i are the estimates of the singular values of the matrix Su, K
e
u, or Ψu (with λ̂1 ≥ . . . ≥

16Specifically, msκ is determined from mss +mκκ +msκ = (ms −msκ) + (mκ −msκ) +msκ, where mss +mκκ +
msκ = rk[Ψν ], ms = rk[Sν ], and mκ = rk[Ke

ν ]. Then, mss and mκκ are determined from mss = ms − msκ and
mκκ = mκ −msκ.

17The null space of a m× n matrix A is the set of all vectors x such that N (A) = {x ∈ Rn|Ax = 0}.
18See for example Kleibergen and Paap (2006, Assumption 2) and the review of existing rank tests by Camba-

Méndez and Kapetanios (2008). See also Lewis (2019) for the implementation of a rank test to verify identification
conditions in the context of SVAR with time-varying volatility.

19See Anderson (1951) for the LR form and as well as Bura and Yang (2011) and Portier and Delyon (2014) for
the Wald form.
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λ̂n ≥ 0) and r∗ is the rank of this matrix under the null hypothesis.20 The matrices Su, K
e
u, and

Ψu are constructed from the sample estimates of the coskweness ŝu,k,ij = 1
T−p

∑T
t=p+1 ûk,tûi,tûj,t

and cokurtosis κ̂u,kℓ,ij = 1
T−p

∑T
t=p+1 ûk,tûℓ,tûi,tûj,t of the estimated normalized reduced-form in-

novations, as well as the cokurtoses κũ,kk,kk = 3, κũ,kk,ii = σũ,kkσũ,ii = 1 (for i ̸= k), and

κũ,kk,ki = κũ,kk,ij = κũ,kℓ,ij = 0 (for ℓ, i, j ̸= k) of hypothetical normal reduced-form innova-

tions.21 Robin and Smith (2000) show that, under some regularity conditions, the statistics (20)

and (21) have limiting distributions that are weighted sums of independent chi-squared variables,

despite that the estimators of vec(Su), vec(K
e
u), and vec(Ψu) have not full rank asymptotic covari-

ance matrices. The main drawback of such test is that the statistic (20) and (21) are not pivotal,

i.e. their asymptotic distribution depends on the unknown quantities Su, K
e
u, or Ψu and their

respective asymptotic variance-covariance matrix. An estimator of the weights of the sum of the

independent chi-square distribution can be obtained using consistent estimators of these unknown

quantities. This allows to provide an estimation of the asymptotic critical values for the statistics

CRTLR
r∗ and CRTW

r∗ under the null hypothesis that the rank is r∗. Appendix D shows the derivation

of the limiting distribution of the statistics (20) and (21) and how to obtain an estimator of this

limiting distribution.

From analytical approximations of the first four moments, it can be shown that ŝu,i,ii has a

symmetric leptokurtic distribution which fairly rapidly tends to a normal distribution as the sam-

ple size increases, but κ̂u,ii,ii has a very skewed distribution that hardly converges to a normal

distribution (see Mardia, 1980). This implies that the finite-sample critical values to test the null

hypothesis of zero excess kurtosis converge extremely slowly to their asymptotic counterparts. Nu-

merical simulations of the Jarque-Bera tests for kurtosis further suggest that the use of asymptotic

critical values leads to severe size distortions, as the empirical size often substantially deviates from

the nominal size even for samples as large as T = 5, 000 (see Kilian and Demiroglu, 2000; Bai and

Ng, 2005).

To circumvent this problem, we design a bootstrap procedure to compute the finite-sample

critical values for the statistics CRTLR
r∗ and CRTW

r∗ associated with the ranks of Su, K
e
u, and Ψu to

determine ms, mκ, and mss+mκκ+msκ. The bootstrap appears here to be a convenient alternative

because it avoids the estimation of unknown quantities which are probably imprecisely estimated

in finite sample.22 In particular for Ke
u, this entails evaluating the variance-covariance matrix of

20This corresponds to the unweighted case in Robin and Smith (2000), so λ̂2
i are the eigenvalues of the quadratic

form of the matrix Su, K
e
u, or Ψu.

21Note that rk[Su] = rk[Sν ] = ms, rk[K
e
u] = rk[Ke

ν ] = mκ, and rk[Ψu] = rk[Ψν ] = mss +mκκ +msκ.
22Since the asymptotic distribution of the statistics is not pivotal, the bootstrap does not provide asymptotic

refinements.
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the fourth unconditional moments.

The consistency of the bootstrap procedure requires that the bootstrap data satisfy the null

hypothesis. To respect this requirement, the procedure here is based on the constrained bootstrap

testing procedure of the rank of a matrix proposed by Portier and Delyon (2014). Consider the case

of the matrix Ke
u. Suppose that the matrix Ke

u is of rank r∗ ≤ n. The singular value decomposition

of Ke
u gives Ke

u = CΛD′ where Λ is a diagonal matrix with the singular values on the diagonal. Let

λ1, λ2, . . . , λn be the singular values ordered in decreasing values. For a matrix Ke
u of rank equal to

r∗, the first r singular values are different from zero and the last n− r∗ singular values are equal to

zero. The orthogonal matrix C contain columns of the associated singular vectors ci for i = 1, . . . , n

and CC ′ = In whereas the orthogonal matrix D contain columns of the associated eigenvectors di

for i = 1, . . . , n and DD′ = In3 . This implies that CC ′ = CrC
′
r + Cn−rC

′
n−r where the submatrix

Cr contains the first r columns of C associated with the singular values different from zeros and

the submatrix Cn−r contains the n − r singular vectors associated with singular values equal to

zero. Similarly, DD′ = DrD
′
r +Dn3−rD

′
n3−r where the submatrix Dr contains the first r columns

of D associated with the singular values different from zeros and the submatrix Dn3−r contains the

n3 − r singular vectors associated with singular values equal to zero.

Thus

C ′Ke
uD =

[
C ′
rK

e
uDr C ′

rK
e
uDn3−r

C ′
n−rK

e
uDr C ′

n−rK
e
uDn3−r

]
= Λ (22)

The submatrix C ′
n−rK

e
uDn3−r corresponds to the null space of Ke

u which is the object of interest

(see Al-Sadoon, 2017).

According to Portier and Delyon (2014), statistics (20) and (21) share the following form23

n∑
i=r∗+1

λ̂2
i = ∥vec(K̂e

u − K̂e
u,c)∥2 = ∥vec(Ĉ ′

n−r∗K̂
e
uD̂n3−r∗)∥2 (23)

with

K̂e
u,c = Ĉr∗Λ̂r∗D̂

′
r∗ = argmin

rk(Ke
u)=r∗

∥vec(K̂e
u −Ke

u)∥2

where K̂e
u,c is the constrained excess cokurtosis matrix by the null hypothesis closest to the estimated

matrix K̂e
u under the Euclidean norm. The matrix K̂e

u,c is of rank r∗ and is given by Ĉr∗Λ̂r∗D̂
′
r∗ =

Ĉr∗Ĉ
′
r∗K̂

e
uD̂r∗D̂

′
r∗ according to the singular value decomposition. By (23) the statistics CRTLR

r∗

and CRTW
r∗ are then function of a the null space estimator of the matrix K̂e

u.

The corresponding bootstrap form is

n∑
i=r∗+1

λ̂2,b
i = ∥vec(K̂e,b

u,c −Ke,b
u,c)∥2 = ∥vec(Ĉb′

n−r∗K̂
e,b
u,cD̂

b
n3−r∗)∥

2

23The statistic CRTLR
r∗ = (T − p)

∑n
i=r∗+1 λ̂

2
i + op(1).
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with

Ke,b
u,c = Ĉb

r∗Λ̂
b
r∗D̂

b′
r∗ = argmin

rk(Ke
u)=r∗

∥vec(K̂e,b
u,c −Ke

u)∥2

for b = 1, . . . , B where K̂e,b
u,c is the bootstrapped excess cokurtosis matrix under the null hypothesis

with the corresponding singular value decomposition (22) and Ke,b
u,c is the constrained bootstrapped

excess cokurtosis matrix by the null hypothesis closest to K̂e,b
u,c with respect to the Euclidean norm.

The question is how to compute K̂e,b
u,c under the null hypothesis. The objective is to bootstrap linear

combinations of the normalized reduced-form innovations such that the largest r∗ bootstrapped

singular values of K̂e,b
u,c mimic the empirical ones with respect to the Euclidean norm and the

r∗ + 1, . . . , n singular values correspond to the null hypothesis. The singular vectors in the matrix

Ĉr∗ span the column space corresponding to the largest r∗ singular values of K̂e
u. In Appendix

D, we show that the matrix of singular vectors Ĉr∗ gives linear combinations of the bootstrapped

normalized reduced-form innovations such that the corresponding singular values of K̂e,b
u,c are the

closest to the empirical ones. The vector of the bootstrapped normalized reduced-form innovations

ubt =
(
ub

′
r∗,t ub

′
n−r∗,t

)′
is thus generated such that the elements in the subvector ubr∗,t are obtained

by bootstrapping Ĉ ′
r∗ ût and the elements in the subvector ubn−r∗,t are drawned from a symmetric

and mesokurtic distribution. This ensures that the largest r∗ bootstrapped singular values of

K̂e,b
u,c computed with ubt mimic the empirical ones with respect to the Euclidean norm and the

r∗ + 1, . . . , n singular values of K̂e,b
u,c correspond to the null hypothesis. In fact, when r is equal to

the true number of structural shocks with excess kurtosis mκ, the singular vector columns of the

matrix Ĉr corresponding to the r greatest singular values provide a simple estimator of the matrix

Θκ by Ω̂Ĉκ = Θ̂κ. This is deduced from the following relationship between the covariance matrix

of the reduced-form innovations and the impact matrix Θ :

Σν = ΘΘ′ = ΩCC ′Ω′ = ΩCκC
′
κΩ

′ +ΩCnκC
′
nκΩ = ΘκΘ

′
κ +ΘnκΘ

′
nκ

where C = [Cκ Cnκ], Θκ = ΩCκ and Ω is the lower triangular matrix of the Choleski decomposition

of Σν . By the normalisation, the estimation of Θκ corresponds to the estimation of the orthogonal

vector in the matrix Cκ under the contraint that C ′
κCκ = I.

We now illustrate the various steps of the procedure for the rank of Ke
u.

Step 1. Under the null hypothesis rk[Ke
u] = r∗ (i.e. r∗ is the assumed number of non-mesokurtic

structural shocks), the vector ubt =
(
ub

′
r∗,t ub

′
n−r∗,t

)′
is generated as follows. The elements contained

in the (r∗×1) subvector ubr∗,t are obtained by bootstraping those included in the vector wr∗,t = Ĉ ′
r∗ ût

for t = (p+1), . . . , T , where Ĉr∗ is a (n×r∗) matrix stacking the left singular vectors associated with

the r∗ largest singular values of K̂e
u and ût is the (n×1) vector collecting the estimated normalized

reduced-form innovations. This implies that the elements contained in wr∗,t correspond to linear
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combinations of the normalized reduced-form innovations which display the largest excess kurtoses.

The elements contained in the [(n− r∗)×1] subvector ubn−r∗,t are drawned from the symmetric and

mesokurtic distribution ubn−r∗,t ∼ N(0, I) for t = (p+ 1), . . . , T.

Step 2. The bootstrap sample is generated recursively from the VAR process (8) as:

xbt = Γ̂0 +

p∑
τ=1

Γ̂τx
b
t−τ + Ω̂ubt , (24)

for t = (p+1), . . . , T. To do so, the starting values of xbt for t = 1, . . . , p are generated by randomly

drawing a block of the actual data of length p, while Γ̂0, Γ̂τ , and Ω̂ are the estimates of the reduced-

form parameters obtained by applying OLS on the actual sample. Following Bose (1988), these

estimates are treated as the population values of the reduced-form parameters.

Step 3. The VAR process is estimated to yield:

xbt = Γ̂b
0 +

p∑
τ=1

Γ̂b
τx

b
t−τ + Ω̂bûbt , (25)

where Γ̂b
0, Γ̂

b
τ , and Ω̂b are the estimates obtained by performing OLS on the bootstrap sample,

whereas ûbt corresponds to the normalized residuals.

Step 4. The normalized residuals ûbt are used to compute the bootstrap analogues of the statistics

(20) and (21).

Step 5. Steps 1 to 4 are repeated for b = 1, . . . , B where B = 1999 to compute the empirical

distributions of the statistics (20) and (21).24 Selecting the appropriate quantiles of these empirical

distibutions yield the finite-sample critical values to test the null hypothesis that the rank is equal

to r∗ against the alternative hypothesis that the rank is larger than r∗.

Step 6. Steps 1 to 5 are repeated for r∗ = 0, 1, . . . , n − 1. If the null hypothesis rk[Ke
u] = r∗ is

rejected for r∗ = 0, 1, . . . ,m−1 but is not rejected for r∗ = m with m < n, then the number of non-

mesokurtic structural shocks corresponds to mκ = m. However, if the null hypothesis rk[Ke
u] = r∗

is rejected for r∗ = 0, 1, . . . , n− 1, then mκ = n.

The last step of the bootstrap procedure is similar to the sequential procedure proposed by

Robin and Smith (2000). These authors show that, asymptotically, such a sequential procedure

never selects a value of r∗ that is smaller than the true rank of the matrix of interest.25

24According to Davidson and Mackinnon (2000) the number of bootstrap replications B must be chosen so that
α(B + 1) is an integer where α is the chosen level of the test.

25In such a sequential procedure there exists a probability, corresponding to the empirical size, to falsely reject
the null hypothesis, as is common to usual testing procedures. A false rejection of the null hypothesis implies that
the subsequent test assumes that the number of non-mesokurtic structural shocks is r∗ = r + 1 where r is the true
number in the data. In this case, the subvector ub

t corresponds to linear combinations of standardized reduced-form
innovations resulting in r non-mesokurtic structural shocks and one mesokurtic structural shock. The subvector
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To document the size properties of rank tests for excess kurtosis, we evaluate the empirical

sizes by simulating samples of size T form the bivariate system (1)–(2) with ϵ2,t ∼ N(0, 1) and

ϵ1,t ∼ N(0, 1) under the null hypothesis r∗ = 0 or 1.291 × ϵ1,t ∼ t(5) under r∗ = 1.26 Table 1

presents the empirical sizes of the rank tests with asymptotic distributions, where the limiting

critical values are computed as in Appendix D. For both the Wald and likelihood-ratio tests, the

empirical size is very conservative under the null hypotheses r∗ = 0 and r∗ = 1. Specifically, the

empirical sizes are systematically close to zero, and, as such, they are substantially smaller than

the nominal sizes even for samples as large as T = 5, 000. Table 1 also reports the empirical sizes

related to finite-sample distributions, where the critical values are constructed from the bootstrap

procedure developed above. Importantly, the Wald and likelihood-ratio tests are essentially free

of size distortions: the empirical sizes are almost identical to the nominal sizes, regardless of the

sample size T .

Finally, we report the empirical powers of the tests with finite-sample distributions for the

rank of Ke
u. For this purpose, we simulate the bivariate system (1)–(2) for cases in which i) ϵ2,t is

mesokurtic and ϵ1,t displays non-zero excess kurtosis when we consider the null hypothesis r∗ = 0,

and ii) ϵ2,t and ϵ1,t are both non-mesokurtic when we contemplate that r∗ = 1 — where the excess

kurtosis is moderate (κeϵ = 1) or pronounced (κeϵ = 6). Table 2 highlights two main features. First,

as expected, the powers of the tests substantially improve as the sample size increases. Second,

the powers of the tests considerably increase as the excess kurtosis becomes more pronounced.27

Accordingly, a small sample size and/or a negligible excess kurtosis lead to a conservative analysis:

it is likely that an analyst would conclude that the entire system is under-identified (even if it is

actually identified) or would under-evaluate the size of the subsystem that is identified (when the

entire system is actually under-identified).

Overall, our bootstrap procedure for rank tests always overcomes size distortions and often

yields good power properties. This also holds for the bootstrap procedure applied to the coskewness

matrix Su and the matrix Ψu that combines the coskewness and the excess cokurtosis matrices.28

ub
n−r∗,t is still drawing from a symmetric and mesokurtic distribution which corresponds to the null hypothesis.

Simulation results not reported here show that test based on the null that r∗ = r + 1 is conservative. However, a
false rejection of the null could result in adverse consequences for the subsequent inferences based on the misspecified
SVAR. Moreover, even for a sequential procedure providing a consistent estimate of the rank, Leeb and Pötscher
(2005) show that the finite-sample distribution for the subsequent inferences may not be well approximated by the
pointwise asymptotic. However, this corresponds to the worst possible outcome when conducting inference, not the
likely outcome (see Killian and Lütkepohl, 2017, Chapter 2).

26The empirical sizes and powers of rank tests for skewness are reported in Appendix E.
27The results of the Wald and the LR statistics are the same in Table 2 for r∗ = 1 because both statistics are

small and are almost of the same values.
28Simulation results are reported for the coskewness matrix in Appendix E. We also perform simulations for a

trivariate system with parameters calibrated according to the application appearing in the next section. The results
are really close to the ones with two variables and can be obtained upon request.
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Consequently, this procedure is most useful to determine the numbers of asymmetric and/or non-

mesokurtic structural shocks, in order to assess whether the rank condition holds.

5. Application

We now apply the developments presented above to document the effects of fiscal policies on eco-

nomic activity. The effectiveness of fiscal policies represents a classic question in macroeconomics.

It has received renewed interest in light of the recent Great Recession and the ongoing debate about

which type of government interventions stimulate the economy the most.

We consider a trivariate SVAR process:ντ,t
νg,t
νy,t

 =

θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

ϵ1,t
ϵ2,t
ϵ3,t

 , (26)

where ντ,t, νg,t, νy,t represent the reduced-form innovations capturing the unanticipated movements

in taxes, government spending, and output, whereas ϵ1,t, ϵ2,t, and ϵ3,t correspond to the structural

shocks.

The relation (26) is evaluated for quarterly U.S. data from 1980-I to 2015-III.29 Output corre-

sponds to the logarithm of real GDP per capita, taxes are defined as the logarithm of real total

government receipts net of transfer payments per capita, and government spending is the loga-

rithm of the sum of real government consumption and gross government investment expenditures

per capita. The series are expressed in real terms using the GDP deflator and in per capita terms

using total population. Also, taxes and government spending are measured for the general gov-

ernment, i.e. the sum of federal (defense and non-defense), state, and local governments. The

data are seasonally adjusted at the source and are taken from the National Income and Products

Accounts (NIPA), except for total population which is obtained from the Federal Reserve Bank of

Saint-Louis’ FRED database. The reduced form (8) includes a linear deterministic trend and eight

lags, which correspond to the most parsimonious lag structure for which all reduced-form residuals

are serially uncorrelated.

We verify whether the identification condition holds before proceeding to the estimation of the

structural parameters. To do so, we apply the rank tests where the finite-sample critical values

are computed by the bootstrap procedure discussed in Section 4.2. The results reveal that the

hypothesis stipulating that the structural shocks are symmetric is not rejected (at all conventional

levels) and only one shock is non-mesokurtic (i.e. mss = msκ = 0 and mκκ = 1), given that the

29A similar starting date of the sample is selected by Perotti (2004), Favero and Giavazzi (2009), and Bouakez et
al. (2014).
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likelihood-ratio and Wald versions of the tests imply that rk[Su] = ms = 0, rk[Ke
u] = mκ = 1,

and rk[Ψu] = mss + mκκ + msκ = 1. In this context, the number of structural parameters is η

= n2 +mκ = 10, whereas the number of distinct elements in the reduced form is ρ =
[
n(n+1)

2

]
+[

n(n+1)(n+2)(n+3)
24

]
= 21 and the rank associated with the reduced form is r = rκ + rnκ + rκe

ϵ
= 9

— with rκ = n × mκ = 3, rnκ = n(n+1)
2 − mκκ(mκκ+1)

2 = 5, and rκe
ϵ
= mκ = 1. This implies that

the rank (sufficient) condition r = η is violated so that the entire system is not identified and to

achieve the idenfication (η − r) = 1 restriction must be imposed

We next estimate the structural parameters involved in the subsystem of (26) that is locally,

statistically identified. These parameters are arbitrarily selected to be the elements of the first

column of Θ (i.e. θ11, θ21, θ31) and κeϵ,11,11. The estimation of these parameters is performed by

minimizing the following moment matching function:

(ζ̂ν − ζν(Θ, κeϵ,11,11))
′(ζ̂ν − ζν(Θ, κeϵ,11,11)), (27)

under (η − r) = 1 restriction that either θ23 = 0 or θ32 = 0.. Note that each of these restrictions

ensures that the entire system is identified, but it is not placed on the parameters of interest θ11,

θ21, θ31, and κeϵ,11,11. Also, ζν =
(
σν κeν

)′
, where σν vectorizes the lower triangular part of the

symmetric covariance matrix Σν obtained from expression (11) and κeν collects all the distinct

elements of the excess cokurtosis matrix Ke
ν obtained from (13). The vector ζ̂ν =

(
σ̂ν κ̂eν

)′
includes the sample estimates of all the second and fourth unconditional moments of the reduced-

form residuals. As explained previously, the information contained in these moments allows to

identify all the structural parameters relating the reduced-form innovations to the non-mesokurtic

structural shock, as well as the excess kurtosis of this shock. Finally, the confidence intervals of

the estimates are computed from 5000 bootstrap samples. The implemented estimation procedure

corresponds to the Generalized Method of Moments (GMM) with a fixed weight matrix (i.e. the

identity matrix in our case), which yields estimators that are consistent and asymptotically normal

(see Hansen, 1982). Moreover, in this context the validity of the bootstrap procedure is established

in Hall and Horowitz (1996). This estimation procedure is consistent, but not optimal, since we

do not use the optimal weighting matrix. However, it is not clear in this case that the small-

sample behavior of the GMM estimation with the optimal weighting matrix outperforms the GMM

estimation with the identity matrix. Specifically, the estimation of the optimal weighting matrix

entails evaluating the covariance matrix of the fourth unconditional moments, which tends to be

quite imprecisely estimated in small samples (see Bonhomme and Robin, 2009; Keweloh, 2020).

In the estimation procedure, we normalize the estimate of θ11 to be positive, so that we consider

the case where the impact response of ντ,t to ϵ1,t is positive. We also identify the elements in the
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first column of Θ, given that we have selected ϵ1,t as being the structural shock that displays excess

kurtosis. Table 3 shows that the estimates of θ11 and κeϵ,11,11 are numerically sizable and statistically

significant, whereas the estimates of θ21 and θ31 are negligible and insignificant. These results hold

whether the restriction θ23 = 0 or θ32 = 0 is invoked. This occurs because the parameters θ11,

θ21, θ31, and κeϵ,11,11 are identified, regardless of the restriction imposed on the other parameters

of system (26). Given that the null hypotheses θ21 = 0 and θ31 = 0 are not rejected, this suggests

that the term ντ,t exhibits non-zero excess kurtosis, while νg,t and νy,t display zero excess kurtoses

and excess cokurtoses.30 Also, the values θ21 = 0 and θ31 = 0 imply that, at impact, the structural

shock ϵ1,t only affects taxes, so that this shock can be interpreted economically as a tax shock,

i.e. ϵτ,t = ϵ1,t. In this specific application, the statistical properties of the subsystem linking the

reduced-form innovations to the non-mesokurtic structural shock lead to the economic identification

of the tax shock. In general, however, local, statistical identification does not guarantee that the

structural shocks have an economic interpretation.

The results lead to the important implication that the subsytem relating all the reduced-form

innovations to the tax shock is identified. From this subsystem, we find that the effectiveness of

the tax policy is weak. That is, the dynamic response of output after a tax shock is small and

not statistically significant (see Figure 2), and the tax multiplier (i.e. the dollar change in output

occurring in quarter t+ i resulting from a dollar cut in the exogenous component of taxes) is small:

it is null at impact and it reaches a peak of about 0.61 at 14 quarters (see Table 3). Again, the

dynamic response and the tax multiplier are not affected by the selection of the restriction θ23 = 0

or θ32 = 0, given that the responses of output following a tax shock is not affected by the restriction

imposed on the other parameters of system (26).

In contrast, the subsytem relating the reduced-form innovations to the structural shocks ϵ2,t and

ϵ3,t is under-identified. To achieve the identification of this subsystem, (η− r) = 1 restriction must

be imposed. This restriction is required to assess the responses of output, taxes, and government

spending following the structural shocks ϵ2,t and ϵ3,t, where one of these shocks may correspond to

the government spending shock.

To deepen the analysis of the effectiveness of the spending policy, we rely on the economic

30These results are corroborated by applying Jarque-Bera tests for the reduced-form innovations, where the finite-
sample critical values are approximated by Kilian and Demiroglu’s (2000) bootstrap procedure. Specifically, we find
that the hypothesis of symmetry is not rejected for all reduced-form innovations, whereas the hypothesis of zero
excess kurtosis is rejected only for the reduced-form innovation associated with taxes, ντ,t.
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specification invoked in the seminal paper of Blanchard and Perotti (2002):

ντ,t = α1νy,t + α2ωgϵg,t + ωτ ϵτ,t, (28)

νg,t = β1νy,t + β2ωτ ϵτ,t + ωgϵg,t, (29)

νy,t = γ1ντ,t + γ2νg,t + ωyϵy,t. (30)

The structural shocks ϵτ,t and ϵg,t represent the tax and spending shocks that reflect unexpected,

exogenous, discretionary changes in taxes and government expenditures, whereas ϵy,t captures the

non-fiscal shocks that affect output. Equations (28) and (29) describe the government’s tax and

spending rules. Specifically, the rule (28) highlights that taxes may vary in response to changes in

output or to spending shocks. The rule (29) has an analogous interpretation for public spending.

In these rules, the parameters α1 and β1 potentially measure the automatic and government’s

systematic responses of taxes and government spending to changes in output, whereas α2 and β2

allow for interactions between tax and spending policies. Equation (30) relates changes in output

to changes in taxes and government expenditures, and to non-fiscal shocks. Finally, the terms ωτ ,

ωg, and ωy are scaling parameters.

The specification (28)–(30) can be expressed in the form of relation (26) as:ντ,t
νg,t
νy,t

 =
1

∆

 (1 + α1β2γ2 − β1γ2)ωτ (α2 + α1γ2 − α2β1γ2)ωg α1ωy

(β2 + β1γ1 − α1β2γ1)ωτ (1 + α2β1γ1 − α1γ1)ωg β1ωy

(γ1 + β2γ2)ωτ (α2γ1 + γ2)ωg ωy

ϵτ,t
ϵg,t
ϵy,t

 , (31)

where ∆ = (1 − α1γ1 − β1γ2). Here, the element θij of the marix (26) corresponds to the (i, j)

element of the matrix in (31) divided by ∆, whereas ϵ1,t = ϵτ,t, ϵ2,t = ϵg,t, and ϵ3,t = ϵy,t.
31

Blanchard and Perotti (2002) elaborate a set of identifying restrictions. This set fixes α2 = 0

such that taxes do not vary following a spending shock. It also calibrates α1 = 2.08 and β1 = 0

using institutional information about tax and transfer systems, where such information allows

to measure automatic adjustments of taxes and public spending rather than the government’s

systematic responses to fluctuations in output (see Blanchard and Perotti, 2002). Note that the

three restrictions, implying that θ12 = α1θ32, θ13 = α1θ33, and θ23 = 0, are placed on the subsystem

relating the reduced-form innovations to the structural shocks ϵg,t and ϵy,t, so that more restrictions

are imposed than to fulfill the sufficient condtion.32

31Recall that the identified subsystem implies that the structural shock ϵ1,t corresponds to the tax shock ϵτ,t. Also,
the shocks ϵ2,t and ϵ3,t are ordered such that they can be interpreted as a spending shock ϵg,t and a non-fiscal shock
ϵy,t.

32An alternative set of identifying restrictions invoked by Blanchard and Perotti (2002) imposes β2 = 0, α1 = 2.08,
and β1 = 0. These restrictions, implying that θ13 = α1θ33 and θ23 = 0, lead to the over-identification of the subsystem
allowing to trace the responses of the variables to a spending shock.
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Empirically, we place only one of the restrictions θ12 = α1θ32, θ13 = α1θ33, or θ23 = 0 at a

time, so that the subsystem linking the reduced-form innovations to the structural shocks ϵg,t and

ϵy,t fulfilled the sufficient condition. The first restriction θ12 = α1θ32 corresponds to the restriction

that taxes do not contemporaneously respond to a government spending shock (α2 = 0). The

second restriction θ13 = α1θ33 comes from the constraint α1 = 2.08 calibrated by Blanchard and

Perrotti (2002) and finally the last restriction θ23 = 0 imposes that the automatic and government’s

systematic responses of government spending to changes in output is zero (β1 = 0). The first and

the third restrictions allow to obtain an estimator of the automatic and government’s systematic

responses of taxes to changes in output (α1). Under the selected identifying restriction, we estimate

the structural parameters αi, βi, γi, ωj , and κeϵ,11,11 (for i = 1, 2 and j = τ, g, y) by minimizing

the function (27).33 Interestingly, the estimators of the parameter α1 measuring the automatic

and government’s systematic responses of taxes to changes in output is close and not significantly

different to the value calibrated by Blanchard and Perotti (2002) but seems at odds with high values

obtained by Mertens and Ravn (2014) and Mountford and Uhlig (2009). To ease comparisons, Table

3 presents the resulting estimates of the elements θij associated with system (31) and the fiscal

multipliers. As expected, the estimates of the parameters θ11, θ21, θ31, and κeϵ,11,11, and the tax

multiplier are virtually identical to those obtained from system (26). For the other parameters,

some estimates differ substantially across the various identifying restrictions. This translates into

a dynamic response of output after a government shock (see Figure 3) and a spending multiplier

(i.e. the dollar change in output occurring in quarter t + i resulting from a dollar increase in the

exogenous component of government spending) that highly depends on the nature of the restriction:

it is between 0.22 and 1.64 at impact, and it reaches a peak that ranges between 0.22 and 2.34 (see

Table 3). This suggests that the evaluation of the effectiveness of the spending policy represents a

challenging task.

6. Conclusion

In this paper, we first derived the sufficient condition for local, statistical identification of SVAR

processes through higher unconditional moments. The condition is solely related to the numbers of

structural shocks that display skewness and/or excess kurtosis. Furthermore, the condition establish

which structural parameters are identified and which are not. For practitioners, this yields useful

guidances about which structural parameters need to be restricted to achieve the identification of

the entire system.

33These estimates are reported in Appendix F.
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We then developed a tractable procedure to verify whether a SVAR process is identified, prior

to the estimation of the structural parameters. In particular, the numbers of structural shocks ex-

hibiting skewness and excess kurtosis correspond to the ranks of the third and fourth unconditional

moment matrices of the reduced-form innovations. A bootstrap procedure is designed to improve

the small-sample properties of these rank tests. The bootstrap version of the tests are virtually

free of size distortions, whereas existing tests with asymptotic distributions suffer from severe size

distortions even for large samples.
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Bocconi, Discussion Paper No. 276.

[50] Portier, F., and B. Delyon (2014), “Bootstrap Testing of the Rank of a Matrix via Least

Squared Constrained Estimation,” Journal of the American Statistical Association 109, pp.

160–172.

[51] Rigobon, R. (2003), “Identification through Heteroskedasticity,” Review of Economics and

Statistics 85, pp. 777–792.

32



[52] Robin, J.-M., and R.J. Smith (2000), “Tests of Rank,” Econometric Theory 16, pp. 151–175.

[53] Sargan, J. D. (1983), “Identification and Lack of Identification,” Econometrica 51, pp. 1605–

1633.

[54] Sims, C.A. (1980), “Macroeconomic and Reality,” Econometrica 48, pp. 1–48.

[55] Uhlig, H. (2005), “What Are the Effects of Monetary Policy on Output? Results from an

Agnostic Identification Procedure,” Journal of Monetary Economics 52, pp. 381–419.

33



Table 1. Empirical Sizes of Rank Tests: Kurtosis

Asymptotic Distributions Finite-Sample Distributions

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 0.70 0.10 0.00 0.00 0.00 0.00 10.12 5.00 0.99 10.43 4.93 1.09
200 0.00 0.00 0.00 0.00 0.00 0.00 9.74 5.14 1.23 9.75 5.19 1.21
500 0.00 0.00 0.00 0.00 0.00 0.00 9.81 4.91 1.01 9.86 4.87 1.00
1, 000 0.00 0.00 0.00 0.00 0.00 0.00 9.71 4.60 1.04 9.75 4.58 1.03
5, 000 0.00 0.00 0.00 0.00 0.00 0.00 9.84 4.88 1.02 9.83 4.89 1.03

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 1.19 0.53 0.08 0.37 0.07 0.00 9.90 4.98 0.93 9.90 4.98 0.93
200 1.05 0.38 0.04 0.33 0.06 0.00 10.65 5.67 1.19 10.65 5.67 1.19
500 0.68 0.21 0.02 0.36 0.12 0.00 9.88 5.08 1.15 9.88 5.08 1.15
1, 000 0.54 0.21 0.05 0.32 0.09 0.00 10.10 4.95 0.95 10.10 4.95 0.95
5, 000 0.36 0.10 0.02 0.32 0.08 0.02 9.71 4.76 0.95 9.71 4.76 0.95

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic and finite-sample distribu-

tions under the null hypothesis that rk[Ke
u] = r∗. The empirical sizes are evaluated for the bivariate specification

(1)–(2), where the parameters are set as follows: α1= −0.5, α2= 0.5 and ω1= ω2= 1. Also, the distributions are

ϵ2,t∼ N(0, 1), and i) ϵ1,t∼ N(0, 1) under r∗= 0 or ii) 1.291× ϵ1,t∼ t(5) under r∗= 1. For each parametriza-

tion, 10,000 simulated samples of size T are generated to compute the proportions of time that the Wald statistic

ĈRT
W

r∗ and the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Ke
u exceed the critical values. The asymp-

totic critical values are computed as shown in Appendix D. The finite-sample critical values are computed by the

bootstrap procedure elaborated in Section 4.2.
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Table 2. Empirical Powers of Rank Tests with Finite-Sample Distributions: Kurtosis

Excess Kurtosis = 1 Excess Kurtosis = 6

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 32.46 22.77 10.40 32.00 22.41 10.23 64.00 54.52 37.60 63.17 53.69 36.42
200 45.88 36.18 19.45 45.39 35.64 18.74 85.58 80.00 65.25 84.96 79.23 64.38
500 73.88 65.63 46.76 73.86 65.06 45.81 99.28 98.73 96.46 99.22 98.66 96.06
1, 000 93.20 89.67 78.58 93.20 89.41 78.41 100.0 100.0 100.0 100.0 100.0 100.0

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 18.96 12.57 3.90 18.96 12.57 3.90 53.18 44.34 23.81 53.18 44.34 23.81
200 32.72 24.31 10.27 32.72 24.31 10.27 80.78 74.44 55.78 80.78 74.44 55.78
500 99.09 98.58 95.55 99.09 98.58 95.55 99.09 98.58 95.55 99.09 98.58 95.55
1, 000 100.0 99.99 99.94 100.0 99.99 99.94 100.0 99.99 99.94 100.0 99.99 99.94

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions un-

der the null hypothesis that rk[Ke
u] = r∗. The empirical powers are evaluated for the bivariate specification

(1)–(2), where the parameters are set as follows: α1= −0.5, α2= 0.5 and ω1= ω2= 1. For r∗= 0, the dis-

tributions are: i) ϵ2,t∼ N(0, 1) and 1.118× ϵ1,t∼ t(10) when ϵ1,t exhibits an excess kurtosis of 1, and ii)

ϵ2,t∼ N(0, 1) and 1.291× ϵ1,t∼ t(5) when ϵ1,t exhibits an excess kurtosis of 6. For r∗= 1, the distributions

are: i) 1.118× ϵ2,t∼ t(10) and 1.118× ϵ1,t∼ t(10) when each shock exhibits an excess kurtosis of 1, and ii)

1.291× ϵ2,t∼ t(5) and 1.291× ϵ1,t∼ t(5) when each shock exhibits an excess kurtosis of 6. For each parametriza-

tion, 10,000 simulated samples of size T are generated to compute the proportions of time that the Wald statistic

ĈRT
W

r∗ and the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Ke
u exceed the finite-sample critical values,

where the latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Table 3. Parameter Estimates and Multipliers

System (26) System (31)
Parameter Estimates

Parameter θ23 = 0 θ32 = 0 θ12 = α1θ32 θ13 = α1θ33 θ23 = 0
θ11 0.0474∗∗∗ 0.0474∗∗∗ 0.0473∗∗∗ 0.0474∗∗∗ 0.0474∗∗∗

θ12 0.0026 −0.0005 0.0006† 0.0005 0.0036
θ13 0.0089∗∗ 0.0092∗∗ 0.0098∗∗∗ 0.0095† 0.0088∗∗

θ21 0.0001 0.0001 −0.0001 0.0004 −0.0001
θ22 0.0068∗∗∗ 0.0064∗∗∗ 0.0065∗∗∗ 0.0067∗∗∗ 0.0068∗∗∗

θ23 0.0000† 0.0023∗∗ 0.0019∗∗ −0.0007∗ 0.0000†

θ31 −0.0001 −0.0001 −0.0001 0.0001 −0.0001
θ32 0.0017∗∗∗ 0.0000† 0.0003 0.0022∗∗∗ 0.0017∗∗∗

θ33 0.0048∗∗∗ 0.0051∗∗∗ 0.0051∗∗∗ 0.0046∗∗∗ 0.0048∗∗∗

κeϵ,11,11 2.7995∗∗∗ 2.7867∗∗∗ 2.8284∗∗∗ 2.8135∗∗∗ 2.8114∗∗∗

Tax Multiplier
Quarter θ23 = 0 θ32 = 0 θ12 = α1θ32 θ13 = α1θ33 θ23 = 0

1 0.00 0.00 0.01 −0.01 0.00
4 0.05 0.05 0.07 0.06 0.06
8 0.24 0.24 0.26 0.25 0.24

Peak 0.61 0.61 0.62 0.63 0.60
[14] [14] [14] [14] [14]

Spending Multiplier
Quarter θ12 = α1θ32 θ13 = α1θ33 θ23 = 0

1 0.22 1.64∗∗∗ 1.28∗∗∗

4 −0.71 1.93∗ 1.24
8 −0.93 1.35 0.70

Peak 0.22 2.34∗∗∗ 1.76∗∗∗

[1] [3] [3]

Notes. Entries correspond to the estimates of the parameters of systems (26) and (31), and to the tax and spending

multipliers. The tax (spending) multiplier measures the dollar change in output at a given horizon that results from

a dollar decrease (increase) in the exogenous component of taxes (government spending). ∗, ∗∗, and ∗ ∗ ∗ indicate,

respectively, that the 90, 95, and 99 percent confidence interval does not include zero, where the confidence intervals

are computed from 5,000 bootstrap samples. † indicates that the parameter is constrained. Numbers between brackets

indicate the quarters in which the maximum value of the multiplier is reached.
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Figure 1a) contains the scatter plot of a simulated series with the following parametrization of equations (1) and (2) :

αd= −0.5, αs= 0.5, ωd= ωs= 1, ϵd,t∼ N(0, 1) and ϵs,t∼ N(0, 1). Figure 1b) is for the same parametrization

but when the impact matrix is multiplied by the orthogonal matrix Q defined in Section 2. Figure 1c) represents

the scatter plot with the same parametrization than Figure 1a) but for 1.291× ϵd,t∼ t(5) generating an excess

kurtosis equals to E[ϵ4d,t]− 3 = 6. Figure 1d) is for the same parametrization than Figure 1c) but when the

impact matrix is multiplied by the orthogonal matrix Q defined in Section 2. The simulated series are generated

from 10,000 draws.
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Figure 2. Dynamic responses following a tax shock. The solid lines are the dynamic responses of taxes, government

spending, and output to a negative, one standard-deviation, tax shock, which are computed under the restriction

θ23 = 0 (first panel) and θ32 = 0 (second panel). The dashed lines are the 95 % confidence intervals, which are

computed from 5000 bootstrap samples.
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Figure 3. Dynamic responses following a government spending shock. The solid lines are the dynamic responses of

taxes, government spending, and output to a positive, one standard-deviation, government spending shock, which

are computed under the restriction θ12 = α1θ32 (first panel), θ13 = α1θ33 (second panel), and θ23 = 0 (third panel).

The dashed lines are the 95 % confidence intervals, which are computed from 5000 bootstrap samples.

39



Supplemental Material

Appendix A presents the rank condition for the local, statistical identification of SVAR processes

with asymmetric structural shocks. Appendix B details the analytical partial derivatives involved

in the Jacobian matrices related to the rank condition. Appendix C derives the rank condition.

Appendix D contains the derivation of the asymptotic distribution of the rank test and a justification

of the bootstrap procedure when r∗ > 0. Appendix E documents the empirical sizes and powers of

rank tests for symmetry. Appendix F reports the estimates of the structural parameters involved

in system (30).

Appendix A: Identication under asymmetric structural shocks

The appendix elaborates the rank condition for a case which exploits only the skewness of the struc-

tural shocks. For this case, the relation between the reduced-form innovations and the structural

shocks is partitioned as:

νt =
(
Θs Θns

)( ϵs,t
ϵns,t

)
, (A.1)

where ϵs,t and ϵns,t contain the ms and (n−ms) asymmetric and symmetric structural shocks.

Here, the number of parameters to identify is η = n2 + ms because there are n2 and ms

parameters to identify in Θ and Sϵ. From the reduced form, ρ =
[
n(n+1)

2

]
+

[
n(n+1)(n+2)

6

]
since

there are n(n+1)
2 and n(n+1)(n+2)

6 distinct elements in Σν and Sν . The information contained in Sν

contributes to identify the parameters in Θs and Sϵ, whereas Σν contains specific information to

identify the parameters in Θns.

The sufficient rank condition holds when r = η. Under the short-run restrictions Rθns = q, the

rank condition is verified if:

rk[J+] = rk
[
J+
θs

J+
θns

J+
sϵ

]
= rk

Jσν ,θs Jσν ,θns Jσν ,sϵ

Jsν ,θs Jsν ,θns Jsν ,sϵ
0 R 0

 = η, (A.2)

where J+ is the augmented Jacobian matrix, J+
θs

=
[
J ′
σν ,θs

J ′
sν ,θs

0′
]′
, J+

θns
=

[
J ′
σν ,θns

J ′
sν ,θns

R′]′ ,
J+
sϵ =

[
J ′
σν ,sϵ J ′

sν ,sϵ 0′
]′
, and Jy,x = ∂y

∂x′ . Moreover, the vector σν vectorizes the lower triangular

part of the symmetric covariance matrix Σν , and the vector sν collects the distinct elements of the

coskewness matrix Sν . Finally, the vector θs stacks the columns of the matrix Θs in system (A.1),

the vector θns contains the elements of the matrix Θns and the vector sϵ includes the non-zero

elements of the skewness matrix Sϵ.
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When no restrictions are placed on the structural parameters (R = 0), the rank of J is given

by

rk[J ] = rk
[
Jθs Jθns Jsϵ

]
= rk

[
Jσν ,θs Jσν ,θns Jσν ,sϵ

Jsν ,θs Jsν ,θns Jsν ,sϵ

]
which is equal to r = rs + rns + rsϵ with rs = rk[Jθs ] = n × ms, rns = rk[Jθns ] = n(n+1)

2 −
ms(ms+1)

2 , and rsϵ = rk [Jsϵ ] = ms as we show below. Consequently, the entire structural system is

locally, statistically identified (η = r) when at least all, but one, structural shocks display non-zero

skewnesses. Also, whether or not η = r, the parameters involve in Θs and Sϵ are locally, statistically

identified through the information contained in Σν and Sν . Hence, if the structural shocks of

interest are asymmetric, then their effects are identified. When some restrictions are imposed

on the structural parameters (R ̸= 0), then the entire structural system is locally, statistically

identified when (η − r) linearly independent restrictions are imposed on the structural parameters

contained in θns. Thus, if the structural shocks of interest are symmetric, then their effects can

only be determined when (η − r) restrictions are placed on Θns.

Appendix B: Analytical derivatives involved in the Jacobian ma-
trices

This appendix presents the analytical partial derivatives involved in the Jacobian matrices for the

cases (A.2), (17) and (18). First, the partial derivatives of the second unconditional moments of

the reduced-form innovations with respect to the structural parameters are:

Jσν ,θi = 2D+
σ (Θ⊗ In)Υθi ,

Jσν ,sϵ = 0,

Jσν ,κe
ϵ

= 0,

where i = s, ns in (A.1), i = κ, nκ in (17), and i = ss, κκ, sκ, nsκ in (18). The vectorization

of the distinct elements of the second moments yields σν = D+
σ vec(Σν), where σν = vech(Σν),

D+
σ = (D′

σDσ)
−1D′

σ, and Dσ is the
(
n2 × n(n+1)

2

)
duplication matrix such that Dσσν = vec(Σν).

Using this vectorization, we obtain ∂σν
∂θ′i

= D+
σ

∂vec(Σν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

. Equation (11) leads to vec(Σν) = (Θ⊗

Θ)vec(In), so that
∂vec(Σν)
∂vec(Θ)′ = 2(Θ⊗In) (see Lütkepohl, 2007, p. 363). Also,

∂vec(Θ)
∂θ′i

= Υθi is a matrix

containing the values one and zero such that only the partial derivatives with respect to the elements

of the vector θi are selected. As an example, consider the relation (A.1) with n = 2 and ms = 1

(where the asymmetric structural shock is ordered first), then the (n2 × nms) selection matrix

corresponds to Υθs =

(
1 0 0 0
0 1 0 0

)′
and θs = vec(Θs). Moreover, ∂σν

∂s′ϵ
= D+

σ
∂vec(Σν)
∂vec(Sϵ)′

∂vec(Sϵ)
∂s′ϵ

,

where ∂vec(Σν)
∂vec(Sϵ)′

= 0 given that Σν is not a function of the skewnesses of the structural shocks.

Likewise, ∂σν
∂κe′

ϵ
= D+

σ
∂vec(Σν)
∂vec(Ke

ϵ )
′
∂vec(Ke

ϵ )
∂κe′

ϵ
with ∂vec(Σν)

∂vec(Ke
ϵ )

′ = 0.
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Next, the partial derivatives of the third unconditional moments of the reduced-form innovations

with respect to the structural parameters are:

Jsν ,θi = D+
s {(In2 ⊗ΘSϵ)[(In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′)⊗ In2)]Cn,n]

+[(Θ⊗Θ)S′
ϵ ⊗ In]}Υθi ,

Jsν ,sϵ = D+
s (Θ⊗Θ⊗Θ)Υsϵ ,

Jsν ,κe
ϵ

= 0,

where i = s, ns in (A.1) and i = ss, κκ, sκ, nsκ in (18). The vectorization of the distinct elements

of the third moments corresponds to sν = D+
s vec(Sν), where D+

s = (D′
sDs)

−1D′
s, and Ds is the(

n3 × n(n+1)(n+2)
6

)
matrix such that Dssν = vec(Sν). As an example, for a bivariate system with

n = 2, then:

Ds =



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


.

Using the above vectorization, we have ∂sν
∂θ′i

= D+
s

∂vec(Sν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

with ∂vec(Θ)
∂θ′i

= Υθi . Rewriting

equation (12) as vec(Sν) = [(Θ ⊗ Θ) ⊗ Θ]vec(Sϵ), then
∂vec(Sν)
∂vec(Θ)′ = (In2 ⊗ ΘSϵ)

∂vec(Θ′⊗Θ′)
∂vec(Θ)′ + [(Θ ⊗

Θ)S′
ϵ ⊗ In], where

∂vec(Θ′⊗Θ′)
∂vec(Θ)′ = (In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′) ⊗ In2)]

∂vec(Θ′)
∂vec(Θ)′ with

∂vec(Θ′)
∂vec(Θ)′ = Cn,n (see Magnus and Neudecker, 2007, pp. 208–209), and Cn,m is a (nm × nm)

commutation matrix implying that Cn,mvec(A) = vec(A′) for the arbitrary (n×m) matrix A. Note

that ∂sν
∂θ′i

= 0 for i = ns in (A.2) and for i = κκ, nsκ in (18), since Sν is not a function of the

structural parameters relating the reduced-form innovations to the symmetric structural shocks.

Furthermore, ∂sν
∂sϵ

= D+
s

∂vec(Sν)
∂vec(Sϵ)′

∂vec(Sϵ)
∂sϵ′

, where ∂vec(Sν)
∂vec(Sϵ)′

= (Θ ⊗ Θ ⊗ Θ) and ∂vec(Sϵ)
∂sϵ′

= Υsϵ is a

(n3 × ms) matrix selecting the partial derivatives with respect to the non-zero elements of sϵ. In

particular, for a system with n = ms = 2, then Υsϵ has values one for the (1,1) and (8,2) elements,

and zero elsewhere. For the system with n = 2 and ms = 1, then Υsϵ has values one for the (1,1)

element, and zero elsewhere. Moreover, ∂sν
∂κe

ϵ
= D+

s
∂vec(Sν)
∂vec(Ke

ϵ )
′
∂vec(Ke

ϵ )
∂κe

ϵ
′ , where ∂vec(Sν)

∂vec(Ke
ϵ )

′ = 0 given that

Sν is not a function of the excess kurtoses of the structural shocks.

Let us now examine the rank of the matrices Jσν ,θs , Jsν ,θns and Jsν ,sϵ . As illustration, consider

a system with n = 2, (
ν1,t
ν2,t

)
=

(
θ11 θ12
θ21 θ22

)(
ϵ1,t
ϵ2,t

)
(A.1)
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For this example, the Jacobian matrix of the derivatives of the covariance matrix with respect to

the parameters Θ is given by

Jσν ,θ =

2θ11 0 : 2θ12 0
θ21 θ11 : θ22 θ12
0 2θ21 : 0 2θ22

 .

where θ = vec(Θ). For a full rank matrix Θ, this matrix Jσν ,θ is of rank n(n+1)
2 and each n(n+1)

2 ×n

submatrix corresponding to the derivatives of Jσν ,θ with respect to a column of the matrix Θ is of

rank equals to n and this holds for ∀ n. Also, the Jacobian matrix of the coskewness Jsν ,θ with

respect to Θ for (A.1) is

Jsν ,θ =


3θ211sϵ,1,11 0 : 3θ212sϵ,2,22 0

2θ11θ21sϵ,1,11 θ211sϵ,1,11 : 2θ12θ22sϵ,2,22 θ212sϵ,2,22
θ221sϵ,1,11 2θ21θ11sϵ,1,11 : θ222sϵ,2,22 2θ12θ

2
22sϵ,2,22

0 3θ221sϵ,1,11 : 0 3θ222sϵ,2,22

 .

For a full rank matrix Θ, the Jacobian matrix Jsν ,θ of dimension n(n+1)(n+2)
6 ×n2 is of rank n×ms

which equals the rank of the matrix Jsν ,θs since Jsν ,θs = Jsν ,θΥθs . In the case above, for ms = 1 (for

instance when sϵ,1,11 ̸= 0 and sϵ,2,22 = 0), the matrix Jsν ,θs corresponds to the first two columns of

Jsν ,θ, whereas Jsν ,θns corresponds to the two last columns of Jsν ,θ. The rank of Jsν ,θs and Jsν ,θ is

equal to n×ms = 2. For ms = 2, Jsν ,θs = Jsν ,θ and the rank is n×ms = 4. For the general case,

rearranging the rows of the matrix Jsν ,θ corresponding to the k-th column vector θ•,k of the matrix

Θ, leads to the following n(n+1)(n+2)
6 × n matrix

J∗
sν ,θ•,k

=


B1k

B2k

. . .
Bnk

Ck

 sϵ,k,kk

where the matrix Ci is of dimension
(
n(n+1)(n+2)

6 − n2
)
× n for n > 2. The n × n matrices Blk

are given by Blk =
∂sν,l,l,j
∂θ′•,k

for k, l, j = 1, . . . , n and Ck contains the derivatives of sν,i,j,l respective

to θ′•,k for all i < j < l for i, j, l = 1, . . . , n. Note that the column rank of Jsν ,θ•,k is the same as

J∗
sν ,θ•,k

. Each matrix Blk has the term θ2lksϵ,k,kk on its diagonal except at the element l, k which

is 3θ2lksϵ,k,kk. The matrices Blk are then of full column rank for all θlk ̸= 0. Given that Θ is of

full rank, J∗
sν ,θ•,k

(and then Jsν ,θ•,k) is necessarily of full rank for sϵ,k,kk ̸= 0 and Jsν ,θ•,k cannot be

collinear with Jsν ,θ•,k for k ̸= l, sϵ,k,kk ̸= 0 and sϵ,l,ll ̸= 0. This shows that the Jacobian matrix

Jsν ,θ is of rank equals to n×ms. For the illustration with n = 2, we get

Jsν ,θ =

[
B11 B12

B21 B22

]
.
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where Blk are 2 × 2 matrices for k, l = 1, 2. For this case, n(n+1)(n+2)
6 − n2 = 0, so that there is

no matrix Ck. We see that for each submatrix Blk, the diagonal elements are function of θ2lksϵ,k,kk.

For a full rank matrix Θ, the first two columns corresponding to B11 and B21 are of full rank (when

sϵ,1,11 ̸= 0) and they cannot be colinear with the last two columns corresponding to B12 and B22

(when sϵ,2,22 ̸= 0).

For the Jacobian matrix Jsν ,sϵ , the rank can be easily shown. The expression (Θ ⊗ Θ ⊗ Θ) is

a square full rank matrix, so (Θ ⊗ Θ ⊗ Θ)Υsϵ is of the same column rank than Υsϵ , namely ms.

Since D+
s is a full column rank, D+

s (Θ⊗Θ⊗Θ)Υsϵ has a rank equals to ms.
34 For (A.1),

Jsν ,sϵ =


θ311 : θ312

θ211θ21 : θ212θ22
θ11θ

2
21 : θ12θ

2
22

θ321 : θ322

Υsϵ .

The rank of this matrix equals the rank of Υsϵ which equals ms. However, the rank of [Jsν ,θ Jsν ,sϵ ]

equals the rank of the matrix Jsν ,θ namely n×ms given that Jsν ,θ•,k × θ•,k = 3sϵ,k,kkJsν ,sϵ,k where

k indexes the column of the respective matrix. This holds for ∀ n for a full rank matrix Θ.

Finally, the partial derivatives of the fourth unconditional moments of the reduced-form inno-

vations with respect to the structural parameters are:

Jκe
ν ,θi = D+

κ {(In2 ⊗ΘKe
ϵ )(In2 ⊗ Cn,n2 ⊗ In)[(In4 ⊗ vec(Θ′))(In ⊗ Cn,n ⊗ In)× [(In2 ⊗ vec(Θ′)

+(vec(Θ′)⊗ In2)]Cn,n + (vec(Θ′ ⊗Θ′)⊗ In2)Cn,n] + [(Θ⊗Θ⊗Θ)Ke′
ϵ ⊗ In]}Υθi ,

Jκe
ν ,sϵ = 0,

Jκe
ν ,κ

e
ϵ

= D+
κ (Θ⊗Θ⊗Θ⊗Θ)Υκe

ϵ
,

where i = κ, nκ in (17) and i = ss, κκ, sκ, nsκ in (18). The vectorization of the distinct ele-

ments of the fourth moments is κeν = D+
κ vec(K

e
ν), where D+

κ = (D′
κDκ)

−1D′
κ, and Dκ is the

34If A is a full column rank matrix and B is conformable for the multiplication AB, the rk(AB) = rk(B).
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(
n4 × n(n+1)(n+2)(n+3)

24

)
matrix such that Dκκ

e
ν = vec(Ke

ν). For example, when n = 2, then:

Dκ =



1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1



.

Using the above vectorization, we have ∂κe
ν

∂θ′i
= D+

κ
∂vec(Ke

ν)
∂vec(Θ)′

∂vec(Θ)
∂θ′i

with ∂vec(Θ)
∂θ′i

= Υθi . Given that

equation (13) implies vec(Ke
ν) = [(Θ⊗Θ⊗Θ)⊗Θ]vec(Ke

ϵ ), then
∂vec(Ke

ν)
∂vec(Θ)′ = (In2⊗ΘKe

ϵ )
∂vec(Θ′⊗Θ′⊗Θ′)

∂vec(Θ)′ +

[(Θ′ ⊗ Θ′ ⊗ Θ′)Ke′
ϵ ⊗ In], where ∂vec(Θ′⊗Θ′⊗Θ′)

∂vec(Θ)′ = (In2 ⊗ Cn,n2 ⊗ In)[
(In4 ⊗ vec(Θ′))∂vec(Θ

′⊗Θ′)
∂vec(Θ)′ + [vec(Θ′ ⊗Θ′)⊗ In2 ]

]
∂vec(Θ′)
∂vec(Θ)′ , and, as shown above, ∂vec(Θ′⊗Θ′)

∂vec(Θ)′ =

(In ⊗ Cn,n ⊗ In)[(In2 ⊗ vec(Θ′)) + (vec(Θ′) ⊗ In2)]
∂vec(Θ′)
∂vec(Θ)′ and ∂vec(Θ′)

∂vec(Θ)′ = Cn,n. Note that ∂κe
ν

∂θ′i
= 0

for i = nκ in (18) and for i = ss, nsκ in (19), since Ke
ν is not a function of the structural pa-

rameters relating the reduced-form innovations to the mesokurtic structural shocks. Moreover,
∂κe

ν
∂sϵ

= D+
κ

∂vec(Ke
ν)

∂vec(Sϵ)′
∂vec(Sϵ)

∂sϵ′
, where ∂vec(Ke

ν)
∂vec(Sϵ)′

= 0 given that Ke
ν is not a function of the skewnesses of

the structural shocks. In addition, ∂κe
ν

∂κe
ϵ
= D+

κ
∂vec(Ke

ν)
∂vec(Ke

ϵ )
′
∂vec(Ke

ϵ )
∂κe

ϵ
′ , where ∂vec(Ke

ν)
∂vec(Ke

ϵ )
′ = (Θ⊗Θ⊗Θ⊗Θ)

and ∂vec(Ke
ϵ )

∂κe
ϵ
′ = Υκe

ϵ
is a (n4 × mκ) matrix selecting the partial derivatives with respect to the

non-zero elements of κeϵ . For example, when n = mκ = 2, then Υκe
ϵ
has values one for the (1,1) and

(16,2) elements, and zero elsewhere. For the system with n = 2 and mκ = 1, then Υκe
ϵ
has values

one for the (1,1) element, and zero elsewhere.

Similarly to the case with skewed structural shocks, we can show that rk[Jκe
ν ,θ] = n×mκ and

rk[Jκe
ν ,κ

e
ϵ
] = mκ for a full rank matrix Θ. In particular, the matrix Jκe

ν ,θ•,k has a form similar

to the matrix Jsν ,θ•,k with elements function of θ3lk on the diagonal of the block Blk. Moreover,

rk
[
Jκe

ν ,θ Jκe
ν ,κ

e
ϵ

]
= n × mκ by noting that Jκe

ν ,θ•,k × θ•,k = 4κeϵ,kk,kkJκe
ν ,κ

e
ϵ ,i where k indexes the

column of the respective matrix.
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Appendix C: Rank condition

Let us now show that rk[J ] = r = rs+rns+rsϵ , as mentioned in appendix A. We need the following

results for the rank of upper triangular block matrix :

Lemma 1 Given that A is a m× n matrix, B is a s× t matrix and C is a m× t matrix,

1.

rk(A) + rk(B) ≤ rk

([
A C
0 B

])
≤ rk(A) + rk

([
C
B

])
,

2.

rk(A) + rk(B) ≤ rk

([
A C
0 B

])
≤ rk

([
A C

])
+ rk(B).

In Appendix B, it is shown that rk [Jsν ,θ] = rk [Jsν ,θs ] = n × ms, rk [Jsν ,sϵ ] = ms and

rk [Jsν ,θ Jsν ,sϵ ] = n × ms. Moreover, each n(n+1)
2 × n submatrix of Jσν ,θ corresponding to each

column of the matrix Θ is of rank equals to n. Now, we need to know the rank of the matrix

of the derivative of the covariance matrix with respect to the parameters of the impact matrix

Jσν ,θs and Jσν ,θns . The rank of the first submatrix rk[J ′
σν ,θs

] = n(n+1)
2 − (n−ms)(n−ms+1)

2 and for

the second submatrix, the rank is equal to rk[J ′
σν ,θns

] = n(n+1)
2 − (ms)(ms+1)

2 . To understand this

result, consider that ms = 1. In this case, the n×n symmetric covariance matrix of the n-variables

resulting from the skewed structural shock is of rank equals to one. Since only one row (column) is

linear independent of the others rows (columns), this symmetric covariance matrix contains only n

independent elements. The n×n symmetric covariance matrix of the n-variables resulting from the

other structural shocks contains n−ms = n− 1 linear independent rows (columns) which implies

that this matrix has n(n + 1)/2 − 1 idependent elements. For instance, suppose that n = 3 and

ms = 1 (where ϵ1,t is the skewed structural shock), we get the following relationship:

Σms
ν =

σ1
ν,11 σ1

ν,12 σ1
ν,13

σ1
ν,12 σ1

ν,22 σ1
ν,23

σ1
ν,13 σ1

ν,23 σ1
ν,33.

 =

 θ211 θ11θ21 θ11θ31
θ21θ11 θ221 θ21θ31
θ31θ11 θ31θ21 θ231

 =

θ11θ21
θ31

 [
θ11 θ21 θ31

]
E(ϵ21t).

The rank of this matrix is equal to one because there is only one source of randomness; the skewed

structural shock ϵ1,t. Consequently, only one row is linear independent of the other ones. This row

contains n linear independent elements namely n(n+1)
2 − (n−ms)(n−ms+1)

2 = 6− 3 = 3. The elements

of the two other rows are linear combinations of this row. The rank of the symmetric covariance

matrix for the n-variables induced by the two other structural shocks, denoted Σn−ms
ν , is :

Σn−ms
ν =

σ2
ν,11 σ2

ν,12 σ2
ν,13

σ2
ν,12 σ2

ν,22 σ2
ν,23

σ2
ν,13 σ2

ν,23 σ2
ν,33

 .
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Since the rank of this submatrix is equal to the number of non-skewed structural shocks, there are

two linear independent rows which contain n(n+1)
2 − (ms)(ms+1)

2 = 6−1 = 5 independent elements for

any combination of two rows of the matrix Σn−ms
ν . In the case where ms = 2, there are two linear

independent rows for the matrix Σms
ν which implies n(n+1)

2 − (n−ms)(n−ms+1)
2 = 6−1 = 5 independent

elements and the matrix Σn−ms
ν contains n(n+1)

2 − (ms)(ms+1)
2 = 6−1 = 3 independent elements. As a

result, the rank of Jacobian matrix Jθs =
[
J ′
σν ,θs

J ′
sν ,θs

]′
equals n×ms by using rk[Jsν ,θs ] = n×ms

and rk[Jsν ,θs ] ≥ rk[Jσν ,θs ]. Now the rank of the Jacobian matrix Jθns =
[
J ′
σν ,θns

J ′
sν ,θns

]′
is equal

to the rank of the Jacobian matrix Jσν ,θns which is n(n+1)
2 − (ms)(ms+1)

2 since Jsν ,θns is a matrix

of zeros. Finally, the rank of the matrix Jsϵ =
[
J ′
σν ,sϵ J ′

sν ,sϵ

]′
is equal to the rank of the

matrix Jsν ,sϵ because only the coskewness matrix gives information about the third moment of the

structural shocks. The rank of Jsϵ is rk (Jsν ,sϵ) = ms. The rank of the complete matrix of the

Jacobian J respective to the structural parameters :

J =

[
Jσν ,θs Jσν ,θns 0
Jsν ,θs 0 Jsν ,sϵ

]
(C.1)

can then be shown to be equal to rk[J ] = r = rs + rns + rsϵ , where rs = n ×ms, rns = n(n+1)
2 −

ms(ms+1)
2 and rsϵ = ms. First, consider the rank of the following block diagonal submatrix[

Jσν ,θns 0
0 Jsν ,sϵ

]
. (C.2)

The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, namely

rk(Jσν ,θns) + rk(Jsν ,sϵ) =
n(n+1)

2 − (ms)(ms+1)
2 +ms.

Second, the rank of (C.1) equal the rank of (C.2) plus the rank of Jθs except if there exists at

least one linear combination of the columns from the matrix Jθs which corresponds to a column

of (C.2). In the following, it is shown that such linear combination does not exist for a full rank

matrix Θ. We show that such linear combination does not exist in two steps : i) there is no linear

combination of Jθs which yields a column of Jθns and ii) there is no linear combination of Jθs which

yields a column of Jsϵ . For i), consider the submatrix [Jθs Jθns ] which is

Jθ =

[
Jσν ,θs Jσν ,θns

Jsν ,θs 0

]
.

The rank of Jθ equal to the rank of the submatrix Jsν ,θs plus the rank of the submatrix Jσν ,θns .

Thus rk(Jθ) = n × ms +
n(n+1)

2 − (ms)(ms+1)
2 . Indeed, the rank of the bloc matrix Jθ is equal

to the rank of the matrix
[
J ′
σν ,θs

J ′
sν ,θs

]′
plus the rank of the matrix Jσν ,θns using the following

inequalities for the rank of upper triangular block matrix (Lemma 1):

rk(Jσν ,θns) + rk(Jsν ,θs) ≤ rk(Jθ) ≤ rk(Jσν ,θns) + rk

([
Jσν ,θs

Jsν ,θs

])
.
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Here, we have

rk(Jσν ,θns) + rk(Jsν ,θs) = rk(Jσν ,θns) + rk

([
Jσν ,θs

Jsν ,θs

])
.

For ii), we show that there is no linear combination of Jθs that yields a column of Jsϵ . In the

preceding section, we show that rk [Jsν ,θs Jsν ,θns Jsν ,sϵ ] = rk [Jsν ,θs ] which implies that it exists an

appropriated matrix A of dimension (n ·ms)×ms such that [Jsν ,θs ]A = Jsν ,sϵ since the submatrix

Jsν ,θns = 0 is a matrix of zeros. Define each column of the matrix A by Ai for i = 1, . . . ,ms.
35

For a matrix Θ of full rank, all n(n+1)
2 × n submatrices

[
Jσν ,θi,s

]
are necessarily of full rank so

there is no vector such as
[
Jσν ,θi,s

]
Ai = 0 for ∀i where i indexes the elements of the vector θs

corrresponding to the column i of the matrix Θs. This implies that the rank of the matrix J equals

n×ms +
n(n+1)

2 − (ms)(ms+1)
2 +ms. Given that

[
Jσν ,θi,s

]
Ai ̸= 0 for i = 1, . . . ,ms and that Jsν ,θs is

of full rank, there is no linear combination of the columns of the matrix Jθs that that corresponds

to a column of the matrix (C.2) since the Jacobian matrix respective of the structural parameter

Jθ is of full rank. This completes the proof.

The same results hold for the case which exploits only the fourth moments of the structural

shocks by modifying properly the dimension of the matrices and the notation.

For the general case

J =

Jσν ,θss Jσν ,θκκ Jσν ,θsκ Jσν ,θnsκ Jσν ,sϵ Jσν ,κe
ϵ

Jsν ,θss Jsν ,θκκ Jsν ,θsκ Jsν ,θnsκ Jsν ,sϵ Jsν ,κe
ϵ

Jκe
ν ,θss Jκe

ν ,θκκ Jκe
ν ,θsκ Jκe

ν ,θnsκ Jκe
ν ,sϵ Jκe

ν ,κ
e
ϵ


which equals

J =

Jσν ,θss Jσν ,θκκ Jσν ,θsκ Jσν ,θnsκ 0 0
Jsν ,θss 0 Jsν ,θsκ 0 Jsν ,sϵ 0

0 Jκe
ν ,θκκ Jκe

ν ,θsκ 0 0 Jκe
ν ,κ

e
ϵ

 (C.3)

First, consider the block diagonal submatrix containing the last subgroup of columnsJσν ,θnsκ 0 0
0 Jsν ,sϵ 0
0 0 Jκe

ν ,κ
e
ϵ

 . (C.4)

The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, rk(Jσν ,θnsκ)+

rk(Jsν ,sϵ) + rk(Jκe
ν ,κ

e
ϵ
) = n(n+1)

2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)
2 +ms +mκ.

By an argument similar to the one above, the rank of the submatrixJσν ,θss Jσν ,θκκ Jσν ,θsκ

Jsν ,θss 0 Jsν ,θsκ
0 Jκe

ν ,θκκ Jκe
ν ,θsκ

 (C.5)

35From Appendix B, Ai corresponds to the column of matrix θs divided by 3 times the respective measure of
skewness.
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equals the sum of rank of the submatrix
[
J ′
σν ,θss

J ′
sν ,θss

]′
and the rank of

[
Jκe

ν ,θκκ Jκe
ν ,θsκ

]
, using

Lemma 1 and the fact that rk [Jθκκ Jθsκ ] = rk
[
Jκe

ν ,θκκ Jκe
ν ,θsκ

]
= n × mκκ + n × msκ. The

rank of (C.5) is then n × mss + n × mκκ + n × msκ. Now, one needs to show that the rank

of the complete Jacobian matrix (C.3) is the sum of the rank of (C.4) and (C.5). First, the

rank of the submatrix containing (C.5) and
[
J ′
σν ,θnsκ

0′ 0′
]′

equals the rank of (C.5) plus the

rank of Jσν by the lower triangular block structure of this submatrix (by Lemma 1) which is

n×mss + n×mκκ + n×msκ +
n(n+1)

2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)
2 . By a proof similar to the

one to the case under asymmetry only, for a full rank matrix Θ, there is no linear combination of

(C.5) that can yield a column of the last two submatrices of (C.4), i.e. 0 0
Jsν ,sϵ 0
0 Jκe

ν ,κ
e
ϵ

 .

The rank of J is then equals to rk[Jθss ] + rk[Jθκκ ] + rk[Jθsκ ] + rk[Jθnsκ ] + rk[Jsν ] + rk[Jκe
ϵ
] =

n×mss + n×mκκ + n×msκ +
(
n(n+1)

2 − (mss+mκκ+msκ)(mss+mκκ+msκ+1)
2

)
+ms +mk.

Finally, Corollary 1 results from that there is no linear combination of (C.5) that can yield a

column of the last two submatrices of (C.4)

Appendix D: Asymptotic Distribution of the Rank Test

First, we derive the asymptotic distribution of the statistics ĈRT
LR

r∗ and ĈRT
W

r∗ . Under the

assumption in section 3.1 for Ke
ϵ , E[∥ϵt∥8] < ∞ and the estimator K̂e

u is a root-T consistent for the

n × n3 excess cokurtosis matrix Ke
u of the normalized reduced-form innovations. In this context,

the asymptotic distribution of K̂e
u is

T 1/2vec(K̂e
u −Ke

u)
L−→ N(0,Γ)

where Γ is finite.

Now, suppose that the matrix Ke
u is of rank r∗ ≤ n. The singular value decomposition of Ke

u

gives Ke
u = CΛD′ where Λ is a diagonal matrix with the singular values on the diagonal. Let

λ1, λ2, . . . , λn be the singular values of the matrix Λ ordered in decreasing values. For a matrix Ke
u

of rank equal to r∗, the first r∗ singular values are different from zero and the last n− r∗ singular

values are equal to zero. Thus

C ′Ke
uD =

[
C ′
r∗K

e
uDr∗ C ′

r∗K
e
uDn3−r∗

C ′
n−r∗K

e
uDr∗ C ′

n−r∗K
e
uDn3−r∗

]
= Λ.

The submatrix C ′
n−r∗K

e
uDn3−r∗ corresponds to the null space of Ke

u which is the object of interest

(see Al-Sadoon, 2017). We have

n∑
i=r∗+1

λ̂2
i = ∥vec(Ĉ ′

n−r∗K̂
e
u,cD̂n3−r∗)∥2 = ∥vec(Ĉn−r∗Ĉ

′
n−r∗K̂

e,b
u,cD̂n3−r∗D̂

′
n3−r∗)∥

2
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where Un−r∗ = Cn−r∗C
′
n−r∗ and Vn3−r∗ = Dn3−r∗D

′
n3−r∗ are the orthogonal projectors onto the

space spanned by the left and the right null space singular vectors.36

The vectorization of this matrix yields

vec
(
Ûn−r∗K̂

e
uV̂n3−r∗

)
=

(
V̂n3−r∗ ⊗ Ûn−r∗

)
vec(K̂e

u).

Since T 1/2vec(K̂e
u − Ke

u) → N(0,Γ), the convergence in probability of the orthogonal projectors

Ûn−r∗
P−→ Un−r∗ and V̂n3−r∗

P−→ Vn3−r∗
37 and Γ̂

P−→ Γ, this implies that

T 1/2
(
V̂n3−r∗ ⊗ Ûn−r∗

)′
vec(K̂e

u −Ke
u)

L−→ N (0, (Vn3−r∗ ⊗ Un−r∗) Γ (Vn3−r∗ .⊗ Un−r∗))

Statistics ĈRT
LR

r∗ and ĈRT
W

r∗ converge asymptotically to

Tr(Xr∗X
′
r∗) + op(1) = vec(Xr∗)

′vec(Xr∗) + op(1)

where Xr∗ = T 1/2
(
V ′
n3−r∗ ⊗ U ′

n−r∗

)
vec(K̂e

u − Ke
u). Both statistics have a limiting distribution

given by
∑t∗

i=1 δ
r∗
i Z2

i where δr
∗

1 ≥ . . . ≥ δr
∗

t∗ are the non-zero ordered eigenvalues of the matrix

(Vn3−r∗ ⊗ Un−r∗) Γ (Vn3−r∗ ⊗ Un−r∗) and {Zi}t
∗
i=1 are independent N(0, 1) variates. The limiting

distribution is then a weighted sum of t∗ independent chi-squared variables with one degree of

freedom and the weights are given by the non-zero eigenvalues δr
∗

i for i = 1, . . . , t∗. An estimator of

the cumulative distribution function is obtained using the estimated counterparts of the matrices

Un−r∗ , Vn3−r∗ and Γ and the c.d.f. of the corresponding weighted sum of Z2
i for i = 1, . . . , t∗ which

can be easily evaluated by simulation.

Now we show that the subvector ubr∗,t obtained by bootstrapping the vector ωb′
r∗,t = Ĉ ′

r∗ ût for

b = 1, . . . , B implies that λ̂b
i

P−→ λ̂i where λ̂b
i are the bootstrap estimators of the r∗ largest singular

values and λ̂i are the sample estimators. Suppose a vector z with the following relation with a

vector u:

zt = C ′ut

where C is orthonormal. We have the following relation for the excess cokurtosis

Ke
z = C ′Ke

u (C ⊗ C ⊗ C)

36Unlike to Robin and Smith (2000) and Bura and Yang (2011) but similarly to Portier and Delyon (2014), we
consider orthogonal projection matrices Un−r∗ and Vn3−r∗ . The orthogonal projection matrices are invariant to the
choice of a basis while the singular vectors in Cn−r∗ and Dn3−r∗ are uniquely defined only up to post-multiplication by
an orthogonal matrix in a case of a multiplicity of singular values. Moreover, the orthogonal projection is continuous
in the elements of the matrix, a necessary condition to guarantee the convergence in probability (see Dufour and
Valéry, 2012).

37See Al-Sadoon, 2017, Theorem 1.
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For the quadratic form of the excess cokurtosis

Ke
zK

e′
z = C ′Ke

u (C ⊗ C ⊗ C)
(
C ′ ⊗ C ′ ⊗ C ′)Ke′

u C = C ′Ke
u,cK

e′
u C.

By the eigenvalue decompositionKe
u,K

e′
u = CΛ2C ′ which impliesKe

zK
e′
z = Ξ = diag(λ2

1, . . . , λ
2
r∗ , 0, . . . , 0)

for a matrix Ke
u of rank r∗ with the eigenvalues in descending order, where the eigenvalues are the

square of the singular values λi. Thus, linear combinations of the normalized reduced-form inno-

vations ωr∗ = Ĉ ′
r∗ ût capture the excess cokurtosis of the vector of the normalized reduced-form

innovations where Ĉ∗
r are the first r∗ columns of Ĉ corresponding to the singular values λ1, . . . , λr∗ .

The subvector ubr∗,t is generated by bootstrapping the vector ω′
r∗,t = Ĉ ′

r∗ ût for b = 1, . . . , B. Thus,

for a consistent estimator of the excess cokurtosis K̂e
ub
r∗

of ubr∗,t for b = 1, . . . , B, a given matrix Ĉr∗

and by the continuity of the singular values, λ̂b
i(K̂

e
ub
r∗
K̂e′

ub
r∗
)

P−→ λ̂i(Ĉ
′
r∗K̂

e
uK̂

e′
u Ĉr∗) for i = 1, . . . , r∗.

Appendix E: Empirical sizes and powers of rank tests for symmetry

This appendix reports the empirical sizes and powers of rank tests for symmetry. Table E.1 shows

the empirical sizes. The Wald test with asymptotic distributions has empirical sizes that slightly

deviate from the nominal ones, and the likelihood-ratio test with limiting distributions has empirical

sizes that are substantially smaller than the nominal counterparts. In contrast, both the Wald and

likelihood-ratio tests with finite-sample distributions feature empirical sizes that are almost identical

to the nominal sizes, regardless of the number of observations in the sample.

Table E.2 displays the empirical powers. For the Wald and likelihood-ratio tests with finite-

sample distributions, the powers substantially improve as the sample size increases and as the

structural shocks become more skewed.
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Table E.1. Empirical Sizes of Rank Tests: Skewness

Asymptotic Distributions Finite-Sample Distributions

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 8.72 3.92 0.53 2.68 0.63 0.01 9.42 4.65 0.98 9.56 4.85 1.01
200 9.99 4.66 0.80 5.81 1.91 0.12 10.17 5.25 0.98 10.19 5.20 1.00
500 9.93 4.69 0.81 7.97 3.36 0.41 10.14 5.04 1.10 10.29 4.99 1.12
1, 000 9.73 4.63 0.70 8.65 3.94 0.52 9.82 4.91 0.92 9.87 4.90 0.92
5, 000 10.03 5.22 1.09 9.90 4.97 1.02 10.02 5.10 1.12 9.98 5.11 1.11

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 11.83 5.79 1.52 7.86 3.22 0.51 11.41 6.35 1.47 11.41 6.35 1.47
200 10.87 5.30 1.18 8.60 3.66 0.53 9.11 4.86 1.42 9.11 4.86 1.42
500 10.89 5.20 1.06 9.74 4.42 0.63 9.29 4.55 1.07 9.29 4.55 1.07
1, 000 9.97 4.82 1.03 9.45 4.36 0.86 8.39 4.26 1.02 8.39 4.26 1.02
5, 000 10.61 5.59 1.02 10.05 5.47 0.99 9.20 4.68 0.96 9.20 4.68 0.96

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic and finite-sample distributions

under the null hypothesis that rk[Su] = r∗. The empirical sizes are evaluated for the bivariate specification (1)–

(2), where the parameters are set as follows: α1= −0.5, α2= 0.5 and ω1= ω2= 1. Also, the distributions are

ϵ2,t∼ N(0, 1), and i) ϵ1,t∼ N(0, 1) under r∗= 0 or ii) 2.1755× ϵ1,t∼ N(1, 1) with probability 0.7887 and

2.1755× ϵ1,t∼ N(−3.7326, 1) with probability 0.2113 under r∗= 1. For each parametrization, 10,000 simulated

samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and the likelihood-

ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the critical values. The asymptotic critical values are

computed as shown in Appendix D. The finite-sample critical values are computed by the bootstrap procedure

elaborated in Section 4.2.
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Table E.2. Empirical Powers of Rank Tests with Finite-Sample Distributions: Skewness

Skewness = −0.5231 Skewness = −0.9907

r∗ = 0 r∗ = 0
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 20.71 11.44 2.42 20.88 11.46 2.53 72.05 46.66 10.43 69.95 44.82 10.53
200 41.02 26.70 8.50 40.58 26.40 8.15 99.35 96.85 74.28 99.23 96.33 67.90
500 82.98 71.28 42.66 82.82 70.93 41.24 100.0 100.0 100.0 100.0 100.0 100.0
1, 000 99.11 97.66 88.94 99.10 97.64 88.51 100.0 100.0 100.0 100.0 100.0 100.0

r∗ = 1 r∗ = 1
Wald LR Wald LR

T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 16.35 8.05 1.31 16.35 8.05 1.31 88.27 78.73 41.91 89.15 78.75 41.91
200 41.12 27.24 8.06 41.12 27.24 8.06 99.70 99.20 94.65 99.70 99.20 94.65
500 86.85 78.10 53.80 86.85 78.10 53.80 100.0 100.0 100.0 100.0 100.0 100.0
1, 000 99.49 98.65 94.17 99.49 98.65 94.17 100.0 100.0 100.0 100.0 100.0 100.0

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions under the

null hypothesis that rk[Su] = r∗. The empirical powers are evaluated for the bivariate specification (1)–(2), where

the parameters are set as follows: α1= −0, 5, α2= 0.5 and ω1= ω2= 1. For r∗= 0, the distributions are: i)

ϵ2,t∼ N(0, 1) as well as 1.6808× ϵ1,t∼ N(1, 1) with probability 0.5 and 1.6808× ϵ1,t∼ N(−1, 2.65) with

probability 0.5 when ϵ1,t exhibits a skewness of−0.5231, and ii) ϵ2,t∼ N(0, 1) as well as 2.1755× ϵ1,t∼ N(1, 1)

with probability 0.7887 and 2.1755× ϵ1,t∼ N(−3.7326, 1) with probability 0.2113 when ϵ1,t exhibits a skew-

ness of −0.9907. For r∗= 1, the distributions are: i) 1.6808× ϵ2,t∼ N(1, 1) and 1.6808× ϵ1,t∼ N(1, 1) with

probability 0.5 as well as 1.6808× ϵ2,t∼ N(−1, 2.65) and 1.6808× ϵ1,t∼ N(−1, 2.65) with probability 0.5

when each shock exhibits a skewness of −0.5231, and ii) 2.1755× ϵ2,t∼ N(1, 1) and 2.1755× ϵ1,t∼ N(1, 1)

with probability 0.7887 as well as 2.1755× ϵ2,t∼ N(−3.7326, 1) and 2.1755× ϵ1,t∼ N(−3.7326, 1) with

probability 0.2113 when each shock exhibits a skewness of −0.9907. For each parametrization, 10,000 simu-

lated samples of size T are generated to compute the proportions of time that the Wald statistic ĈRT
W

r∗ and

the likelihood-ratio (LR) statistic ĈRT
LR

r∗ associated with Su exceed the finite-sample critical values, where the

latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Appendix F: Estimates of the structural parameters

Table F.1 shows the estimates of the structural parameters involved in system (30).

Table F.1. Parameter Estimates
Parameter α2 = 0 α1 = 2.08 β1 = 0

α1 1.9409∗∗∗ 2.0800† 1.8359∗∗

α2 0.0000† −0.5711∗ 0.0728
β1 0.3797∗∗ −0.1482∗ 0.0000†

β2 −0.0015 0.0095∗ −0.0030
γ1 −0.0013 −0.0021 0.0002
γ2 0.0439 0.3235∗∗∗ 0.2516∗∗∗

ωτ 0.0474∗∗∗ 0.0473∗∗∗ 0.0474∗∗∗

ωg 0.0064∗∗∗ 0.0071∗∗∗ 0.0068∗∗∗

ωy 0.0050∗∗∗ 0.0048∗∗∗ 0.0048∗∗∗

κeϵ,11,11 2.8284∗∗∗ 2.8135∗∗∗ 2.8114∗∗∗

Notes. Entries correspond to the estimates of the parameters of system (30). ∗, ∗∗, and ∗ ∗ ∗ indicate, respectively,

that the 90, 95, and 99 percent confidence interval does not include zero, where the confidence intervals are computed

from 5,000 bootstrap samples. † indicates that the parameter is constrained. The restrictions α2= 0, α1= 2.08,

and β1= 0 imply that θ12= α1θ32, θ13= α1θ33, and θ23= 0.
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