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Abstract

This paper pursues two objectives. First, we determine the sufficient condition for local,
statistical identification of SVAR processes through the third and fourth unconditional moments
of the reduced-form innovations. Our findings provide novel insights when the entire system is
not identified, as they highlight which subset of structural parameters is identified and which
is not. Second, we elaborate a tractable testing procedure to verify whether the identification
condition holds, prior to the estimation of the structural parameters of the SVAR process. To
do so, we design a new bootstrap procedure that improves the small-sample properties of rank
tests for the symmetry and kurtosis of the structural shocks.
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1. Introduction

FEconometric methods for simultaneous equation models highlight the importance of verifying the
identification before proceeding to the estimation of the structural parameters. Namely, it is only
after verifying global and local identification that it becomes feasible to estimate all the structural
parameters. In this vein, this paper pursues two objectives. First, we derive a sufficient condition
for local, statistical identification of Structural Vector Autoregressive (SVAR) processes through
higher unconditional moments. Second, we develop a tractable method to verify whether a SVAR
process is identified, prior to the estimation of the structural parameters.

A first strand of the SVAR literature relies on the standard assumption that the structural
shocks are orthogonal and extracts the information contained in the unconditional covariances
of the reduced-form innovations to identify the structural parameters. As is well known, this
information is insufficient to identify all the parameters, so that short-run restrictions (e.g. Sims,
1980), long-run restrictions (e.g. Blanchard and Quah, 1989), and/or sign restrictions (e.g. Uhlig,
2005) need to be placed. If the restrictions are economically motivated, then the imposition of
enough restrictions gives rise to economic identification in the sense that the dynamic responses
become interpretable given that the structural shocks are economically meaningful. However, it is
not possible to verify jointly the validity of all the restrictions by applying formal statistical tests.

A second strand of the literature exploits the information related to certain statistical properties
of the data, in addition to the unconditional covariances of the reduced-form innovations (see
Kilian and Liitkepohl, 2017, Chapter 14). If this information is rich enough then this strategy
yields local identification, without resorting to any identifying restrictions, and, hence, the dynamic
response matrices are unique up to changes in sign and permutations of columns. It also produces
statistical (rather than economic) identification as nothing guarantees that the dynamic responses
and structural shocks have an economic interpretation. In this framework, it is possible to verify
the validity of certain classes of restrictions (e.g. short- and long-run restrictions) that would have
been required if only the unconditional covariances of the reduced-form innovations were taken into
account. This is convenient, for example, to formally select among alternative sets of restrictions
reflecting competing economic theories.

One method relying on the statistical properties of the data specifies the time-varying variances
of the structural shocks, while preserving the standard assumption that theses shocks are orthog-
onal. In this context, all the structural parameters involved in the SVAR are identified, without
placing any restrictions, when all but one, structural shocks display distinct time-varying variances.

Note, however, that the method requires to take a stand about whether the time-varying variances



are determined by fixing a priori the dates of the structural breaks, are specified via GARCH pro-
cesses, or are modeled by regime switching processes with Markov chains or smooth transitions (e.g.
Rigobon, 2003; Normandin and Phaneuf, 2004; Lanne et al., 2010; Liitkepohl and Netsunajev, 2014;
Liitkepohl and Schlaak, 2018).! Another approach is based on unconditional non-normal distribu-
tions of the structural shocks, but assumes that these shocks are independent. In this environment,
all the structural parameters are identified, when all but one, structural shocks are non-normally
distributed (see Comon, 1994; Eriksson and Koivunen, 2004; Herwartz, 2015; Gouriéroux et al.,
2017; Funovits, 2019).2 Observe, however, that the assumption of independent structural shocks is
more restrictive than the standard one stating that the shocks are orthogonal; that is, it is not al-
ways possible to recover independent structural shocks from non-normal reduced-form innovations
through linear transformations (see Kilian and Liitkepohl, 2017, Chapter 14).

A key goal of this paper is to determine the local, statistical identification conditions of SVAR
processes through the third and fourth unconditional moments of the reduced-form innovations.?
For this purpose, we assume that the structural shocks display zero cross-sectional covariances,
coskewnesses, and excess cokurtoses.? Note that this can be viewed as a natural extension to the
third and fourth unconditional comoments of the standard assumption that the structural shocks
are orthogonal. Moreover, our assumption admits the possibility that the structural shocks exhibit
time-varying conditional variances (although we do not need to specify the process governing these
variances) and is milder than the assumption stating that the shocks are independent.” In our
context, not only the covariances of the reduced-form innovations, but also the coskewnesses and
excess cokurtoses of these innovations can be exploited to identify extra structural parameters, and,
hence, to relax some of the identifying restrictions required when the information contained in the
third and fourth moments is ignored. Formally, we derive a sufficient (rank) condition for local,
statistical identification by extending the developments of Liitkepohl (2007, Chapter 9). We further

express this rank condition in terms of simple formulas, which exclusively involve the numbers of

'Lewis (2019) proposes an identification strategy based on time-varying volatility of general form without speci-
fying a particular parametric model.

2 Alternatively, Gouriéroux et al. (2018) show that all structural parameters are identified under the assumptions
that the reduced-form innovations are strong white noises and the structural shocks are mutually independent and
have finite moments of order four.

3Gospodinov and Ng (2015) also consider third- and fourth-order cumulants for the identification and estimation
of possibly nonivertible moving average models.

4We assume that the first four unconditional moments of the structural shocks exist. This assumption is commonly
invoked to demonstrate that the ordinary least square and maximum likelihood estimators of VAR parameters are
consistent and asymptotically normal, and that bootstrap inference is valid (see Liitkepohl, 2007, Chapter 3; Kilian
and Demiroglu, 2000). This assumption is also used in the specification of the pseudo likelihood function associated
with SVAR processes with independent structural shocks (e.g. Gouriéroux et al., 2017).

5See also Kilian and Liitkepohl, 2017, Chapter 14, page 514, for an example where the structural shocks display
zero cross-sectional covariances and excess cokurtoses but they are not mutually independent.



structural shocks displaying non-zero skewnesses and excess kurtoses. Given this information, it is
most easy for empirical researchers to determine whether or not the structural system is identified.

Our results regarding the identification of the entire structural system parallel the existing
results. That is, all the structural parameters are identified when all but one, structural shocks
exhibit non-zero skewnesses and/or excess kurtoses (see Comon, 1994 and Keweloh, 2020). Our
findings further provide novel insights when the entire SVAR process is not identified by the second,
third and fourth unconditional moments as they highlight which subset of structural parameters
is identified and which is not according to the sufficient condition. This leads to three important
implications. First, one can establish which structural subsystem is identified. Note that this
subsystem generates the dynamic responses of all the variables included in the SVAR process to
the structural shocks which are asymmetric and/or non-mesokurtic.® Second, one can determine
the structural parameters on which some restrictions must be placed on in order to achieve the
identification of the entire system. Third, one can test the validity of economic and statistical
restrictions (by treating these as overidentifying restrictions) that are commonly placed on the
structural subsytem that is identified through higher unconditional moments.

Another prime aim of this paper is to elaborate a tractable testing procedure to verify whether
the identification condition holds, prior to the estimation of the structural parameters involved in
the SVAR process. As stated above, verifying our identification condition requires the knowledge
of the numbers of asymmetric and non-mesokurtic structural shocks. At first glance, this may seem
problematic for practitioners, as the structural shocks become measurable only once the structural
system is estimated.” However, we demonstrate that the numbers of structural shocks displaying
non-zero skewnesses and excess kurtoses correspond to the ranks of the coskewness and excess
cokurtosis matrices of the reduced-form innovations, where these matrices are easily constructed
from sample estimates of the moments of the reduced-form residuals — without having to proceed
to the estimation of the structural system.

In this paper, we design a new bootstrap procedure to approximate the finite-sample distribu-
tions in order to test the ranks of the coskewness and excess cokurtosis matrices of the reduced-form
innovations. We show that this procedure allows to overcome size distortions. Specifically, both the

Wald and likelihood-ratio tests with bootstrap critical values feature empirical sizes that are almost

SFor briefness, throughout the text symmetric (asymmetric) and mesokurtic (non-mesokurtic) variables refer to
variables with symmetric (asymmetric) and mesokurtic (non-mesokurtic) distributions. Also, a symmetric (asym-
metric) distribution implies a zero (non-zero) skewness, whereas a mesokurtic (non-mesokurtic) distribution implies
a zero (non-zero) excess kurtosis.

7 As a result, existing studies do not verify whether the structural shocks are asymmetric or non-mesokurtic before
proceeding to the estimation of the structural system; see for example Moneta et al. (2013), Lanne et al. (2017),
Gouriéroux et al. (2017), Lanne and Luoto (2019) and Keweloh (2020). They instead verify whether the reduced-form
innovations are asymmetric or non-mesokurtic.



identical to the nominal ones, regardless of the number of observations in the sample. In sharp
contrast, the tests with asymptotic distributions have empirical sizes that are often substantially
smaller than the nominal counterparts, even for large samples.

Finally, we illustrate our developments by identifying the effects of fiscal policies on economic
activity; a topic that has received renewed interest in light of the recent Great Recession. For
this purpose, we perform the analysis on a trivariate SVAR process which includes taxes, public
spending, and output for the U.S. The empirical results for the Wald and likelihood-ratio bootstrap
versions for the rank tests indicate that all the structural shocks are symmetric and only one
structural shock is non-mesokurtic. Based on this information, the identification condition and the
estimation results reveal that the subsytem relating all the variables to the tax shock is identified. In
contrast, the subsytem relating the variables to the public spending shock is under-identified. Also,
we show that the restrictions invoked in the seminal study of Blanchard and Perotti (2002) imply
that the subsytem relating the variables to the spending shock becomes over-identified. We further
document that the effects of the spending shock highly depend on the nature of the identifying
restrictions used.

Recently, third and fourth unconditional moments are also be used to identify and estimate
the entire system of a SVAR. Lanne and Luoto (2019) have proposed a GMM estimator of SVAR
which primarly relies on the excess kurtosis of the structural shocks. As our proposed identification
condition, they do not assume the structural shocks to be mutually independent. The GMM
estimator proposed by Lanne and Luoto (2019) uses a sufficient number of moment restrictions
based on subset of cokurtosis conditions implied by independence. The assumption of zero cross-
sectional coskewnesses and excess cokurtoses of the structural shocks is not necessary to achieve
the local identification of the entire SVAR process. Indeed, a sufficient subset of these restrictions
related to the excess cokurtosis could be imposed for estimation purpose. However, it appears
difficult to select (statistically or economically) which excess cokurtoses should be set to zero and
which not. Keweloh (2020) assumes independent and non-Gaussian shocks to show that these
assumptions imply orthogonal, zero cosknewesses and zero excess-kurtoses structural shocks and
that these conditions are sufficient to locally identify structural parameters. This allows him to
introduce a parsimonious variant of the GMM estimator. These two recent papers are interested
by the GMM estimation of the entire SVAR process when all structural parameters are locally
identified by higher order moments. Moreover, neither of these two papers develops a testing
procedure to verify the identification conditions for the structural shocks.

This paper is organized as follows. Section 2 motivates, from a simple example, the local, statis-

tical identification through the third and fourth unconditional moments. Section 3 derives the rank



condition for the identification of the structural parameters involved in SVAR processes. Section
4 develops a tractable procedure to test whether the identification condition holds, before the esti-
mation of the structural parameters. Section 5 presents an application related to the identification
of the structural parameters determining the dynamic responses of output to fiscal shocks. Section

6 concludes.

2. Motivation

This section motivates how local, statistical identification of SVAR processes can be achieved
through higher unconditional moments. To do so, we provide a simple example in which the
information related to the fourth moments is exploited. Specifically, we consider the following

bivariate SVAR process (in innovation form):

Vyt = Qqlpt+ Wd€dt, (1)

Vp7t = as]/yzt + wsesvt' (2)

Here, vy ; and v, ; correspond to the reduced-form innovations associated with the logarithms of the
quantity and price of a good. The terms €;; and €5 are the structural demand and supply shocks
with the following unconditional scedastic structure: E [eit] =1, Elez;] = 1, and Elegyesy] = 0.
The parameters ag and «y are related to the slopes of the demand and supply curves, whereas the
parameters wy and wy are related to the shifts of the curves following the structural shocks.

System (1)—(2) involves four parameters that have to be identified: g4, as, wg, and ws. This

Uyt 011 012\ [€ar
+) = ) = Oe.
<l/p,t) (921 922) <Es,t> “

As well known, only three of the four structural parameters can potentially be identified through

system can be rewritten as:

the distinct elements of the unconditional covariance matrix of the reduced-form innovations:
E[Vit], E[Vg’t], and Elvy.vp,]. Importantly, the whole set of parameters could potentially be
identified through higher unconditional moments, reflecting, for example, asymmetric and non-
mesokurtic distributions of the structural shocks.

As a starting point, consider a parametrization of equations (1)—(2) for which the structural
shocks have zero skewnesses and excess kurtoses: ag = —.5, a5 = 0.5, wg = ws = 1.0,€4+ ~ N(0,1),
and €5; ~ N(0,1). Figure la) shows the scatter plot of simulated series generated from 10,000
draws for the parametrization with two gaussian shocks. For this case, the simulated reduced-form

innovations form a spherical cloud in the (v, 1) plan. In this context, shifts in the demand and



supply curves are as likely to generate the realizations of v, ; and v,;. Consider now a rotation of
O by an orthogonal matrix :
Q= ( cos(—7/4) sin(—7r/4))
—sin(—n/4) cos(—m/4)

such that QQ’ = I. Figure 1b) shows the scatter plot for the same generated shocks but with the
orthogonal transformation ©* = ©¢). The two scatter plots are indistinguishables. Consequently,
these two sets of realizations are not informative about the respective slope of the two curves. In
this context, possible identification strategies are to impose one short-run or long-run restriction
to identify ay (e.g. Sims, 1980; Blanchard and Quah, 1989). For example, the short-run restriction
012 = 0 implied that the four structural parameters ag, as, wg, and ws can be recovered.

In contrast, contemplate a parametrization where the shock €;; is symmetric, but displays a
positive excess kurtosis: 1.291 x €;; ~ t(5). The fourth moment of € translates into a large
positive excess kurtosis for v,; and a small excess kurtosis for v,; which generates pronounced
leftward and rightward shifts of the demand curve (relative to those associated with the supply
curve). These shifts of the demand curve imply movements along the supply curve, so that it
becomes possible to identify the slope of the supply, as. Figure 1c¢) shows that this occurs because
the extreme realizations of €;; compared to those of €. Figure 1d) shows the scatter plot for the
same generated shocks but with the orthogonal rotation ©* = ©¢). Now, the two scatter plots
have a different shape such that it becomes possible to identify the slope of the demand and the
supply curves. In other words, © is unique respective to all orthogonal matrices @ (up to changes in
sign and permutations of columns) in presence of excess kurtosis which implies that the structural
parameters are locally identified.

It is now well known that all structural parameters are locally, statistically identified when
€4 is non-normally distributed (see Common, 1994; Eriksson and Koivunen, 2004; Herwartz, 2015;
Gouriéroux et al., 2017). Our example suggests that a specific feature of the non-normality, namely
the existence of excess kurtosis, is sufficient to ensure the identification of the structural shocks
and their generated dynamics. For example, the impact matrix © is locally, statistically identified
when €4, exhibits a time-varying conditional variance (e.g. Normandin and Phaneuf, 2004; Lanne
et al., 2010; Liitkepohl and NetSunajev, 2014; Liitkepohl and Schlaak, 2018). This is because
conditional heteroskedasticity typically implies positive unconditional excess kurtosis (even for the
case of conditional mesokurtic distributions), and, as discussed above, it is precisely the presence
of the unconditional non-mesokurtic shock €4, that leads to the identification.

Taken altogether, this example suggests that exploiting the information of the structural shocks

related to higher unconditional moments help to identify additional parameters of a SVAR process



(relative to the case where only the second unconditional moments are considered).

3. Identification

In this section, we first present the SVAR specification. We then derive the sufficient condition of

local, statistical identification through higher unconditional moments.

3.1 Specification

We consider a structural system that takes the form of the following p-order SVAR process:

P
Dy =D+ Y Bray s+ e (3)

T=1
The (n x 1) vector x; includes the variables of interest. The (n X 1) vector €; contains the struc-
tural shocks. These shocks are assumed to display zero cross-sectional unconditional covariances,
coskewnesses, and excess cokurtoses. The (n x 1) vector @ incorporates n unrestricted intercepts.

2 unrestricted contemporaneous interactions among

2

The non-singular (n x n) matrix ® captures n
the variables. The (n x n) matrix ®, contains n* unrestricted dynamic feedbacks between the
variables.

The first four unconditional moments of the structural shocks of system (3) are obtained from

the following expressions:

ME = E[Et],
Y. = Elge),

4
)
6
7

(4)

(5)
Se = Eleey ® ey, (6)
K¢ = K.— K:=Elee; @€, @ ¢;] — E[é€, @ € ® &), (7)
where FE is the unconditional expectation operator, ® denotes the Kronecker product and &
are hypothetical structural shocks following a multivariate normal distribution. As is common
practice, the (n x 1) vector of expectations is fixed to M¢ = [ue;] = 0 and the (n x n) co-
variance matrix is set to ¥¢ = [o¢;5] = I (for i, = 1,...,n), where the latter expression im-
plies that all covariances are assumed to be null, o.;; = 0 (for i # j). Also, the (n x n?)
coskewness matrix concatenates n symmetric (n x n) submatrices: Se = [Sc1,...,S¢n], where
Sek = [Sekij] = [Elenp€ires]]. The n unconstrained skewnesses of the structural shocks may be
non-zero, Seirk 7 0, whereas all coskewnesses are assumed to be null, sc ;i = Scxij = 0 (for

i,j # k). Finally, the (n x n?) excess cokurtosis matrix, K¢, is the difference between the cokur-

tosis matrix, K., of the true structural shocks, ¢, and the cokurtosis matrix, K¢, associated with



hypothetical structural shocks, €, following a multivariate normal distribution. The excess cokur-
, K K

tosis matrix stacks n* symmetric (n x n) submatrices: K¢ = [K¢1,,..., K Cntr e Kl

e

E,l'fl’ PPN
€ — € — . . _ c Co e 16 3

where Ky = [He,k&ij} = [Elektert€it€jt) — El€xt€r1€i1€e]]. The n unconstrained excess kur-

toses may be non-zero, ¢, .. 7 0, whereas the excess cokurtoses are assumed to be null,

_ _ _ —0n8
ﬁi,kk,ii = ”S,kk,ki = ”f,kk,zj = Ki,ké,ij = 0.
Next, the reduced form associated with system (3) corresponds to the following p-order VAR

process:

p
e =19+ Z Trxi—r + vy, (8)

=1
where 'y = O®, I'; = ©®,, and the non-singular matrix © = ®~! captures the impact responses
of the variables of interest to the various structural shocks, whereas v includes the reduced-form

innovations. These innovations are related to the structural shocks as follows:
v = Og¢;. 9)
Also, the first four unconditional moments of the reduced-form innovations are:

M, = E[n],=0M,, (10)
Y, = Eny) =030, (11)
S, = Enw,ov] =050 0), (12)
K¢ = K,— Ky =E[n,0v,0v)] - Elnev,ey =0K(0 @6 6. (13)

Here, M, = ;] = 0 given that M, = 0 and X, = [0,,;;] = ©0’ since ¥, = I. Moreover, S, =

[5141’ SR SVJL] with SVJC = [Slak’,ij] = [E[Vk,tyi,tyji“ and K = [Kﬁ,na B Ks,lm B KS,nl? S Kﬁ,nn]
with K7, = (K] 145] = [Elvkaveviavie] — E[Dgveaie7;4]] where vy captures the true reduced-

form innovations and 7; contains hypothetical reduced-form innovations following a multivariate

normal distribution. As is well known, the symmetric matrix 3, contains w

Furthermore, the matrices S, and K¢ include n(n+1g)(n+2) and n(n+1)(72112)(n+3) distinct elements.

distinct elements.

The unconditional moments (11), (12) and (13) corresponds respectively to the second-order, third-

order and fourth-order cumulants of v;.

3.2 Identification

We now determine the conditions for local, statistical identification for the parameters associated

with the structural form (3) from the distinct elements associated with the reduced form (8). The

8Note that for the cokurtosis matrix K associated to a multivariate normal distribution, KE ke kke = 95 KE bk ii = 1y
e __ € __ e _ ..
and K¢ g ki = K kk,ij = Kekeiy = 0 (for £,4,5 # k).



third and fourth order moments are nonlinear functions of the structural parameters, so verifying
identification is more challenging. To ease the exposition, we first consider a specific case that
exploits only the excess kurtoses of the structural shocks.” Then, we comtemplate a general case
that allows for both the skewnesses and excess kurtoses of the structural shocks. For each case, we
elaborate the conditions required to identify the impact responses involved in © and the skewnesses
and/or excess kurtoses of the structural shocks included in Se and/or K¢ from the unconditional
moments of the reduced-form innovations contained in ¥,,, S, and/or K¢.'° For completeness, note
that, once these parameters are identified, it is trivial to identify the other structural parameters
included in ®; and ®, (where 7 = 1,...,p) through the relations ®; = ©~'I'g and &, = O7'T',.
We denote by 1 and p the number of parameters involved in the structural form and the number
of distinct elements in the reduced form. For illustration purposes, we begin by examining our first
case which exploits only the excess kurtoses of the structural shocks. On the one hand, the number
of parameters in the structural form is 7 = n? 4+ m,, given that there are n? and m,, parameters to
identify in the impact response and excess kurtosis matrices, © and K¢ — where m,, is the number
of non-mesokurtic structural shocks. On the other hand, from relations (11) and (13): there are

n(n+1 n(n+1)(n+2)(n+3
(2 ) 4l )(24)( )

Consider the partition of the relation (9) as:

independent equations to identify the structural parameters.

vi=(0n Ony) ( Crt > , (14)

€nk,t

where v; is a vector of the n reduced form innovations while €. and €,,.; contain the m, and
(n —my) non-mesokurtic and mesokurtic structural shocks. Intuitively, the information contained
in K: contributes to identify the parameters in ©, and K¢, whereas ¥, contains specific informa-
tion to identify the parameters in ©,,. In particular, consider the configuration where n = 2 and
my, = 1 (where €,; = €14 is non-mesokurtic). In this case, the five distinct elements involved in
K — which correspond to £, 11 1, = 9%15211,11, Ky1112 = 9%19215211,11, K122 = 9%19%155,11,11’
Ky 1292 = 911931,‘1211,11 and K7, 99 99 = 9‘211@711711 — contain information to identify the three struc-
tural parameters incorporated in O, = (011 021)/ and K¢. Also, the three distinct elements in 3, —
which are Op,11 = 0%1 + 9%2, Op,12 = 911021 + 912022, and Op22 = 9%1 + 9%2 — allow the identification
of the remaining two parameters ©,,, = (612 022)".

We next present the general case which takes into account both the skewnesses and excess

9The specific case that focuses exclusively on the skewness of the structural shocks is presented in Appendix A.
0Under local identification, the matrix © is unique up to changes in sign and permutations of columns.



kurtoses of the structural shocks. To do so, the relation (9) is partitioned as follows:

€ss,t

Vt:(ess Ok Osw @ns,‘i> Crrt . (15)

€sk,t

Ensk,t
Here, the subvectors €gs¢, €xnts €skt, and €pget contain, respectively, the mgs, Mg, Mgk, and
(m — mgs — My — Mgy) structural shocks that are exclusively skewed, only non-mesokurtic, both
asymmetric and non-mesokurtic, and both symmetric and mesokurtic. The numbers of skewed and
non-mesokurtic structural shocks are ms = mss + Mg, and m, = My + Mg,. In this environment,
n = n% + [ms + m,] and there are p = [n(n;l)} + |:n(n+1g(n+2):| + [n(nﬂ)(gf)(n%)] independent
equations involved by (11), (12) and (13) to identify these parameters. Intuitively, S, and K¢

contribute to identify the parameters in Oy, Ok, Ok, S¢, and K¢, whereas ¥, contains specific
information to identify the parameters in ©,g;. It is important to note that the number of reduced
form innovations that are only skewed, only non-mesokurtic, both asymmetric and non-mesokurtic,
or both symmetric and mesokurtic depends on the matrix ©. For instance, a reduced form inno-
vation vy could be individually symmetric (but to be co-skewed with one or more reduced form
innovations) while being function of two asymmetric structural shocks. At the opposite, the whole
vector of reduced form innovations could be asymmetric while only one structural shock is skewed
(mss = 1 and mg, = 0). For this reason, the empirical validation of the local identification condi-
tion cannot be based on testing procedures applied to individual reduced form innovations v;;. We

develop hereafter a testing procedure to verify whether the identification condition holds.

3.2.1 Rank Condition

In this section, we formally derive the rank condition and simple formulas which allow practitioners
to evaluate easily this sufficient condition. The rank condition r = 7 represents the sufficient
condition for the local, statistical identification of the entire structural system, where r corresponds
to the rank associated with the unconditional moment matrices of the reduced-form innovations.!!
Extending the developments of Liitkepohl (2007, Chapter 9), we derive this condition from the
ranks of the Jacobian matrices associated with the structural parameters to identify.

If it turns out that the entire structural system is not identified according to the sufficient
condition, then our approach further allows to establish which structural parameters are identified

and which are not. This gives rise to two important implications. First, it permits to assess which

HEor nonlinear system of equations, a sufficient condition for the local identification is that the Jocabian matrix is
of full colunm rank (see Dufour and Hsiao, 2008) but local identification is still possible using higher order derivatives
(see Sargan, 1983 and Donovon and Hall, 2018).

10



structural subsystem is identified. This subsystem generates the effects induced by the asymmetric
and /or non-mesokurtic structural shocks. Second, it enables to determine the structural parameters
for which some restrictions must be placed on in order to achieve the identification of the entire
system. This is required to recover the effects of the symmetric and mesokurtic structural shocks.
As far as we know, these key implications have never been examined in previous studies.

Again, we first consider the case which exploits only the excess kurtoses of the structural shocks.
As explained above, the number of parameters involved in the structural form is n = n?+m,. Also,

the rank associated with the reduced form is equal to the rank of the following Jacobian matrix:

J J Jo e
= o, Joy Jug] = |0 e res] (16)
Jf-if,ﬁ,; Jﬁﬁﬁnm Jf{f),ng
/
/ / / / / / / ! lé)
Here’ Jeﬂ‘i = [ O-V70N Jnl%’eﬁ] ? Jg”“‘”u = [JO.Vya’VLN J“is:ann] ? JH’S = [Jo'uaﬁfg JH57H€e] ) and Jy,x = 873?3/

Moreover, the vector o, vectorizes the lower triangular part of the symmetric covariance matrix
3., and the vector ¢, collects the distinct elements of the excess cokurtosis matrix K¢. Finally, the
vector 0 stacks the columns of the matrix ©, in system (14), the vector 6, contains the elements
of the matrix ©,, and the vector ¢ includes the non-zero elements of the excess kurtosis matrix
K¢.

The rank of the Jacobian matrix (16), r = rk[J], can be evaluated from the analytical deriva-

tives. 12

From these derivatives, we deduce simple formulas to evaluate the rank r, which can
be easily assessed from the number of variables involved in the system, n, and the number of

non-mesokurtic structural shocks, m,. Specifically, the rank corresponds to the sum of three
n(n+l)  mg(met1)
2 2

components: r = 7 + rpx + Tre, With 7o = 7k[Jp, ] = n X my, T = 1k[Jy,, ] = ,
and rge = 1k [J,.;g] = my. We show in Appendix C that the rank of the matrix J is equal to the
SUm 7y + T + Tie for all admissible impact matrix ©.

The components r, = n x my and 74, = m, reveal that the information contained in the
second and fourth moments of the reduced-form innovations, ¥, and K, allows to identify all the
n X m, elements of the matrix ©, relating the reduced-form innovations to the non-mesokurtic
structural shocks, as well as all the m,, non-zero elements of the excess kurtosis matrix K¢. The
intuition for this result can be gained from the two following features. First, rk[Jce o,.] = n X my
and rk[J,.;lc;y,ig] = my, but rk [JKS,HH Jng,fgg] = n x mg. This implies that the excess cokurtosis
matrix K, identifies the elements of ©, and K¢ jointly, but not separately. To illustrate this,

consider the configuration where n = 2 and m,, = 1 (where €,; = €;; is non-mesokurtic), so that

O, = (911 921)/. In this context, the five distinct elements involved in K{ — which correspond

2The derivatives are relegated in Appendix B.
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to ry 1101 = 9111’12,11,11 K112 = 9%1921*5211,117 Kp11,22 = 9%1931“211,11: Ky 12,22 = 91195’1’*5,11,11’ and
Ky 9299 = 9‘211/4211’11 — identify the parameters 611, 621, and ¢ ;4 1; jointly, but not individually.
Second, Jy, 9, # 0 whereas J,, e = 0. This implies that the covariance matrix ¥, disentangles
the parameters involved in O, from those contained in K¢, so that it becomes possible to identify
individually each parameter in O, and K¢. Coming back to the previous example, the three distinct
elements in ¥, — which are op1l = 9%1 + 0%2, Opl12 = 011621 + 012022, and Op22 = 9%1 + 0%2 —
disentangle the parameters 611 and 651 from r¢;; 1, given that the variances and covariance are
related to 611 and 651 but not to /'i?ll’ll.

"("; D m”(rg”ﬂ) indicates whether the remaining information contained

The component r,, =
in the second moments of the reduced-form innovations, 3, allows to identify all the n x (n —m,)
elements of the matrix ©,, relating the reduced-form innovations to the mesokurtic structural

shocks. The intuition for this result is obtained from the following features: Jj = 0 and

5:Ons
Joy .00, 7 0. This implies that only the information captured in ¥,, independent of that already
used to identify O, can be exploited to identify the parameters included in 0©,,,. More formally,
the covariance matrix of the reduced-form innovations can be rewritten as the sum of ¥, = X'~ +
Ynoms = 0,0 + 0,.0),.. The matrix X'~ corresponds to the contribution of the n — m,
mesokurtic structural shocks. This n x n matrix is symmetric but of rank equals n — m,. This
means that n — m, columns (or rows) are linearly independent. For any of the n — m, linearly

independent columns of the symmetric matrix 377"+ the number of independent elements equals

to n(n2+1) . m,{(n;,ﬁ-l).

Our findings parallel the existing results. These results highlight that, under the more restrictive
assumption of independent structural shocks, all the structural parameters are locally, statistically
identified when at least all, but one, structural shocks are non-normally distributed (see Comon,
1994; Eriksson and Koivunen, 2004; Herwartz, 2015; Gouriéroux et al., 2017; Keweloh, 2020).
Our findings state that the entire structural system is locally, statistically identified when all but
one, structural shocks are non-mesokurtic. Specifically, when all structural shocks exhibit excess
kurtosis, m, = n, then all the structural parameters are identified as n = r = n? + n — where
n=n’>+me=n>4+nand r = 1.+ e + Tre, With rg = n?, e = 0, and rke = n. When all,
but one, structural shocks are non-mesokurtic, m, = n — 1, then all the structural parameters are
identified as n = r = n? + n — 1, where r, = n(n — 1), rpx = n, and The =n — 1.

Importantly, our approach further provides insights when the entire structural system is not
identified. In particular, as already explained above, the moments 3, and K allow to locally iden-
tify the n x m,, structural parameters included in ©, and the m,, distinct elements involved in K¢.

In general, this means that the structural parameters in m, arbitrary columns of © are identified.
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For example, system (14), v, = (@,i @n,@) € with ¢ = (e,i,t em,t)l, orders the structural shocks
in a way that the parameters in the first m, columns are identified. Alternatively, the system
Vv = (@m @,{) €; with €f = (enm e,{,t)/ changes the ordering of the structural shocks, such that
the parameters in the last m, columns are identified. For a given ordering of the structural shocks,
the subsystem relating all the reduced-form innovations to the non-mesokurtic structural shocks is
identified.'® This subsystem traces the effects generated by the structural shocks displaying non-
zero excess kurtoses. The intuition for this result can be gained from the two following features.
First, rk[Jee 9,.] = n x my and rk[Jee xe] = my, but rk [J,ﬂgygﬁ ng,,{g] = n x m,. This implies that
the excess cokurtosis matrix K identifies the elements of ©, and K¢ jointly, but not separately.
However, by considering the information in the covariance matrix ¥, rk [J@N Jﬁg] =N X Mg +My,
which is a sufficient condition to identify all structural parameters included in ©, and the m,
distinct elements involved in K¢. This comes from the fact that the derivatives of upper submatrix
Jo, 0. of Jp, depend on the expression X7'* defined above which is only a function of ©, allowing
to disentangle the elements of ©, from those of K¢. Moreover, it can be shown that the matrix
[Jgﬁ J,ig} does not depend on the unidentified parameters ©,,., so the identification of the elements
of ©, and K¢ is invariant to the unidentified elements of the matrix ©,,,. In the next section, we
present a simple method to estimate the matrix ©, based on the singular value decomposition of
the coskewness and/or excess cokurtosis matrices of the reduced-form innovations.

The under-identification of the entire structural system occurs when the moments ¥, do not
permit to identify all the n x (n — m,) elements contained in 0. As a result, certain restrictions
on these structural parameters must be imposed. For illustration purposes, consider the following

(linear) short-run restrictions R, = ¢. In this context, the rank condition holds when:

JUV,GK Ja,,ﬁmi Ja,,,fig
rk[J ) =rk [Jy Ji o JE] =rk | Jecor Jrgbue Ingwe| =1 (17)
0 R 0
/ !/
where J 7 is the augmented Jacobian matrix, J(;: = {nggﬁ Tie 0, 0’} ,J'tm = {J{,V’em Jre o R’] ,
and J,;E = [Joyme Jrene O ]/. The rank condition (17) states that (n — r) linearly independent

restrictions on 6, are needed to ensure the local identification of the entire structural system.
Hence, if the structural shocks of interest are mesokurtic, then their effects can only be gauged
when (1 — r) restrictions are placed on 6,,. In expression (17), the short-run restrictions imply

(n — r) constraints on the impact responses of the variables to the mesokurtic structural shocks.

13In practice, the ordering is implicitly determined by the analyst’s selection of the parameters K¢ i1, (capturing

the non-zero excess kurtosis of the structural shocks) to be estimated. For instance, if K¢ ;; ;; # 0 with i =1,...,m,
are estimated then the parameters in the first m. columns of © are identified, whereas if the ¢, ;; # 0 with
t=(n—mg+1),...,n are estimated then the parameters in the last m, columns are identified.
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It is straightforward to show that relevant long-run restrictions imply (7 — r) constraints on the

dynamic responses (evaluated over an infinite horizon) of the variables to the mesokurtic shocks.
We now establish a proposition providing the rank condition for the identification of the struc-

tural parameters for the general case where the structural shocks display skewnesses and /or excess

kurtoses.

Proposition 1 For a full rank matriz © given the unconditional moments of the reduced-form
innovations, ¥,, Sy, and K&, a sufficient condition to the system of equations (11)-(13) to have a

locally unique solution is

Tk:[‘]] = Tk [Jess Jenm Jesm Jgnsn JSE JN?]
JJU7955 JU'mGnm Jo'uaesm ‘]Uuﬂnsn O 0
= Tk ']51/7953 0 Jsuyesn 0 JSU7S€ 0 = 777 (18)
0 Jnﬁ,é’,m J,‘»c,*i,@s,.€ 0 0 Jnf‘,,ﬁ‘g

where the vector 05 stacks by columns the n X mgs parameters involved in the matriz Oy of system
(15), the vector 0, contains the n X my, parameters of the matrix ©y,, the vector O, includes the
n X Mgy, parameters of the matriz Oy, the vector Oy, incorporates the n X [n— (Mgs + Mg + Mgy )]
parameters of the matriz © ., the vector s, collects the distinct elements of the coskewness matriz
Sy, the vector s¢ includes the non-zero elements of the skewness matriz Se and n = n? + mg + m,

is the number of structural parameters to identify.

Appendix C shows that rk[J] = r with © = g + rex + Tsx + Tner + T's, + Tre, Where ry; =

rk[Jo..] =n X Mgs, T = Tk[Jp,.,.| =1 X My, s = Tk[Jp,.] =1 X Mg,

n(n+1) (mss+mnn+msn)(mss+mnn+msn+1)
2 2 » T'se

rk [Jﬁg] = m,."* In this context, Proposition 1 has three implications. First, the entire struc-

= = rk[Js] = ms, and ree =

nsﬁ]

Tnse = Tk[Jp

tural system is statistically identified up to changes in sign and permutations of columns, that is
n = r, when all but one, structural shocks exhibit non-zero skewnesses and/or excess kurtoses.
Second, whether or not 1 = r, the subsystem relating all the reduced-form innovations to the asym-
metric and/or non-mesokurtic structural shocks is statistically identified up to changes in sign and
permutations of columns, given that the information contained in ¥,, S, and K always allows to
recover the structural parameters involved in Oy, Ok, Ok, Se, and K. This result is stated in

the following corollary.

Corollary 1 For a full rank matriz © given the unconditional moments of the reduced-form inno-

vations, ¥, Sy, and K¢,

rk [Jgss Jo.. Jo.. Js. Jng] = [rss + Trow + Tsx] + [Tsc + Tie] (19)

4 The analytical derivatives involved in the Jacobian matrix are detailed in Appendix B.
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and [rss + Thx + Tor] + [Tse + The] = [0 X Mgs + 1 X My + 1 X M| + [ms +my] the numbers of
structural parameters involved in Ogs, Oy, Oy, Se, and K. Consequently, the subsystem relating
all the reduced-form innovations to the asymmetric and/or non-mesokurtic structural shocks is
statistically identified up to changes in sign and permutations of columns. Moreover, the matrices

of derivatives in (19) do not depend on the unidentified structural parameters in O,sy.

This result follows directly from Appendix C. Corollary 1 implies that the structural param-
eters involved in Ogg, Ok, Osk, Se, and K¢ can be estimated even if the parameters in the matrix
Onsk are unidentified and the effects induced by the asymmetric and /or non-mesokurtic structural
shocks can be recovered.

When some restrictions are placed on the structural parameters (R # 0), these restrictions are
required if the remaining information captured in ¥, does not allow to identify all the structural
parameters contained in O,s; — that is 75 < 1 X [0 — (Mgs + Mk + Mgy)]. In this environment,
the next corollary states that the entire structural system becomes locally, statistically identified

under short-run restrictions if (n — r) linearly independent restrictions are imposed on O,,.

Corollary 2 For a full rank matriz © given the unconditional moments of the reduced-form in-
novations, ¥,, Sy, and K¢, a sufficient condition to the system of equations (11)-(13) to have a
locally unique solution is

Jo. Jo Jo. J
+ —_ 955 6K4K, GSK GHSK € —
rklJTT =k gt et 0t RS o o | T

where the matriz R forms the short-run restrictions Rf,sc = q.

Overall, these results reveal that the rank condition can be readily evaluated from the number
of variables involved in the system, n, and the numbers of asymmetric and/or non-mesokurtic

structural shocks, mgs, Mk, and Mmg.

4. Testing Procedure

In this section, we elaborate a testing procedure to verify the symmetry and excess kurtosis of the
structural shocks, prior to the estimation of the SVAR process. Specifically, we develop a tractable
procedure to verify whether the rank condition hold by assessing the numbers of asymmetric and /or
non-mesokurtic structural shocks. We then outline a bootstrap procedure to improve the small-
sample properties of rank tests designed to verify the numbers of structural shocks displaying

non-zero skewnesses and/or excess kurtoses.
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4.1 Verification of the Rank Condition

As explained above, the rank condition can be verified from the numbers of asymmetric and/or
non-mesokurtic structural shocks. However, the structural shocks become measurable only once
the SVAR is estimated.!® To circumvent this problem, we develop a method to test the number of
asymmetric and/or non-mesokurtic structural shocks, which relies exclusively on the reduced-form
innovations — where the latter can be evaluated from the reduced form (8) before the estimation of
the structural form (3). Specifically, the number of skewed structural shocks, ms, corresponds to the
rank of the coskewness matrix of the reduced-form innovations, S,,. To see this, note that expression
(12) implies that 7k[S,] = rk[Se] given that © is a non-singular matrix and, as a result, (0’ ® ©’) is
a full-rank matrix. Also, rk[S¢] = ms because the assumption of zero cross-sectional coskewnesses

of the structural shocks implies that the quadratic form of the corresponding skewness matrix is
2

SeSL = diag (53,1,11 o 82, m), and st iy 7 0only for i =1,...,ms when m; structural shocks
are skewed.

Analogously, the number of non-mesokurtic structural shocks, m,, is given by the rank of
the excess cokurtosis matrix of the reduced-form innovations, Kf. That is, equation (13) im-
plies that rk[K¢] = rk[K¢] given that O is a non-singular matrix. Also, rk[K¢] = m, since
the assumption of zero cross-sectional excess cokurtoses of the structural shocks leads to K¢KE' =
diag (k11110 -+ (K pnnn)?) , and (1{5““)2 # 0 only fori=1,...,m,.

Based on the arguments developed above, we present a proposition to determine the number of

structural shocks displaying either non-zero skewnesses, excess kurtoses, or both.

Proposition 2 Given the unconditional third and fourth moments of the reduced-form innova-
tions, S, and K¢, the full rank of the impact matriz © and the assumption of zero cross-sectional
coskewnesses and excess cokurtoses of the structural shocks imply that the number of asymmetric

and/or non-mesokurtic structural shocks, mss + My + Mgy, is equal to the rank of the matrix
v, =(S, Kg).

Proposition 2 is obtained as follows. First, equations (12) and (13) are used to highlight that
rk[W,] = rk[¥] with ¥, = (6S.(0'®0©’) OK{(O®' ®6' ®0')) and ¥, = (S K¢), given

Y5 Empirically, asymmetric (either postive or negative skewness) and leptokurtic behaviors have been extensively
documented for stock and bond returns as well as for exchange rates and commodity prices (see for example, Clark,
1973; Boothe and Glassman, 1987; Bekaert and Harvey, 1997; Fujiwara et al., 2013). Likewise, positive excess kurtosis
have been detected for several macroeconomic series, including indicators related to the economic activity — e.g. real
GDP, the components of the real aggregate expenditure, industrial production, and unemployment — as well as a
variety of indices of the cost of living — e.g. GDP deflator and CPI (see for example, Blanchard and Watson, 1986;
Kilian, 1998; Bai and Ng, 2005; Lanne et al., 2017; Gouriéroux et al., 2017; Lanne and Luoto, 2019 and Keweloh,
2020). Note that the studies just reported highlight the existence of skewness and/or excess kurtosis for the variables
of interest or for the reduced-form innovations related to these variables, but never for the structural shocks.
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that © is a non-singular matrix. Then, rk[U.] = mss + Mmyx + Mg, because the assumption of
zero cross-sectional coskewnesses and excess cokurtoses of the structural shocks leads to WU U =
diag (53’1711 + (55,11,11)2 o 82 n + (KBS ppnn)?) , and sfzu—k(mguu)Q # 0 for the mg, structural
shocks displaying exclusively non-zero skewnesses, the my, shocks exhibiting only non-zero excess
kurtoses, and the mg, shocks featuring both non-zero shewnesses and excess kurtoses.

In summary, the ranks of S,, K:, and ¥, allow to determine mg, my, and mgs + My + Msx
before the estimation of the structural form (3). Then, the numbers of structural shocks displaying
exclusively non-zero skewnesses, ms, excess kurtoses, my,, and both, mg,, are readily deduced —

given that mg = Mg + Mee and My = My + M. 0

4.2 Bootstrap Procedure

The objective is to develop a strategy to test the rank of the coskewness and excess cokurtosis
matrices. Testing the rank of S, and K, involves the computation of variance-covariance matrix of
the null space of theses matrices which is not of full rank, an assumption required in most of rank

17,18 For these reason, we proceed with the rank test proposed by Robin and Smith (2000)

tests.
which does not require this assumption.

Let us define the estimate of the normalized reduced-form innovations corresponds to u; =
Q~10,, where 0y represents the OLS residuals of the reduced form (8) and Q is a lower triangular
matrix obtained from the Cholesky decompostion of the estimated covariance matrix of the OLS
residuals; i.e. fll, = Q€. The rank test to determine Mg, My, OF Mg+ My + My uses the following

likelihood-ratio (LR) and Wald (W) statistics:**

n

CRTEY — (T —p) > In(1+ D), (20)
i=r*41
——W n ~
CRTT* = (T _p) Z )‘z2a (21)
i=r*+1
where 5\1 are the estimates of the singular values of the matrix S,, K¢, or ¥, (with 5\1 > ... >

16Specifically, msy is determined from mss + Mk + M = (Mms — Msr) + (M — M) + Msw, wWhere Mmgs + Myw +
mee = rk[U,], ms = rk[S,], and m,. = rk[K;]. Then, mss and my. are determined from mss = ms — ms, and
My = My — M-

"The null space of a m x n matrix A is the set of all vectors 2 such that N'(A) = {z € R"|Az = 0}.

18See for example Kleibergen and Paap (2006, Assumption 2) and the review of existing rank tests by Camba-
Méndez and Kapetanios (2008). See also Lewis (2019) for the implementation of a rank test to verify identification
conditions in the context of SVAR with time-varying volatility.

9See Anderson (1951) for the LR form and as well as Bura and Yang (2011) and Portier and Delyon (2014) for
the Wald form.
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An > 0) and r* is the rank of this matrix under the null hypothesis.?’ The matrices S,, K¢, and
VU, are constructed from the sample estimates of the coskweness 5, ;; = ﬁ Z?:p o U gy
and cokurtosis Ay gei; = ﬁ ZtT:p 41 Uy 1T 41 405 ¢ of the estimated normalized reduced-form in-
novations, as well as the cokurtoses Kggk ik = 3, Kakkii = CakkOai = 1 (for i # k), and
Kakkki = Kikkij = kakeij = 0 (for £,4,5 # k) of hypothetical normal reduced-form innova-
tions.2! Robin and Smith (2000) show that, under some regularity conditions, the statistics (20)
and (21) have limiting distributions that are weighted sums of independent chi-squared variables,
despite that the estimators of vec(S,), vec(K¢), and vec(¥,) have not full rank asymptotic covari-
ance matrices. The main drawback of such test is that the statistic (20) and (21) are not pivotal,
i.e. their asymptotic distribution depends on the unknown quantities S,, K, or ¥, and their
respective asymptotic variance-covariance matrix. An estimator of the weights of the sum of the
independent chi-square distribution can be obtained using consistent estimators of these unknown
quantities. This allows to provide an estimation of the asymptotic critical values for the statistics
C’RTfiR and CRTTKY under the null hypothesis that the rank is r*. Appendix D shows the derivation
of the limiting distribution of the statistics (20) and (21) and how to obtain an estimator of this
limiting distribution.

From analytical approximations of the first four moments, it can be shown that 5,;; has a
symmetric leptokurtic distribution which fairly rapidly tends to a normal distribution as the sam-
ple size increases, but ki has a very skewed distribution that hardly converges to a normal
distribution (see Mardia, 1980). This implies that the finite-sample critical values to test the null
hypothesis of zero excess kurtosis converge extremely slowly to their asymptotic counterparts. Nu-
merical simulations of the Jarque-Bera tests for kurtosis further suggest that the use of asymptotic
critical values leads to severe size distortions, as the empirical size often substantially deviates from
the nominal size even for samples as large as T'= 5,000 (see Kilian and Demiroglu, 2000; Bai and
Ng, 2005).

To circumvent this problem, we design a bootstrap procedure to compute the finite-sample
critical values for the statistics C RTX® and CRT)Y associated with the ranks of S,, K¢, and ¥, to
determine myg, my, and mgs+mx +Msx. The bootstrap appears here to be a convenient alternative
because it avoids the estimation of unknown quantities which are probably imprecisely estimated

in finite sample.?? In particular for K¢, this entails evaluating the variance-covariance matrix of

20This corresponds to the unweighted case in Robin and Smith (2000), so ;\f are the eigenvalues of the quadratic
form of the matrix S, Ky, or ¥,.

2!Note that rk[S.] = rk[S.] = ms, rk[KS] = rk[KE] = mu, and 7k[U,] = rk[V,] = mes + Mk + M.

22Gince the asymptotic distribution of the statistics is not pivotal, the bootstrap does not provide asymptotic
refinements.
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the fourth unconditional moments.

The consistency of the bootstrap procedure requires that the bootstrap data satisfy the null
hypothesis. To respect this requirement, the procedure here is based on the constrained bootstrap
testing procedure of the rank of a matrix proposed by Portier and Delyon (2014). Consider the case
of the matrix K. Suppose that the matrix K7, is of rank r* < n. The singular value decomposition
of K¢ gives K¢ = CAD’ where A is a diagonal matrix with the singular values on the diagonal. Let
A1, A2, ..., Ap be the singular values ordered in decreasing values. For a matrix K, of rank equal to
r*, the first r singular values are different from zero and the last n — r* singular values are equal to
zero. The orthogonal matrix C' contain columns of the associated singular vectors ¢; fori =1,...,n
and CC" = I,, whereas the orthogonal matrix D contain columns of the associated eigenvectors d;
fori=1,...,n and DD’ = I,,3. This implies that CC' = C,.C\. + C,,_,.C/ _, where the submatrix
C. contains the first r columns of C associated with the singular values different from zeros and
the submatrix C,_, contains the n — r singular vectors associated with singular values equal to

zero. Similarly, DD’ = D, D!+ D,s_, D’

3_, Where the submatrix D, contains the first r columns

of D associated with the singular values different from zeros and the submatrix D contains the

n® — r singular vectors associated with singular values equal to zero.

Thus

n3—r

C'KD

! e / e
{ ClKiD;  ClEgDps, | _ (22)

Cl_.K¢D, C)_,K:D,s_,
The submatrix C,_, KtD,s_, corresponds to the null space of K¢ which is the object of interest
(see Al-Sadoon, 2017).

According to Portier and Delyon (2014), statistics (20) and (21) share the following form??

n

Z 2 = |lvee(K — KG,)|1? = lvee(Cl_p KgDys )| (23)

with

o=CphpDl = argmln |vec(KE — K©)||?
rk(Kg)=r

where IA(EC is the constrained excess cokurtosis matrix by the null hypothesis closest to the estimated
matrix I/(\'ﬁ under the Euclidean norm. The matrix I/(\'ic is of rank r* and is given by Cpe A, ZA);* =
Che 6;* IA(SIA),«*ﬁ; according to the singular value decomposition. By (23) the statistics C RTA?
and CRT)Y are then function of a the null space estimator of the matrix I?qj

The corresponding bootstrap form is

n
ST A = |vee(Beh — Keb)|? = vec(CY,. KetD
i=r*+1

oI

#The statistic CRT:" = (T —p) Y0, 41 A2+ 0,(1).

19



with

KZ’Z = C*f*fxﬁ*ﬁfz’ = argmin ||U€C([?§’ﬁ — Ki)H2
' rk(K¢g)=r* ’

forb=1,..., B where IA(SZQ is the bootstrapped excess cokurtosis matrix under the null hypothesis
with the corresponding singular value decomposition (22) and Kﬁﬁ is the constrained bootstrapped
excess cokurtosis matrix by the null hypothesis closest to IA(S’,Z with respect to the Euclidean norm.
The question is how to compute IA(E’E under the null hypothesis. The objective is to bootstrap linear
combinations of the normalized reduced-form innovations such that the largest r* bootstrapped
singular values of IA(S’}; mimic the empirical ones with respect to the Euclidean norm and the
r*+1,...,n singular values correspond to the null hypothesis. The singular vectors in the matrix
6}* span the column space corresponding to the largest r* singular values of I?ﬁ In Appendix
D, we show that the matrix of singular vectors @«* gives linear combinations of the bootstrapped
normalized reduced-form innovations such that the corresponding singular values of IA(EZZ are the
closest to the empirical ones. The vector of the bootstrapped normalized reduced-form innovations
uf = (uff* t uf{,r*,t)/ is thus generated such that the elements in the subvector U?*,t are obtained
by bootstrapping 6,{* i and the elements in the subvector ufl_,,.*’t are drawned from a symmetric
and mesokurtic distribution. This ensures that the largest r* bootstrapped singular values of
I?Z’fé computed with u? mimic the empirical ones with respect to the Euclidean norm and the
r*+1,...,n singular values of I?S’f; correspond to the null hypothesis. In fact, when r is equal to
the true number of structural shocks with excess kurtosis m,, the singular vector columns of the
matrix C*r corresponding to the r greatest singular values provide a simple estimator of the matrix
O by Q@H = C:)H. This is deduced from the following relationship between the covariance matrix

of the reduced-form innovations and the impact matrix © :
¥, =00 =QCC'0 =QC.C.Q +QC,..Cl. Q=00 +06,0.

where C' = [Cy;, Cpi), Ok = QC, and Q is the lower triangular matrix of the Choleski decomposition
of ¥,,. By the normalisation, the estimation of ©, corresponds to the estimation of the orthogonal
vector in the matrix Cy under the contraint that C.C, = I.
We now illustrate the various steps of the procedure for the rank of K¢.

Step 1. Under the null hypothesis rk[KS] = r* (i.e. 7* is the assumed number of non-mesokurtic
structural shocks), the vector u? = (uff* t uf:_,q*,t)/ is generated as follows. The elements contained
in the (r*x1) subvector u?*i are obtained by bootstraping those included in the vector wy« ; = 67{* Uy
fort = (p+1),...,T, where Corisa (nx7r*) matrix stacking the left singular vectors associated with

the r* largest singular values of I?s and 1y is the (n x 1) vector collecting the estimated normalized

reduced-form innovations. This implies that the elements contained in w;«; correspond to linear
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combinations of the normalized reduced-form innovations which display the largest excess kurtoses.
b

n—r*t
~ N(0,I) fort=(p+1),...,T.
Step 2. The bootstrap sample is generated recursively from the VAR process (8) as:

The elements contained in the [(n —r*) x 1] subvector u are drawned from the symmetric and

mesokurtic distribution “Z—r* ‘
b

P
al =To + Z Coab  + Qub, (24)

=1
fort = (p+1),...,T. To do so, the starting values of xé’ fort =1,...,p are generated by randomly
drawing a block of the actual data of length p, while f’o, f‘T, and ) are the estimates of the reduced-
form parameters obtained by applying OLS on the actual sample. Following Bose (1988), these
estimates are treated as the population values of the reduced-form parameters.

Step 3. The VAR process is estimated to yield:
A p A A
of =T+ Thah 4+ 0bal, (25)
=1

where f‘g, f?, and QP are the estimates obtained by performing OLS on the bootstrap sample,
whereas @} corresponds to the normalized residuals.
Step 4. The normalized residuals ﬂf are used to compute the bootstrap analogues of the statistics
(20) and (21).
Step 5. Steps 1 to 4 are repeated for b = 1,..., B where B = 1999 to compute the empirical
distributions of the statistics (20) and (21).2* Selecting the appropriate quantiles of these empirical
distibutions yield the finite-sample critical values to test the null hypothesis that the rank is equal
to r* against the alternative hypothesis that the rank is larger than r*.
Step 6. Steps 1 to 5 are repeated for * = 0,1,...,n — 1. If the null hypothesis rk[K¢] = r* is
rejected for 7* = 0,1,...,m—1 but is not rejected for r* = m with m < n, then the number of non-
mesokurtic structural shocks corresponds to m,, = m. However, if the null hypothesis rk[K{] = r*
is rejected for r* =0,1,...,n— 1, then m, = n.

The last step of the bootstrap procedure is similar to the sequential procedure proposed by
Robin and Smith (2000). These authors show that, asymptotically, such a sequential procedure

never selects a value of 7* that is smaller than the true rank of the matrix of interest.2®

24 According to Davidson and Mackinnon (2000) the number of bootstrap replications B must be chosen so that
a(B + 1) is an integer where « is the chosen level of the test.

25In such a sequential procedure there exists a probability, corresponding to the empirical size, to falsely reject
the null hypothesis, as is common to usual testing procedures. A false rejection of the null hypothesis implies that
the subsequent test assumes that the number of non-mesokurtic structural shocks is »* = r + 1 where r is the true
number in the data. In this case, the subvector u? corresponds to linear combinations of standardized reduced-form
innovations resulting in r non-mesokurtic structural shocks and one mesokurtic structural shock. The subvector
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To document the size properties of rank tests for excess kurtosis, we evaluate the empirical
sizes by simulating samples of size T' form the bivariate system (1)-(2) with ez, ~ N(0,1) and
€1+ ~ N(0,1) under the null hypothesis r* = 0 or 1.291 x €14 ~ t(5) under r* = 1.26 Table 1
presents the empirical sizes of the rank tests with asymptotic distributions, where the limiting
critical values are computed as in Appendix D. For both the Wald and likelihood-ratio tests, the
empirical size is very conservative under the null hypotheses r* = 0 and r* = 1. Specifically, the
empirical sizes are systematically close to zero, and, as such, they are substantially smaller than
the nominal sizes even for samples as large as T' = 5,000. Table 1 also reports the empirical sizes
related to finite-sample distributions, where the critical values are constructed from the bootstrap
procedure developed above. Importantly, the Wald and likelihood-ratio tests are essentially free
of size distortions: the empirical sizes are almost identical to the nominal sizes, regardless of the
sample size T.

Finally, we report the empirical powers of the tests with finite-sample distributions for the
rank of K¢. For this purpose, we simulate the bivariate system (1)—(2) for cases in which i) ez, is
mesokurtic and €;; displays non-zero excess kurtosis when we consider the null hypothesis r* = 0,
and ii) ez, and €1 ¢ are both non-mesokurtic when we contemplate that r* =1 — where the excess
kurtosis is moderate (k¢ = 1) or pronounced (k¢ = 6). Table 2 highlights two main features. First,
as expected, the powers of the tests substantially improve as the sample size increases. Second,
the powers of the tests considerably increase as the excess kurtosis becomes more pronounced.?”
Accordingly, a small sample size and/or a negligible excess kurtosis lead to a conservative analysis:
it is likely that an analyst would conclude that the entire system is under-identified (even if it is
actually identified) or would under-evaluate the size of the subsystem that is identified (when the
entire system is actually under-identified).

Overall, our bootstrap procedure for rank tests always overcomes size distortions and often
yields good power properties. This also holds for the bootstrap procedure applied to the coskewness

matrix S, and the matrix ¥, that combines the coskewness and the excess cokurtosis matrices.?®

uﬁ,r*,t is still drawing from a symmetric and mesokurtic distribution which corresponds to the null hypothesis.
Simulation results not reported here show that test based on the null that »* = r + 1 is conservative. However, a
false rejection of the null could result in adverse consequences for the subsequent inferences based on the misspecified
SVAR. Moreover, even for a sequential procedure providing a consistent estimate of the rank, Leeb and Pdtscher
(2005) show that the finite-sample distribution for the subsequent inferences may not be well approximated by the
pointwise asymptotic. However, this corresponds to the worst possible outcome when conducting inference, not the
likely outcome (see Killian and Liitkepohl, 2017, Chapter 2).

26The empirical sizes and powers of rank tests for skewness are reported in Appendix E.

2"The results of the Wald and the LR statistics are the same in Table 2 for 7* = 1 because both statistics are
small and are almost of the same values.

28Simulation results are reported for the coskewness matrix in Appendix E. We also perform simulations for a
trivariate system with parameters calibrated according to the application appearing in the next section. The results
are really close to the ones with two variables and can be obtained upon request.
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Consequently, this procedure is most useful to determine the numbers of asymmetric and/or non-

mesokurtic structural shocks, in order to assess whether the rank condition holds.

5. Application

We now apply the developments presented above to document the effects of fiscal policies on eco-
nomic activity. The effectiveness of fiscal policies represents a classic question in macroeconomics.
It has received renewed interest in light of the recent Great Recession and the ongoing debate about
which type of government interventions stimulate the economy the most.

We consider a trivariate SVAR process:

Vri 011 012 013 €1,¢
Vgt | = | 021 0Oo2 Bog €t |, (26)
Uyt 031 032 033 €3,

where v, ¢, Vg4, vyt Tepresent the reduced-form innovations capturing the unanticipated movements
in taxes, government spending, and output, whereas €1, €24, and €3 correspond to the structural
shocks.

The relation (26) is evaluated for quarterly U.S. data from 1980-I to 2015-II1.2° Output corre-
sponds to the logarithm of real GDP per capita, taxes are defined as the logarithm of real total
government receipts net of transfer payments per capita, and government spending is the loga-
rithm of the sum of real government consumption and gross government investment expenditures
per capita. The series are expressed in real terms using the GDP deflator and in per capita terms
using total population. Also, taxes and government spending are measured for the general gov-
ernment, i.e. the sum of federal (defense and non-defense), state, and local governments. The
data are seasonally adjusted at the source and are taken from the National Income and Products
Accounts (NIPA), except for total population which is obtained from the Federal Reserve Bank of
Saint-Louis’ FRED database. The reduced form (8) includes a linear deterministic trend and eight
lags, which correspond to the most parsimonious lag structure for which all reduced-form residuals
are serially uncorrelated.

We verify whether the identification condition holds before proceeding to the estimation of the
structural parameters. To do so, we apply the rank tests where the finite-sample critical values
are computed by the bootstrap procedure discussed in Section 4.2. The results reveal that the
hypothesis stipulating that the structural shocks are symmetric is not rejected (at all conventional

levels) and only one shock is non-mesokurtic (i.e. mgs = mg, = 0 and my,, = 1), given that the

29 A similar starting date of the sample is selected by Perotti (2004), Favero and Giavazzi (2009), and Bouakez et
al. (2014).
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likelihood-ratio and Wald versions of the tests imply that rk[S,] = ms = 0, rk[KE] = m, = 1,

and rk[U,] = mgss + Mgk + mg, = 1. In this context, the number of structural parameters is 7

= n? 4+ m, = 10, whereas the number of distinct elements in the reduced form is p = [%} +

[n(n+1><n+2)<n+3)}
24

= 21 and the rank associated with the reduced form is r = rx + rpx + 74 = 9

— with r, = n X mg =3, rpe = n(n;l) - m"“(W;“H) =5, and rxe = my, = 1. This implies that
the rank (sufficient) condition r = 7 is violated so that the entire system is not identified and to
achieve the idenfication (n — r) = 1 restriction must be imposed

We next estimate the structural parameters involved in the subsystem of (26) that is locally,
statistically identified. These parameters are arbitrarily selected to be the elements of the first
column of © (i.e. 011, 621, 031) and /-fglml. The estimation of these parameters is performed by

minimizing the following moment matching function:

(& — ¢(O, /‘5211,11))/(611 — (O, kg1111)); (27)

under (n — r) = 1 restriction that either 63 = 0 or 032 = 0.. Note that each of these restrictions
ensures that the entire system is identified, but it is not placed on the parameters of interest 611,
021, 031, and /<a§711’11. Also, ¢, = (a,, /ff,)l, where o, vectorizes the lower triangular part of the
symmetric covariance matrix ¥, obtained from expression (11) and k¢ collects all the distinct
elements of the excess cokurtosis matrix K obtained from (13). The vector () = (&V /%,ej)/
includes the sample estimates of all the second and fourth unconditional moments of the reduced-
form residuals. As explained previously, the information contained in these moments allows to
identify all the structural parameters relating the reduced-form innovations to the non-mesokurtic
structural shock, as well as the excess kurtosis of this shock. Finally, the confidence intervals of
the estimates are computed from 5000 bootstrap samples. The implemented estimation procedure
corresponds to the Generalized Method of Moments (GMM) with a fixed weight matrix (i.e. the
identity matrix in our case), which yields estimators that are consistent and asymptotically normal
(see Hansen, 1982). Moreover, in this context the validity of the bootstrap procedure is established
in Hall and Horowitz (1996). This estimation procedure is consistent, but not optimal, since we
do not use the optimal weighting matrix. However, it is not clear in this case that the small-
sample behavior of the GMM estimation with the optimal weighting matrix outperforms the GMM
estimation with the identity matrix. Specifically, the estimation of the optimal weighting matrix
entails evaluating the covariance matrix of the fourth unconditional moments, which tends to be
quite imprecisely estimated in small samples (see Bonhomme and Robin, 2009; Keweloh, 2020).
In the estimation procedure, we normalize the estimate of 611 to be positive, so that we consider

the case where the impact response of v;; to €1 is positive. We also identify the elements in the
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first column of ©, given that we have selected €; ; as being the structural shock that displays excess
kurtosis. Table 3 shows that the estimates of 611 and £¢ 1, ;; are numerically sizable and statistically
significant, whereas the estimates of 67 and 03 are negligible and insignificant. These results hold
whether the restriction fs3 = 0 or 633 = 0 is invoked. This occurs because the parameters 611,
021, 031, and K¢ 1; 1, are identified, regardless of the restriction imposed on the other parameters
of system (26). Given that the null hypotheses 037 = 0 and 637 = 0 are not rejected, this suggests
that the term v, ; exhibits non-zero excess kurtosis, while v,; and v, ; display zero excess kurtoses
and excess cokurtoses.?’ Also, the values f; = 0 and #3; = 0 imply that, at impact, the structural
shock €1 only affects taxes, so that this shock can be interpreted economically as a tax shock,
i.e. €4 = €1,¢. In this specific application, the statistical properties of the subsystem linking the
reduced-form innovations to the non-mesokurtic structural shock lead to the economic identification
of the tax shock. In general, however, local, statistical identification does not guarantee that the
structural shocks have an economic interpretation.

The results lead to the important implication that the subsytem relating all the reduced-form
innovations to the tax shock is identified. From this subsystem, we find that the effectiveness of
the tax policy is weak. That is, the dynamic response of output after a tax shock is small and
not statistically significant (see Figure 2), and the tax multiplier (i.e. the dollar change in output
occurring in quarter ¢+ ¢ resulting from a dollar cut in the exogenous component of taxes) is small:
it is null at impact and it reaches a peak of about 0.61 at 14 quarters (see Table 3). Again, the
dynamic response and the tax multiplier are not affected by the selection of the restriction 625 = 0
or 032 = 0, given that the responses of output following a tax shock is not affected by the restriction
imposed on the other parameters of system (26).

In contrast, the subsytem relating the reduced-form innovations to the structural shocks €2 ; and
€3+ is under-identified. To achieve the identification of this subsystem, (7 — ) = 1 restriction must
be imposed. This restriction is required to assess the responses of output, taxes, and government
spending following the structural shocks €2 ¢ and €3, where one of these shocks may correspond to
the government spending shock.

To deepen the analysis of the effectiveness of the spending policy, we rely on the economic

39These results are corroborated by applying Jarque-Bera tests for the reduced-form innovations, where the finite-
sample critical values are approximated by Kilian and Demiroglu’s (2000) bootstrap procedure. Specifically, we find
that the hypothesis of symmetry is not rejected for all reduced-form innovations, whereas the hypothesis of zero
excess kurtosis is rejected only for the reduced-form innovation associated with taxes, vr ;.

25



specification invoked in the seminal paper of Blanchard and Perotti (2002):

Vrt = Q1lyt+ Qowg€gs + Wréry, (28)
Vgt = ﬁlyy,t + 52w767,t + Wg€q,t, (29)
Uyt = MVrt+ Y2lgt + Wyeyr. (30)

The structural shocks €, and €, represent the tax and spending shocks that reflect unexpected,
exogenous, discretionary changes in taxes and government expenditures, whereas €,; captures the
non-fiscal shocks that affect output. Equations (28) and (29) describe the government’s tax and
spending rules. Specifically, the rule (28) highlights that taxes may vary in response to changes in
output or to spending shocks. The rule (29) has an analogous interpretation for public spending.
In these rules, the parameters a1 and [; potentially measure the automatic and government’s
systematic responses of taxes and government spending to changes in output, whereas as and S
allow for interactions between tax and spending policies. Equation (30) relates changes in output
to changes in taxes and government expenditures, and to non-fiscal shocks. Finally, the terms w,,
wg, and wy are scaling parameters.

The specification (28)-(30) can be expressed in the form of relation (26) as:

Urit 1 [ At afye = frypwr (a2 + a1y — @fim)w, awy) [ens
vor | = X (B2 + Byt —arfoy)wr (1 +fiv —oam)wy  Brwy | | €t | (31)
Uyt (71 + Baye)wr (271 +72)wy Wy €yt

where A = (1 — a1y — B172). Here, the element 6;; of the marix (26) corresponds to the (i, )
element of the matrix in (31) divided by A, whereas €1; = €4, €24 = €44, and e3; = ey,t.?’l
Blanchard and Perotti (2002) elaborate a set of identifying restrictions. This set fixes ag = 0
such that taxes do not vary following a spending shock. It also calibrates «; = 2.08 and g1 = 0
using institutional information about tax and transfer systems, where such information allows
to measure automatic adjustments of taxes and public spending rather than the government’s
systematic responses to fluctuations in output (see Blanchard and Perotti, 2002). Note that the
three restrictions, implying that 615 = a1632, 813 = a1033, and 023 = 0, are placed on the subsystem
relating the reduced-form innovations to the structural shocks €, and €, ¢, so that more restrictions

are imposed than to fulfill the sufficient condtion.??

31Recall that the identified subsystem implies that the structural shock €1 corresponds to the tax shock e ;. Also,
the shocks €2 ¢ and €3, are ordered such that they can be interpreted as a spending shock €4,; and a non-fiscal shock
€y,t-

32 An alternative set of identifying restrictions invoked by Blanchard and Perotti (2002) imposes 82 = 0, a; = 2.08,
and 1 = 0. These restrictions, implying that 613 = a16033 and 023 = 0, lead to the over-identification of the subsystem
allowing to trace the responses of the variables to a spending shock.
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Empirically, we place only one of the restrictions 615 = a16392, 013 = aifss3, or o3 = 0 at a
time, so that the subsystem linking the reduced-form innovations to the structural shocks €,; and
€y, fulfilled the sufficient condition. The first restriction 12 = a1632 corresponds to the restriction
that taxes do not contemporaneously respond to a government spending shock (ag = 0). The
second restriction 613 = a7633 comes from the constraint cy = 2.08 calibrated by Blanchard and
Perrotti (2002) and finally the last restriction 623 = 0 imposes that the automatic and government’s
systematic responses of government spending to changes in output is zero (8; = 0). The first and
the third restrictions allow to obtain an estimator of the automatic and government’s systematic
responses of taxes to changes in output (). Under the selected identifying restriction, we estimate
the structural parameters a;, B, vi, wj, and k¢ 1, (for i = 1,2 and j = 7, g, y) by minimizing
the function (27).33 Interestingly, the estimators of the parameter «; measuring the automatic
and government’s systematic responses of taxes to changes in output is close and not significantly
different to the value calibrated by Blanchard and Perotti (2002) but seems at odds with high values
obtained by Mertens and Ravn (2014) and Mountford and Uhlig (2009). To ease comparisons, Table
3 presents the resulting estimates of the elements 6;; associated with system (31) and the fiscal
multipliers. As expected, the estimates of the parameters 011, 621, 031, and K¢,y 11, and the tax
multiplier are virtually identical to those obtained from system (26). For the other parameters,
some estimates differ substantially across the various identifying restrictions. This translates into
a dynamic response of output after a government shock (see Figure 3) and a spending multiplier
(i.e. the dollar change in output occurring in quarter ¢ + ¢ resulting from a dollar increase in the
exogenous component of government spending) that highly depends on the nature of the restriction:
it is between 0.22 and 1.64 at impact, and it reaches a peak that ranges between 0.22 and 2.34 (see
Table 3). This suggests that the evaluation of the effectiveness of the spending policy represents a
challenging task.

6. Conclusion

In this paper, we first derived the sufficient condition for local, statistical identification of SVAR
processes through higher unconditional moments. The condition is solely related to the numbers of
structural shocks that display skewness and /or excess kurtosis. Furthermore, the condition establish
which structural parameters are identified and which are not. For practitioners, this yields useful
guidances about which structural parameters need to be restricted to achieve the identification of

the entire system.

33These estimates are reported in Appendix F.
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We then developed a tractable procedure to verify whether a SVAR process is identified, prior
to the estimation of the structural parameters. In particular, the numbers of structural shocks ex-
hibiting skewness and excess kurtosis correspond to the ranks of the third and fourth unconditional
moment matrices of the reduced-form innovations. A bootstrap procedure is designed to improve
the small-sample properties of these rank tests. The bootstrap version of the tests are virtually
free of size distortions, whereas existing tests with asymptotic distributions suffer from severe size

distortions even for large samples.
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Table 1. Empirical Sizes of Rank Tests: Kurtosis

Asymptotic Distributions Finite-Sample Distributions

r*=0 r*=0
Wald LR Wald LR
T 0% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 0.70 0.10 0.00 0.00 0.00 0.00 10.12 5.00 0.99 1043 4.93 1.09
200 0.00 0.00 0.00 0.00 0.00 0.00 9.74 514 123 9.75 519 1.21
500 0.00 0.00 0.00 0.00 0.00 0.00 9.81 491 101 986 4.87 1.00
1,000 0.00 0.00 0.00 0.00 0.00 0.00 9.71 4.60 1.04 9.75 4.58 1.03
5,000 0.00 0.00 0.00 0.00 0.00 0.00 9.84 4.88 1.02 9.83 4.89 1.03

r*=1 r*=1
Wald LR Wald LR
T 0% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 1.19 0.53 0.08 0.37 0.07 0.00 9.90 4.98 0.93 990 4.98 0.93
200 1.05 0.38 0.04 0.33 0.06 0.00 10.65 5.67 1.19 10.65 5.67 1.19
500 0.68 0.21 0.02 0.36 0.12 0.00 9.88 5.08 1.15 9.88 5.08 1.15
1,000 0.54 0.21 0.05 0.32 0.09 0.00 10.10 4.95 0.95 10.10 4.95 0.95
5,000 0.36 0.10 0.02 0.32 0.08 0.02 9.71 4.76 095 9.71 4.76 0.95

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic and finite-sample distribu-
tions under the null hypothesis that Tk[KS] = 71", The empirical sizes are evaluated for the bivariate specification
(1)—(2), where the parameters are set as follows: o= —0.5, ag= 0.5 and w1 = wa= 1. Also, the distributions are
€247~ N(0,1), and i) €1, N(0,1) under 7*= 0 or ii) 1.291 X €147~ t(5) under r*= 1. For each parametriza-
tion, 10,000 simulated samples of size 1" are generated to compute the proportions of time that the Wald statistic
@—' Z[: and the likelihood-ratio (LR) statistic @1 f*R associated with K, exceed the critical values. The asymp-
totic critical values are computed as shown in Appendix D. The finite-sample critical values are computed by the

bootstrap procedure elaborated in Section 4.2.
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Table 2. Empirical Powers of Rank Tests with Finite-Sample Distributions: Kurtosis

FEzxcess Kurtosis =1

FEzxcess Kurtosis =6

r*=0 r* =0
Wald LR Wald LR
T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 32.46 22.77 10.40 32.00 22.41 10.23 64.00 54.52 37.60 63.17 53.69 36.42
200 45.88 36.18 19.45 45.39 35.64 18.74 85.58 80.00 65.25 84.96 79.23 64.38
500 73.88 65.63 46.76 73.86 65.06 45.81 99.28 98.73 96.46 99.22 98.66 96.06
1,000 93.20 89.67 78.58 93.20 89.41 78.41 100.0 100.0 100.0 100.0 100.0 100.0
r*=1 r*=1
Wald LR Wald LR
T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 18.96 12,57 3.90 1896 12.57 3.90 53.18 44.34 23.81 53.18 44.34 23.81
200 32.72 24.31 10.27 32.72 24.31 10.27 80.78 T74.44 55.78 80.78 74.44 55.78
500 99.09 98.58 95.55 99.09 98.58 95.55 99.09 98.58 95.55 99.09 98.58 95.55
1,000 100.0 99.99 99.94 100.0 99.99 99.94 100.0 99.99 99.94 100.0 99.99 99.94

Notes. Entries are the empirical powers

der the null hypothesis that Tk[Kfl] ="

(in percentage) of the rank tests with finite-sample distributions un-

The empirical powers are evaluated for the bivariate specification

(1)~(2), where the parameters are set as follows: a;= —0.5, as= 0.5 and w1= wo= 1. For r*= 0, the dis-

tributions are: i) € ¢~ N(0,1) and 1.118 x €1,4~ t(10) when €1,+ exhibits an excess kurtosis of 1, and ii)

€2 ¢~ N(O, 1) and 1.291 X €147 t(5) when €1 ; exhibits an excess kurtosis of 6. For r*= 1, the distributions

are: i) 1.118 X €94~ t(10) and 1.118 X €1,4~ t(10) when each shock exhibits an excess kurtosis of 1, and ii)

1.291 x €94~ t(5) and 1.291 x €1,4~ t(5) when each shock exhibits an excess kurtosis of 6. For each parametriza-

tion, 10,000 simulated samples of size T" are generated to compute the proportions of time that the Wald statistic

CRTT* and the likelihood-ratio (LR) statistic CRTT* associated with K¢ exceed the finite-sample critical values,

where the latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Table 3. Parameter Estimates and Multipliers

System (26) System (31)
Parameter Estimates
Parameter 923 =0 932 =0 912 = 041932 (913 = a1933 923 =0
011 0.0474***  0.0474*** 0.0473*** 0.0474** 0.0474***
012 0.0026 —0.0005 0.00067 0.0005 0.0036
013 0.0089**  0.0092** 0.0098*** 0.0095 0.0088**
021 0.0001 0.0001 —0.0001 0.0004 —0.0001
B9 0.0068***  0.0064*** 0.0065*** 0.0067*** 0.0068***
023 0.00007  0.0023** 0.0019** —0.0007*  0.00007
031 —0.0001  —0.0001 —0.0001 0.0001 —0.0001
032 0.0017**  0.00007 0.0003 0.0022*** 0.0017***
033 0.0048***  0.0051*** 0.0051*** 0.0046*** 0.0048***
/1211711 2.7995%**  2.7867*** 2.8284*** 2.8135*** 2.8114***

Tax Multiplier

Quarter (923 =0 932 =0 612 = a1632 (913 = a1933 923 =0
1 0.00 0.00 0.01 —0.01 0.00
4 0.05 0.05 0.07 0.06 0.06
8 0.24 0.24 0.26 0.25 0.24
Peak 0.61 0.61 0.62 0.63 0.60
14 [14 14 14 [14
Spending Multiplier
Quarter 912 = Oé1932 913 = 041933 923 =0
1 0.22 1.64*** 1.28%**
4 —-0.71 1.93* 1.24
8 —-0.93 1.35 0.70
Peak 0.22 2.347%** 1.76***
1] 3] 3]

Notes. Entries correspond to the estimates of the parameters of systems (26) and (31), and to the tax and spending
multipliers. The tax (spending) multiplier measures the dollar change in output at a given horizon that results from
a dollar decrease (increase) in the exogenous component of taxes (government spending). *, **, and * * * indicate,
respectively, that the 90, 95, and 99 percent confidence interval does not include zero, where the confidence intervals
are computed from 5,000 bootstrap samples. 'l' indicates that the parameter is constrained. Numbers between brackets

indicate the quarters in which the maximum value of the multiplier is reached.
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Figure 1a) contains the scatter plot of a simulated series with the following parametrization of equations (1) and (2) :
ag= —0.5, ay= 0.5, wg= ws=1, €dtm N(O, 1) and €g ¢~ N(O, 1). Figure 1b) is for the same parametrization
but when the impact matrix is multiplied by the orthogonal matrix @ defined in Section 2. Figure lc) represents
the scatter plot with the same parametrization than Figure 1a) but for 1.291 x €4t t(5) generating an excess
kurtosis equals to E[efl,t] — 3 =06. Figure 1d) is for the same parametrization than Figure 1c) but when the
impact matrix is multiplied by the orthogonal matrix @) defined in Section 2. The simulated series are generated

from 10,000 draws.
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Figure 2. Dynamic responses following a tax shock. The solid lines are the dynamic responses of taxes, government
spending, and output to a negative, one standard-deviation, tax shock, which are computed under the restriction
623 = 0 (first panel) and 032 = 0 (second panel). The dashed lines are the 95 % confidence intervals, which are

computed from 5000 bootstrap samples.
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Figure 3. Dynamic responses following a government spending shock. The solid lines are the dynamic responses of
taxes, government spending, and output to a positive, one standard-deviation, government spending shock, which
are computed under the restriction 612 = @163z (first panel), 13 = 1633 (second panel), and 023 = 0 (third panel).

The dashed lines are the 95 % confidence intervals, which are computed from 5000 bootstrap samples.
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Supplemental Material

Appendix A presents the rank condition for the local, statistical identification of SVAR processes
with asymmetric structural shocks. Appendix B details the analytical partial derivatives involved
in the Jacobian matrices related to the rank condition. Appendix C derives the rank condition.
Appendix D contains the derivation of the asymptotic distribution of the rank test and a justification
of the bootstrap procedure when r* > 0. Appendix E documents the empirical sizes and powers of
rank tests for symmetry. Appendix F reports the estimates of the structural parameters involved

in system (30).

Appendix A: Identication under asymmetric structural shocks

The appendix elaborates the rank condition for a case which exploits only the skewness of the struc-
tural shocks. For this case, the relation between the reduced-form innovations and the structural

shocks is partitioned as:

ve= (05 Ons) (e&t > , (A.1)

€Ens,t

where €5, and €ps; contain the mg and (n — m,) asymmetric and symmetric structural shocks.

Here, the number of parameters to identify is 7 = n? + mg because there are n? and m

parameters to identify in ® and S.. From the reduced form, p = [n(n;l)] + |:n(n+1g(n+2):|

n(n+1)
2

since

there are and n(n+1g)(n+2) distinct elements in ¥, and .S,. The information contained in S,
contributes to identify the parameters in ©4 and S, whereas Y, contains specific information to
identify the parameters in ©;.

The sufficient rank condition holds when r = 7. Under the short-run restrictions Rf,s; = g, the

rank condition is verified if:

JO'mes Ja'wens Jo'wse
rk[JY) =rk [T Ji JE] =rk {Jo0. Jebne Jesc| =1, (A.2)
0 R 0
where J7T is the augmented Jacobian matrix, Jet = [T, 0. i 0. 0’]/, JQJ;S = [0 00 o R’]/,
JE =170, Tis. O’]/, and Jy o = %. Moreover, the vector o, vectorizes the lower triangular

part of the symmetric covariance matrix ¥, and the vector s, collects the distinct elements of the
coskewness matrix S,. Finally, the vector 65 stacks the columns of the matrix ©; in system (A.1),
the vector 6, contains the elements of the matrix ©, and the vector s. includes the non-zero

elements of the skewness matrix S..
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When no restrictions are placed on the structural parameters (R = 0), the rank of J is given
by

— _ JO'V,HS JJV,9n5 JUU7SE
rk[J) =1k [Jo, Jo,, Js]=rk P A
which is equal to r = 75 + s + s, With rs = rk[Jp,] = n X mg, Tns = TE[Jp,.] = n(n;l) -

W, and rs, = rk[Js.] = ms as we show below. Consequently, the entire structural system is

locally, statistically identified (7 = r) when at least all, but one, structural shocks display non-zero
skewnesses. Also, whether or not 1 = r, the parameters involve in ©4 and S, are locally, statistically
identified through the information contained in 3, and S,. Hence, if the structural shocks of
interest are asymmetric, then their effects are identified. When some restrictions are imposed
on the structural parameters (R # 0), then the entire structural system is locally, statistically
identified when (1 — r) linearly independent restrictions are imposed on the structural parameters
contained in 6,s. Thus, if the structural shocks of interest are symmetric, then their effects can

only be determined when (7 — r) restrictions are placed on ©;.

Appendix B: Analytical derivatives involved in the Jacobian ma-
trices

This appendix presents the analytical partial derivatives involved in the Jacobian matrices for the
cases (A.2), (17) and (18). First, the partial derivatives of the second unconditional moments of

the reduced-form innovations with respect to the structural parameters are:
Jo, 00 = 2D:(®®In)T9i’
Jau,se = 07

= O’

Jay,nf

where i = s,ns in (A.1), i = k,nk in (17), and i = ss, kK, sk,nsk in (18). The vectorization
of the distinct elements of the second moments yields o, = D}vec(X,), where o, = vech(%,),
D} = (D! D,)"'D! and D, is the (n2 X W) duplication matrix such that D,o, = vec(¥,).

Using this vectorization, we obtain %‘;Z = Df gzzcc((é;,) 8”3%9). Equation (11) leads to vec(X,) = (O0®

©)vec(Iy,), so that 21;?0%‘3,) = 2(0®1,) (see Liitkepohl, 2007, p. 363). Also, 8”209(29) = Ty, is a matrix

containing the values one and zero such that only the partial derivatives with respect to the elements

of the vector 6; are selected. As an example, consider the relation (A.1) with n = 2 and ms = 1

(where the asymmetric structural shock is ordered first), then the (n? x nmy) selection matrix

!/
100 0 5, 6
corresponds to Ty, = <O 1 0 O> and 05 = vec(©s). Moreover, %‘;Z = Df gzzg((se)), 6v%cs(é5),
where gﬁi(fgf))f = 0 given that ¥, is not a function of the skewnesses of the structural shocks.

: : do, _ 1+ Ovec(By) Ovec(KE) _ . Ovec(Ey)
Likewise, ortr = Do goeatkey —one with FoecKE) = 0.
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Next, the partial derivatives of the third unconditional moments of the reduced-form innovations

with respect to the structural parameters are:

Jsp.0: = DIH{(I2 ®08)[(I, @ Cpp @ I)[(I2 @ vec(©)) + (vec(®') ® 1,,2)]Ch )
+[(©®©)S. ® I,]} To,,

Jo,se. = DFO2O620)T,,

Jsp e = 0,

(18). The vectorization of the distinct elements

(S,), where DI = (D.D,)"'D., and Dy is the
<n3 X M) matrix such that Dgs, = vec(S,). As an example, for a bivariate system with
n = 2, then:

where i = s,ns in (A.1) and i = ss, kK, Sk, nsk in

of the third moments corresponds to s, = Dfvec

10 0 0
01 00
0100
0010
D = 0100
0010
0010
0 001
Using the above vectorization, we have %"92 = Df gzzgg”)? 8”22(26) with 8”26929) = Ty,. Rewriting

equation (12) as vec(S,) = [(© ® ©) ® Blvec(Se), then 3222%’)2 = (I,2 ® @Se)%{gﬁy) +[(O®
©)S. ® I, where 254EES) — (I, © Cpup ® 1,)[(L2 ® vee(8)) + (vec(®') @ I,2)] 54 with
gzzgg)z = Cyn (see Magnus and Neudecker, 2007, pp. 208-209), and C,,,, is a (nm x nm)
commutation matrix implying that C), ,,,vec(A) = vec(A’) for the arbitrary (n x m) matrix A. Note

that ‘3597 = 0 for i = ns in (A.2) and for i = kk,nsk in (18), since S, is not a function of the

structural parameters relating the reduced-form innovations to the symmetric structural shocks.
ds, __ Ovec(Sy) Ovec(Se Ovec(Sy) __ Ovec(Se) p
Furthermore, 8‘; = Djavec((se)), 855, ), where avec((se)), = (O® 06 ®0) and 85E/ ) _ T, is a

3 X my) matrix selecting the partial derivatives with respect to the non-zero elements of s.. In

(n
particular, for a system with n = mgs = 2, then T;_ has values one for the (1,1) and (8,2) elements,
and zero elsewhere. For the system with n = 2 and ms = 1, then Y,_ has values one for the (1,1)

element, and zero elsewhere. Moreover, gf;g =D} aay Zecc(([‘gzg, avg';(ef,( <) where %ﬁz;, = 0 given that

S, is not a function of the excess kurtoses of the structural shocks.

Let us now examine the rank of the matrices Jy;, 6., Js, 6, and Js, .. As illustration, consider
61 0
vig\ _ (Vi 12 (€1q (A1)
Vot 021 O22) \ €24
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For this example, the Jacobian matrix of the derivatives of the covariance matrix with respect to

the parameters © is given by

2011 0 1 2019 0
Jo,0= | 021 611 : b Or12
0 2921 : 0 2922

n+1
5 Xn

where § = vec(0). For a full rank matrix ©, this matrix Jy, ¢ is of rank 2t and each n(”2+1)
submatrix corresponding to the derivatives of J,, g with respect to a column of the matrix © is of
rank equals to n and this holds for V n. Also, the Jacobian matrix of the coskewness J,, o with

respect to O for (A.1) is

2 ) 2
391186’1,11 0 : 39128672’22 0
2 ) 2
Jo g = 20110215111 0715¢,1,11 0 20120025c2922 0795¢ 222
S0 = 2 i 2 2
v 0315¢1,11 20210118111 @ 0535220 20120595¢ 2,22
2 ) 2
0 39218671711 : 0 39228672722
n(n+1)(n+2)

For a full rank matrix ©, the Jacobian matrix Jy, ¢ of dimension 5 x n? is of rank n X mg
which equals the rank of the matrix J;, g, since Jg, g, = Js, 9Yp,. In the case above, for mg = 1 (for
instance when s¢ 1,11 # 0 and s¢ 222 = 0), the matrix J;, o, corresponds to the first two columns of
Js, 0, whereas J g, corresponds to the two last columns of J,, 9. The rank of J,, g, and J;, g is
equal to n X mg = 2. For ms = 2, J,, 9, = J,, ¢ and the rank is n x ms = 4. For the general case,
rearranging the rows of the matrix J;, ¢ corresponding to the k-th column vector 0, ;, of the matrix

0, leads to the following M X n matrix
sze.’k = . Se,k,kk

where the matrix C; is of dimension (M — n2> x n for n > 2. The n X n matrices By

. DSy 115 . : o .
are given by By, = 29’/’1’3 for k,1,j = 1,...,n and C}, contains the derivatives of s, ; ;; respective
ok

to 0, , foralli < j < [ for i,J,0 =1,...,n. Note that the column rank of Js, g, , is the same as

*
Suyeo,k'

is 3912,{567;97%. The matrices By are then of full column rank for all 8, # 0. Given that © is of
full rank, J7

weo,k

collinear with Jg, g, , for k # I, scprr # 0 and s¢yy # 0. This shows that the Jacobian matrix

Each matrix By, has the term Glzkse,kykk on its diagonal except at the element [, k which
and then J; ¢ is necessarily of full rank for s¢x 1x 7 0 and Js, g, ., cannot be
viVe,k SRy viVe k

Js, 0 is of rank equals to n x m,. For the illustration with n = 2, we get

Jo g = [311 312]
v Byy Baa|

43



where By are 2 x 2 matrices for k,l = 1,2. For this case, w —n? = 0, so that there is

no matrix C%. We see that for each submatrix By, the diagonal elements are function of G?ks€7k7kk.
For a full rank matrix O, the first two columns corresponding to Bj; and Bs are of full rank (when
5¢,1,11 # 0) and they cannot be colinear with the last two columns corresponding to By and Bay
(when s 292 # 0).

For the Jacobian matrix J,, s , the rank can be easily shown. The expression (0 ® © ® 0) is
a square full rank matrix, so (0@ ® © ® ©)Y;, is of the same column rank than T, , namely m.
Since DY is a full column rank, D (© ® © ® ©)Y,, has a rank equals to m.3* For (A.1),

9:1)’1 : 9%2

o 9%1921 . 9%2922
JSU’SG_ 0119%1 : 0129%2 TSE'

‘9%1 : 932

The rank of this matrix equals the rank of T, which equals m,. However, the rank of [J;, ¢ J, 5]

equals the rank of the matrix Js, g namely n x ms given that Js, g, , X Oe r = 35¢k kx5, 5.,k Where

k indexes the column of the respective matrix. This holds for V n for a full rank matrix ©.
Finally, the partial derivatives of the fourth unconditional moments of the reduced-form inno-

vations with respect to the structural parameters are:

Jucop = Di{(L,2 ®OKE) (L2 ® Cppz @ In)|[(Ina @ vee(®))(In ® Cpp @ 1) X (L2 ® vec(©')
+(vec(0') @ I,,2)]Crppn + (vec(® @ ©) @ 1,2)Ch ] + (O @ © ® ©O)KE @ I,]} T,
Jeese = 0,

Jeewe = DI (ORO0®O®0O)Y,,

where i = k,nk in (17) and i = ss, kK, sk,nsk in (18). The vectorization of the distinct ele-
ments of the fourth moments is k¢ = Dfvec(KE), where DF = (D'.D,)"'D. and D, is the

341f A is a full column rank matrix and B is conformable for the multiplication AB, the rk(AB) = rk(B).
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<n4 X n(”H)(gf)(nH)) matrix such that Dyx¢ = vec(KE). For example, when n = 2, then:

SO O ORrRr PR OO, OHFHOOO
O R P ORFRPR OO0 FrROOOOoOOoO oo
—_— OO OO0 oo oo

O O DD DO DD DD OO OO0 OO
OO DD DDODDODOHODOO O FFO

. . . Ok _ 4+ Ovec(KE) Ovec(©) _ ..1 Ovec(O) .
Using the above vectorization, we have a0, = Dy vec(®) 00 with a0 = Ty,. Given that

equation (13) implies vec(K}) = [(OR0®0)®0Ovec(KE), then %f}e;c((g? = (In2®@K§)%®(g;i®@l)

(@ ® 0 ® O)KY ® I,], where %ﬁg;i@@/) = (L2 ® Chp2 ® Ip)

[(In4 ® U@c(@’))%(gﬁy) + [vec(®' ® ©') @ I,,2] 2522832, and, as shown above, %(g)(?/) =
(In ® Cop @ 1) (T2 ® vec(®)) + (vec(8') @ I,2)] 32XE) and G480 = C,, . Note that ggz{f —0

for i = nk in (18) and for ¢ = ss,nsk in (19), since K¢ is not a function of the structural pa-

rameters relating the reduced-form innovations to the mesokurtic structural shocks. Moreover,
OKS 4 Ovec(KE) Ouec(Se) Ovec(KE) . e : .
95 = Di Goea(s57 a5 where BoeclSY = 0 given that K7 is not a function of the skewnesses of

the structural shocks. In addition, g:g = D} 88::5((1[((5))/ ngfgffe ) where % - (OR0R010)
Avec(K¢E) 4

oreT T = Tye is a (n* x my) matrix selecting the partial derivatives with respect to the

and

non-zero elements of x¢. For example, when n = m,, = 2, then Te has values one for the (1,1) and
(16,2) elements, and zero elsewhere. For the system with n = 2 and m, = 1, then Yc has values
one for the (1,1) element, and zero elsewhere.

Similarly to the case with skewed structural shocks, we can show that rk[Je 9] = n X m, and
rk[Jee xe] = my for a full rank matrix ©. In particular, the matrix Jie 6., has a form similar

to the matrix Jg, g, , with elements function of H?k on the diagonal of the block Bj,. Moreover,

ok
rk [J,.gsﬂ JHS#E] = n X my by noting that Jee g, , X Oar = 4K 11 11 ke wei Where k indexes the

column of the respective matrix.
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Appendix C: Rank condition

Let us now show that rk[J| = r = rg+r,s+7s,, as mentioned in appendix A. We need the following

results for the rank of upper triangular block matrix :

Lemma 1 Given that A is a m X n matriz, B is a s X t matriz and C is a m X t matriz,

1.

rR(A) + rk(B) < rk ({’3 g]) <rk([A C])+rk(B).

In Appendix B, it is shown that rk[Js, ¢] = rk[Js, 0] = n X mg, rk[Js, s.] = ms and
rk[Js, 0 Js,,s.] = n x ms. Moreover, each % x n submatrix of J;, g corresponding to each
column of the matrix © is of rank equals to n. Now, we need to know the rank of the matrix
of the derivative of the covariance matrix with respect to the parameters of the impact matrix
Jo,0, and Jg, g, The rank of the first submatrix rk[J , ]| = "(n;l) — ("_ms)(g_mSH) and for

the second submatrix, the rank is equal to rk] </7u 9ns] = n(n;l) — (ms)(gnﬁl). To understand this

result, consider that m, = 1. In this case, the n X n symmetric covariance matrix of the n-variables
resulting from the skewed structural shock is of rank equals to one. Since only one row (column) is
linear independent of the others rows (columns), this symmetric covariance matrix contains only n
independent elements. The n x n symmetric covariance matrix of the n-variables resulting from the
other structural shocks contains n — ms = n — 1 linear independent rows (columns) which implies
that this matrix has n(n + 1)/2 — 1 idependent elements. For instance, suppose that n = 3 and

ms = 1 (where €; + is the skewed structural shock), we get the following relationship:

1 1 1 2
J11,11 012 ‘71{,13 07, 010 611031 011 ,
ms __ 1 _ 2 _
S = |0p12 0o Opos| = 021011 03 02631 | = (021 [11 O 0] E(ef,).
J13,13 ‘711/,23 Ui,33- 031011 031021 9?%1 031

The rank of this matrix is equal to one because there is only one source of randomness; the skewed

structural shock €1 ;. Consequently, only one row is linear independent of the other ones. This row

contains n linear independent elements namely n("2+1) - ("_ms)(g_msﬂ) =6 —3 = 3. The elements
of the two other rows are linear combinations of this row. The rank of the symmetric covariance
matrix for the n-variables induced by the two other structural shocks, denoted 7,7 is :
2 2 2
05,11 05,12 0,13
M = oy12 Ou2n 003

Op13 9p23 9,33
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Since the rank of this submatrix is equal to the number of non-skewed structural shocks, there are
n(n+l)  (ms)(ms+1)
2 2

two linear independent rows which contain = 6—1 = 5 independent elements for

any combination of two rows of the matrix X727, In the case where my = 2, there are two linear
n(n+l) (n—ms)(n—ms+1) _ 6
2 2 -

independent rows for the matrix 37" which implies

n(";l) - (ms)(;n'gﬂ) = 6—1 = 3 independent elements. Asa

—1 = 5 independent

elements and the matrix X7~ contains

;uﬂs]/ equals n xmg by using rk[Js, 9.] = n xmg

| > rk[Js, 6,]. Now the rank of the Jacobian matrix Jp,, = [J}
nt) ()i £1)

result, the rank of Jacobian matrix Jp, = [/ 0 0s
and rk[Js, ¢

to the rank of the Jacobian matrix Jy, g,,, which is

ns

]/ is equal

s su,0ns

ns

since Js, g, iS a matrix

of zeros. Finally, the rank of the matrix J;, = [J] ! ]/ is equal to the rank of the

Ov,Se Sv,Se
matrix J, ;. because only the coskewness matrix gives information about the third moment of the
structural shocks. The rank of J,, is 7k (Js,s.) = ms. The rank of the complete matrix of the

Jacobian J respective to the structural parameters :

— JUU79S Ja’u,ens 0
J_[JWS . J} (1)

can then be shown to be equal to rk[J] = r = rs + rys + rs., where rg = n X mg, rps = w —

W and 75, = mg. First, consider the rank of the following block diagonal submatrix

Ja'u,ens O
[ : J] | (c2)

The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, namely
n(n+1 ms)(ms+1
rk(JUV70ns) + Tk:(‘]suﬁe) = ( 2 ) - ( )(2 ) + ms.
Second, the rank of (C.1) equal the rank of (C.2) plus the rank of Jy, except if there exists at

least one linear combination of the columns from the matrix .Jy, which corresponds to a column
of (C.2). In the following, it is shown that such linear combination does not exist for a full rank
matrix ©. We show that such linear combination does not exist in two steps : i) there is no linear
combination of Jy, which yields a column of Jp, ; and ii) there is no linear combination of Jp, which

yields a column of Js_. For i), consider the submatrix [Jp, Jp, ] which is

— Jau,es ']Uu,ens
Jy = [JWS : } .

The rank of Jy equal to the rank of the submatrix J,, g, plus the rank of the submatrix J,, g,...
Thus rk(Jp) = n X ms + n(n;l) - (ms)(;nerl). Indeed, the rank of the bloc matrix Jp is equal

/
to the rank of the matrix [ ! J! } plus the rank of the matrix J,, g, using the following

ov,0s Su,0s OUns

inequalities for the rank of upper triangular block matrix (Lemma 1):

,rk(‘]g'l/,@ns) + Tk(‘]su,gs) S Tk(J@) S Tk(Ja'u,gns) + Tk; (|:JO-V798:|> :

Su,0s
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Here, we have

Jo
Tk(JU”’Hn‘S) + Tk(JSlMOS) = ’rk(JO'u,ens) + rk <|: V’98:|> ‘

Sv,0s

For ii), we show that there is no linear combination of Jp, that yields a column of Js_. In the

preceding section, we show that rk [Js, ¢, Js, 0

Uns

Js,.s.) = 7k [Js, 0.] which implies that it exists an

appropriated matrix A of dimension (n - mg) x mg such that [Js, 9,] A = Jg, s, since the submatrix

Js, 60 = 0 is a matrix of zeros. Define each column of the matrix A by A; for ¢ = 1,... M.
For a matrix © of full rank, all w X n submatrices [Jou,ei,s} are necessarily of full rank so

there is no vector such as [Jowg ] A; = 0 for Vi where i indexes the elements of the vector 6,

corrresponding to the column ¢ of the matrix ©. This implies that the rank of the matrix J equals
n x mg+ "(n;l) - (ms)(;n“’ﬂ) +ms. Given that [J,, g, ] Ai # 0 for i = 1,...,m and that Jy, g, is

of full rank, there is no linear combination of the columns of the matrix .Jy, that that corresponds

to a column of the matrix (C.2) since the Jacobian matrix respective of the structural parameter
Jp is of full rank. This completes the proof.

The same results hold for the case which exploits only the fourth moments of the structural
shocks by modifying properly the dimension of the matrices and the notation.

For the general case

']Uu’ess Jouyenn Jguyesn ']Uu’ensn JUV75€ JO’IMK‘E
J = Js Js,,,@,m Js Js sz,se Js
J,{le/ vgss JKS 79m< Jlif) 793n JN Jng »Se JHIeJ 7’{2

vi0ss vi0sk viOnsk vyRE

Svgnsn

which equals

JUV7955 Jguaamn Jauyesn Jo'luensn 0 0
J = Jsuyess 0 Jsuﬁsn 0 J5V7se O (Cg)
0 Jﬁzﬁnenn J’ffnesn 0 0 Jlﬁg,lﬁ?g

First, consider the block diagonal submatrix containing the last subgroup of columns

Jauyensn 0 O
0 s, e 0 . (C.4)
0 0 Jre re
The rank of this submatrix equals the sum of the rank of the block diagonal submatrices, 7&k(Jy, 4,.,. )+
’rk(!]sl,,se) + Tk(Jngﬁg) — n(n;‘l) _ (mss“l‘mmm"l‘msﬁ)(727155+mmm+m5ﬁ+1) + ms + M.
By an argument similar to the one above, the rank of the submatrix
Jgu)ess Ja’l/aenn Ja'lnesn
Jsuyess O JSV705K (05)

O Jnsagnn Jn]e/798.‘1

35From Appendix B, A; corresponds to the column of matrix 6, divided by 3 times the respective measure of
skewness.
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/
equals the sum of rank of the submatrix [J;V’gss Jé,,,ess} and the rank of [J,i;i 9 J,ﬁgm], using

Lemma 1 and the fact that rk[Jg.,. Jo..] = rk [J,ig,@m J,igje_m} = n X My + N X Mge. The
rank of (C.5) is then n X mgs + n X Mgk + n X mg,. Now, one needs to show that the rank
of the complete Jacobian matrix (C.3) is the sum of the rank of (C.4) and (C.5). First, the
o’ O’}/ equals the rank of (C.5) plus the
rank of J,, by the lower triangular block structure of this submatrix (by Lemma 1) which is

"(";1) — (m”+m““+m“)(;n”+m““+m“+1). By a proof similar to the

rank of the submatrix containing (C.5) and [J’

Uuyansn

X Mgg + N X Myge + M X Mgy +

one to the case under asymmetry only, for a full rank matrix ©, there is no linear combination of

(C.5) that can yield a column of the last two submatrices of (C.4), i.e.

0 0
sz,se 0
0 Jngaﬁg

The rank of J is then equals to rk[Jy,,| + rk[Jy,..] + rk[Jo,.] + rk[Js,..]

+ k[ Js,| + mk[Jee] =
n(n2+1) _ (mss‘f'mmm‘f'msn)(g”ss'f'mmm'f'msn'i‘l)) + Mg + my.

nxmss—i-nxmm—i—nxms,{—i—(
Finally, Corollary 1 results from that there is no linear combination of (C.5) that can yield a

column of the last two submatrices of (C.4)

Appendix D: Asymptotic Distribution of the Rank Test

_—~_LR — W
First, we derive the asymptotic distribution of the statistics CRT,. and CRT,.. Under the
assumption in section 3.1 for K¢, E[||/|®] < oo and the estimator K€ is a root-T consistent for the

3

n x n° excess cokurtosis matrix K of the normalized reduced-form innovations. In this context,

the asymptotic distribution of I?f; is
TY2pec(KE — K¢) 5 N(0,T)

where I is finite.

Now, suppose that the matrix K7, is of rank 7* < n. The singular value decomposition of K
gives K¢ = CAD’ where A is a diagonal matrix with the singular values on the diagonal. Let
A1, A2, ..., Ap be the singular values of the matrix A ordered in decreasing values. For a matrix K
of rank equal to 7*, the first r* singular values are different from zero and the last n — r* singular
values are equal to zero. Thus

C'KD — Cl.KED,~ Cl.KED,3_ A
v Cl_K:Dp C)_ W KED,3_ .
The submatrix C},_,..KE¢D,s_, corresponds to the null space of K¢ which is the object of interest
(see Al-Sadoon, 2017). We have

n
S 82 = vee(@) e KG Dys )| = [vee(CryeCly o KDy u Dl )|

r n—r*
i=r*4+1
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where Up_p» = CppxCl_ . and Vyz_ .« = Dn3—r*D:~b3_r* are the orthogonal projectors onto the
space spanned by the left and the right null space singular vectors.?%

The vectorization of this matrix yields
vee (Un-p KWy ) = (Voo @ O ) wee(RY).

Since Tl/zvec(l?s — K&) — N(0,T"), the convergence in probability of the orthogonal projectors
Up—ye 2, Up—r= and XA/ns,T* Ll V,3_+37 and r 2 I, this implies that

~ ~ / ~
T2 (Vn?,_r* ® Un_r*) vee(Ke — K&) 55 N (0,(Viys_y ® Un—p) T (Vigs_pe. @ Up—y))

Statistics CRT f*R and CRT Z‘*/ converge asymptotically to
Tr(XX,.) 4+ 0p(1) = vec(X,+) vec(Xy+) + 0p(1)

where X~ = T/? < e ® Uﬁ—r*) vec(K¢ — K©). Both statistics have a limiting distribution
given by Zf*zl 6" Z2 where 6 > ... > 4I. are the non-zero ordered eigenvalues of the matrix
(Viys_ye @ Up—p ) T (Viys_ye @ Up—pr) and {Z;}!_, are independent N(0,1) variates. The limiting
distribution is then a weighted sum of t* independent chi-squared variables with one degree of
freedom and the weights are given by the non-zero eigenvalues ¢; “fori=1,...,t". An estimator of
the cumulative distribution function is obtained using the estimated counterparts of the matrices
Un—, Vys_p» and T and the c.d.f. of the corresponding weighted sum of Z?2 for i = 1,...,t* which
can be easily evaluated by simulation.

Now we show that the subvector ulr’*yt obtained by bootstrapping the vector wff;’t = @{* 1y for
b=1,..., B implies that X? L \; where 5\27 are the bootstrap estimators of the r* largest singular
values and 5\Z are the sample estimators. Suppose a vector z with the following relation with a

vector u:
Zt = C'ut
where C' is orthonormal. We have the following relation for the excess cokurtosis

Ki=CK.(C®C®0)

36Unlike to Robin and Smith (2000) and Bura and Yang (2011) but similarly to Portier and Delyon (2014), we
consider orthogonal projection matrices U,,—,+ and V,3_,«. The orthogonal projection matrices are invariant to the
choice of a basis while the singular vectors in Cy,—+ and D,;s_,.« are uniquely defined only up to post-multiplication by
an orthogonal matrix in a case of a multiplicity of singular values. Moreover, the orthogonal projection is continuous
in the elements of the matrix, a necessary condition to guarantee the convergence in probability (see Dufour and
Valéry, 2012).

37See Al-Sadoon, 2017, Theorem 1.
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For the quadratic form of the excess cokurtosis
KK = C'K;(CoC®0)(C'eC'aC)K{C=CK; KC.

By the eigenvalue decomposition K¢ K¢ = CA*C’ which implies K¢{K¢ = = = diag(A\], ..., A2.,0,...,0)
for a matrix K of rank r* with the eigenvalues in descending order, where the eigenvalues are the
square of the singular values );. Thus, linear combinations of the normalized reduced-form inno-
vations wpx = A,’,*ﬁt capture the excess cokurtosis of the vector of the normalized reduced-form
innovations where CA';‘ are the first * columns of C corresponding to the singular values A1, ..., A\p=.
The subvector u?m is generated by bootstrapping the vector wy. , = 57{* ay for b=1,...,B. Thus,

for a consistent estimator of the excess cokurtosis K7, of ub, , for b=1,..., B, a given matrix C
r* ’

A~ o~

and by the continuity of the singular values, S\i’(f(zb I?Z; ) Ll 5\1( A;* e ;’&*) fori=1,...,r%

Appendix E: Empirical sizes and powers of rank tests for symmetry

This appendix reports the empirical sizes and powers of rank tests for symmetry. Table E.1 shows
the empirical sizes. The Wald test with asymptotic distributions has empirical sizes that slightly
deviate from the nominal ones, and the likelihood-ratio test with limiting distributions has empirical
sizes that are substantially smaller than the nominal counterparts. In contrast, both the Wald and
likelihood-ratio tests with finite-sample distributions feature empirical sizes that are almost identical
to the nominal sizes, regardless of the number of observations in the sample.

Table E.2 displays the empirical powers. For the Wald and likelihood-ratio tests with finite-
sample distributions, the powers substantially improve as the sample size increases and as the

structural shocks become more skewed.
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Table E.1. Empirical Sizes of Rank Tests: Skewness

Asymptotic Distributions

Finite-Sample Distributions

r*=0 r*=0
Wald LR Wald LR
T 0% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 8.72 392 0.53 2.68 0.63 0.01 942 4.65 0.98 9.56 4.85 1.01
200 9.99 4.66 0.80 5.81 191 0.12 10.17 5.25 0.98 10.19 5.20 1.00
500 993 469 081 797 3.36 0.41 10.14 5.04 1.10 10.29 4.99 1.12
1,000 9.73 4.63 0.70 8.65 3.94 0.52 9.82 4.91 0.92 9.87 490 0.92
5,000 10.03 5.22 1.09 9.90 4.97 1.02 10.02 5.10 1.12 9.98 5.11 1.11
r*=1 r*=1
Wald LR Wald LR
T 0% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
100 11.83 5.79 1.52 7.86 3.22 0.51 11.41 6.35 1.47 1141 6.35 1.47
200 10.87 5.30 1.18 8.60 3.66 0.53 9.11 4.86 142 9.11 4.86 1.42
500 10.89 5.20 1.06 9.74 4.42 0.63 9.29 4.,55 1.07 9.29 455 1.07
1,000 9.97 4.82 1.03 945 4.36 0.86 839 426 1.02 839 4.26 1.02
5,000 10.61 5.59 1.02 10.05 5.47 0.99 9.20 4.68 0.96 9.20 4.68 0.96

Notes. Entries are the empirical sizes (in percentage) of the rank tests with asymptotic and finite-sample distributions
under the null hypothesis that Tk[Su] = 1" The empirical sizes are evaluated for the bivariate specification (1)—
(2), where the parameters are set as follows: a;= —0.5, o= 0.5 and wi1= wo= 1. Also, the distributions are
€24~ N(0,1), and i) €14~ N(0,1) under 7*= 0 or ii) 2.1755 X €1 4~ N(1,1) with probability 0.7887 and
2.1755 x €147~ N(—3.7326, 1) with probability 0.2113 under 7*= 1. For each parametrization, 10,000 simulated
samples of size I are generated to compute the proportions of time that the Wald statistic C/R\T :1/ and the likelihood-
ratio (LR) statistic @f* associated with S, exceed the critical values. The asymptotic critical values are
computed as shown in Appendix D. The finite-sample critical values are computed by the bootstrap procedure

elaborated in Section 4.2.
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Table E.2. Empirical Powers of Rank Tests with Finite-Sample Distributions: Skewness

Skewness = —0.5231 Skewness = —0.9907
r*=0 r* =0
Wald LR Wald LR
T 10 % 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 20.71 11.44 2.42 20.88 11.46 2.53 72.05 46.66 10.43 69.95 44.82 10.53

200 41.02 26.70 850 40.58 26.40 8.15 99.35 96.85 74.28 99.23 96.33 67.90
500 8298 71.28 42.66 82.82 70.93 41.24 100.0 100.0 100.0 100.0 100.0 100.0
1,000 99.11 97.66 8894 99.10 97.64 88.51 100.0 100.0 100.0 100.0 100.0 100.0

r* =1 r*=1
Wald LR Wald LR
T 10% 5% 1% 10 % 5% 1% 10% 5% 1% 10% 5% 1%
100 16.35 8.05 1.31 16.35 8.05 1.31 88.27 78.73 4191 89.15 78.75 41.91
200 41.12 27.24 8.06 41.12 27.24 8.06 99.70 99.20 94.65 99.70 99.20 94.65
500 86.85 78.10 53.80 86.85 78.10 53.80 100.0 100.0 100.0 100.0 100.0 100.0
1,000 99.49 98.65 94.17 99.49 98.65 94.17 100.0 100.0 100.0 100.0 100.0 100.0

Notes. Entries are the empirical powers (in percentage) of the rank tests with finite-sample distributions under the
null hypothesis that Tk[Su] = 7", The empirical powers are evaluated for the bivariate specification (1)—(2), where
the parameters are set as follows: o= —0,5, o= 0.5 and wi= wo= 1. For r*= 0, the distributions are: i)
€247~ N(0,1) as well as 1.6808 x €1, N(1,1) with probability 0.5 and 1.6808 x €147~ N(—1,2.65) with
probability 0.5 when €1 ¢ exhibits a skewness of —0.5231, and ii) €2 ¢~ N(O, 1) as well as 2.1755 X €1 ¢~ N(l, 1)
with probability 0.7887 and 2.1755 X €1 4~ N(—3.7326, 1) with probability 0.2113 when €1,¢ exhibits a skew-
ness of —0.9907. For r*= 1, the distributions are: i) 1.6808 x €3 ;~ N(1,1) and 1.6808 x € ;~ N(1,1) with
probability 0.5 as well as 1.6808 X €9 1~ N(—1,2.65) and 1.6808 x €147~ N(—1,2.65) with probability 0.5
when each shock exhibits a skewness of —0.5231, and ii) 2.1755 X €24~ N(l, 1) and 2.1755 X €1,t7 N(l, 1)
with probability 0.7887 as well as 2.1755 X €34~ N(—3.7326, 1) and 2.1755 X €1 4~ N(—3.7326,1) with
probability 0.2113 when each shock exhibits a skewness of —0.9907. For each parametrization, 10,000 simu-
lated samples of size T are generated to compute the proportions of time that the Wald statistic C/R\T Z[: and
the likelihood-ratio (LR) statistic @ T*R associated with S, exceed the finite-sample critical values, where the

latters are computed by the bootstrap procedure elaborated in Section 4.2.
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Appendix F: Estimates of the structural parameters

Table F.1 shows the estimates of the structural parameters involved in system (30).

Table F.1. Parameter Estimates

Parameter ar=0 a1 =208 B =0
a; 1.9409***  2.0800T 1.8359%*
Qs 0.0000f  —0.5711* 0.0728
I3 0.3797**  —0.1482*  0.0000f
B —0.0015  0.0095* —0.0030
" —0.0013  —0.0021  0.0002
Y2 0.0439 0.3235%*  0.2516™**
Wy 0.0474**  0.0473**  0.0474***
Wy 0.0064**  0.0071***  0.0068***
wy 0.0050***  0.0048**  (0.0048***

KE1101 2.8284***  2.8135%*  2.8114***

Notes. Entries correspond to the estimates of the parameters of system (30). *, **, and * * * indicate, respectively,
that the 90, 95, and 99 percent confidence interval does not include zero, where the confidence intervals are computed
from 5,000 bootstrap samples. { indicates that the parameter is constrained. The restrictions co= 0, a1= 2.08,

and 51: 0 imply that O19= a1932, 013= a1933, and f93= 0.
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