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Abstract

This paper proposes Pearson-type statistics based on implied probabilities to detect struc-

tural change. The class of generalized empirical likelihood estimators (see ?) assigns a set of

probabilities to each observation such that moment conditions are satisfied. These probabil-

ities are called implied probabilities. The proposed test statistics for structural change are

based on the information content in these implied probabilities. We consider cases of struc-

tural change with unknown breakpoint which can occur in the parameters of interest or in the

overidentifying restrictions used to estimate these parameters. We also propose a structural

change test based on implied probabilities that is robust to weak identification or cases in

which parameters are completely unidentified. The test statistics considered here have good

size and competitive power properties. Moreover, they are computed in a single step which

eliminates the need to compute the weighting matrix required for GMM estimation.
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1 Introduction

This paper proposes structural change tests based on implied probabilities resulting from

estimation methods based on unconditional moment restrictions. The generalized method of

moments (GMM) is the standard method to estimate parameters through moment restric-

tions. Monte Carlo results reveal, however, that GMM estimators may be seriously biased in

small samples.1 Recently, a number of alternative estimators to GMM have been proposed.

? suggested the continuous updating estimator (CUE) which shares the same objective func-

tion as GMM but with a weighting matrix that depends on the parameters of interest. The

empirical likelihood (EL) (see ?) and the exponential tilting (ET) estimators (see ?) have also

been proposed. ? showed that tests for the validity of moment restrictions based on EL have

optimal properties in terms of large deviations. In particular, EL-based tests are shown to be

more powerful than other standard tests. These alternative estimators are special cases of the

generalized empirical likelihood (GEL) class considered by ? and may be shown to be based

on the ? family of power divergence criteria. ? showed (in an i.i.d. setting) that, although

estimators based on GMM, EL, ET or CU have the same first-order asymptotic distribution,

they have different higher-order asymptotic properties. Amongst their findings, it is shown

that the expression for the second-order asymptotic bias of GEL has fewer components than

the one of GMM (with EL having the fewest). ? extended the Newey and Smith setting to

allow for weakly dependent data correlation and show that the asymptotic bias of smoothed

GEL estimators is less than GMM estimators, especially with many moment conditions.

GEL estimators assign a probability to each observation such that the moment condi-

tions are satisfied (see ?). This resulting empirical measure is called implied probabilities.

An interpretation of the implied probabilities is the following: less weight is assigned to an

observation for which the moment restrictions are not satisfied at the estimated values of the

parameters and more weight to an observation for which the moment restrictions are sat-

isfied. As suggested by ?, implied probabilities may then provide a useful diagnostic device

for model specification. In particular, implied probabilities may contain interesting informa-

tion to detect instability in the sample. Consequently, we propose to use these weights in

detecting an unknown structural change in the model. ? use the weights given by the im-

plied probabilities to propose a three-step estimator with higher-order asymptotic properties

equivalent to those of EL. ? also discusses the use of these weights in the context of model

misspecification. ? considered Pearson-type test statistics (statistics based on the difference

between restricted and unrestricted estimators of the weights) for the validity of moment

1See in particular the special issue of Journal of Business and Economic Statistics, 1996, volume 14.
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restrictions and parametric restrictions using implied probabilities.

The proposed test statistics to detect structural change are based on different measures of

the discrepancy between these implied probabilities and the unconstrained empirical prob-

abilities 1
T (T is the sample size). The test statistics fall in three categories: 1) general

structural change tests to detect instability in the identifying restrictions and in the overi-

dentifying restrictions; 2) structural change tests specifically designed to detect instability in

the identifying restrictions (see for example ?) and 3) structural change tests to detect insta-

bility in the overidentifying restrictions (see for example ?). As an additional contribution

of this paper, we propose a boundedly pivotal structural change test based on implied prob-

abilities robust to cases of weak identification or cases in which parameters are completely

unidentified. In particular, our derivation allows us to examine the power of the test under

different assumptions about identification, and so for general alternatives about parameters

instability. The asymptotic distributions of the test statistics are derived under the null hy-

pothesis and under the alternative of an unknown breakpoint. In a simulation study, we find

that targeted tests based on implied probabilities performed very well if the structural change

corresponds to the target. That is, if instability is present in the identifying restrictions or

in the overidentifying restrictions, then the targeted tests have good size and competitive

power properties compared to more standard structural change tests for GEL criteria (see

?). Overall, the test statistics based on implied probabilities considered in this paper have a

nice intuitive appeal, are based on an estimation method that has been shown to have nice

higher-order asymptotic properties and are computed in a single step which eliminates the

need to compute the weighting matrix required to perform alternative structural change tests

in GEL or GMM settings. This weighting matrix is often linked to the poor finite sample

properties of GMM-based estimators and test statistics.

The paper is organized as follows. A discussion on GEL estimators are presented in section

2. Section 3 presents formally the full-sample and partial-sample GEL estimators. Section

4 presents the test statistics proposed based on the implied probabilities. The simulation

results are in Section 5 while the proofs are in the Appendix.

2 Discussion of GEL estimators

In this section we present the estimators used in this paper. We start with an entropy-

based formulation of the problem which puts emphasis on the informational content of the

estimated weights. We then move to the more recent GEL formulation (see ? and ?).

We consider a triangular array of random variables {xTt : 1 ≤ t ≤ T, T ≥ 1}. Triangular
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arrays are considered because they are required to examine the results under local alterna-

tives. For notational simplicity xt refers to xTt hereafter. Suppose we have a q × 1 vector

function of the data, g(xt, θ), which depends on some unknown p-vector of parameters θ ∈ Θ

with Θ ⊂ Rp and that in the population their expected value is 0, namely

E[g(xt, θ0)] = 0.

We study the overidentifying case with q > p. Now letting the T -vector of explicit weights

(explicit because the weights are used directly in estimation as opposed to the implicit weights

obtained via GMM estimation, as explained by ?) be {πt : 1 ≤ t ≤ T, T ≥ 1} we can recast

the population moment conditions as

Eπ[g(xt, θ0)] = 0.

The vector π is determined by finding the most probable data distribution of the outcomes

given the data. We can think of π as containing information on the content of the moment

conditions. Therefore, g(x, θ) is viewed as a message. That is, when π is small, the message is

informative and vice-versa. This relation is summarized by the function f(π) = − lnπ. The

average information is then

S(π) ≡ Eπf(π) = −
T∑
t=1

πt lnπt.

In this case, S(π) can be interpreted as the entropy measure of ? and it captures the

degree of uncertainty in the distribution π with respect to whether or not the distribution is

concentrated or dispersed. The vector π is obtained by maximizing entropy

maxS(π) = −
T∑
t=1

πt lnπt,

subject to
∑T
t=1 πt = 1 and

∑T
t=1 πtg(xt, θ) = 0.

With no constraint, we get πt = 1/T ∀t, the maximally uninformative uniform distri-

bution, while with constraints, we want to choose πt to be as maximally uninformative as

the moment conditions will allow. We do not want to assert more about the distribution

than is known via the moment conditions. In this sense, the probabilities make use of all

the information that is available, and nothing more. In particular, we focus on detecting

a structural change in the moment conditions. With no structural change, the weights will

fluctuate around 1/T , otherwise the entropy formulation will attempt to reduce the weight

on the observation characterized by the change, and at the same time put more weights on

the remaining observations so as to make S(π) as large as possible.
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We can transpose this formulation using the ? information criterion which measures the

discrepancy between two distributions p and π. If the subject distribution is π and the

reference distribution is pt = 1/T, ∀t we have

KLIC(π, p = 1/T ) =
T∑
t=1

πt[ln(πt)− ln(1/T )] =
T∑
t=1

πt ln(πt) + ln(T ).

So that maximizing entropy is equivalent to minimizing theKLIC(π, p = 1/T ). Estimates

of π, given θ, are obtained by maximizing S(π) (or by minimizing KLIC(π, p = 1/T )) subject

to the weighted zero functions and the probability constraint. The solution to the Lagrangian

yields

πETt (θ) =
exp(γ′g(xt, θ))∑T
t=1 exp(γ′g(xt, θ))

where the q-vector γ contains the Lagrange multipliers and as such measures the degree

of departure from zero of the moment conditions and ET stands for exponential tilting.

Estimates of θ are obtained by substituting π in S(π), maximizing it with respect to γ and

then with respect to θ (see for example ?).

If we interchange the subject/reference distributions we get

KLIC(p = 1/T, π) =
T∑
t=1

(1/T )[ln(1/T )− ln(πt)]

and the solution to the optimization problem yields a different set of weights given by

πELt (θ) =
1

T [1 + γ′g(xt, θ)]

where EL stands for empirical likelihood. When we evaluate the weights at some estimators

we obtain πETt (θ̃T ) and πELt (θ̃T ). Recently, ? combined ET and EL into the ETEL estimator

that combines the advantages of each approach.

We mentioned in the introduction that less weight is assigned to an observation for

which the moment conditions are not satisfied. In this section we have seen that the vector π

contains all the relevant information with respect to the moment conditions. We now provide

a graphical illustration of the use of the weights in the detection of a structural change. We

consider a small simulation study that contains three examples that have been studied in

the structural change and entropy literature. The first example, which encompasses three

cases, is similar to the one used by ? and consists of estimating a single parameter, θ, with

2 moment conditions:

E [xt − θ] = 0 and E
[
(xt − θ)2 − 4

]
= 0
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with a sample of 100 observations and xt = θt + εt where εt ∼ N(0, 4). We consider a pulse,

a break and a regime shift cases. In the pulse case we have θt = 5 for t = 50 and θ = 10

otherwise. For the break case we have θt = 10 for t ≤ 20 and t > 80 while θt = 15 for

21 ≤ t ≤ 80. Finally, the regime shift case has θt = 10 for t ≤ 20 and θt = 15 otherwise. In

these cases, structural change occurs via the parameters and can be tested using procedures

proposed by ? and by ?.

In contrast, the next two examples consist of structural change through the moment

conditions. Following ? and ? we study a simulated environment with CRRA preferences

and making a distributional assumption on consumption growth, xt, with i.i.d data and

T = 100. In particular, we assume that consumption growth follows a N(0, σ2 = 0.16).

There is a single parameter to be estimated, γ, the coefficient of CRRA and two moment

conditions are used:

Et exp[−γ lnxt+1 − 9σ2/2 + (3− γ)zt] = 1

Etzt exp[−γ lnxt+1 − 9σ2/2 + (3− γ)zt − 1] = 0

with zt ∼ N(0, σ2). The moment conditions are satisfied when γ = 3. The structural break

occurs in period 51 and is summarized by a shift in γ from 3 to 4.

Lastly, as in ?, we have the estimation of an autoregressive parameter using two moment

conditions when the data generating process is an AR(1) (xt = ρxt−1 + εt), for t ≤ 50,

and an ARMA(1, 2) otherwise (xt = ρxt−1 + εt + 0.5εt−2). There are 100 observations and

εt ∼ N(0, 1). The two instruments used are the first and second lags of xt. The two moment

conditions are then:

E [xt−1 (xt − ρxt−1)] = 0

E [xt−2 (xt − ρxt−1)] = 0.

The instability occurs because the second moment condition is violated for t > 50.

Figure 1 shows the average of the vector of implied probabilities π over 10,000 replications.

The key feature of these panels is that when there is no break, the weights fluctuate around

1/T = 1/100 (upper right panel). With a structural break in the parameter or in the moment

conditions, however, more weight is given to observations (and moment conditions) for which

there is no break while less weight is assigned to an observation which violates the moment

conditions. This simple simulation study clearly show that implied probabilities contain

interesting information to detect structural change. In this paper, we examine the information

contained in the estimated implied probabilities to detect structural change and propose test

statistics based on some function of these implied probabilities.
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Now following the recent econometric literature on GEL (see ?, ?, ?, ?, ? and ?), we

let ρ(φ) be a function of a scalar φ that is concave on its domain, an open interval Φ that

contains 0. Also, let Γ̃T (θ) = {γ : γ′g(xt, θ) ∈ Φ, t = 1, . . . , T}. Then, the GEL estimator is

a solution to the problem

θ̃T = arg min
θ∈Θ

sup
γ∈Γ̃T (θ)

T∑
t=1

[ρ(γ′g(xt, θ))− ρ0]
T

where ρj() = ∂jρ()/∂φj and ρj = ρj(0) for j = 0, 1, 2, . . . . Under this formulation, a number

of estimators can be obtained. First, the ET estimator of θ is found by setting ρ(φ) =

− exp(φ). Second, the EL estimator of θ by setting ρ(φ) = ln(1− φ). Third, the continuous

updating estimator of ? can also be obtained from the GEL formulation by using a quadratic

function for ρ(φ), −(1 + φ)2/2.

As in the GMM context an adjustment for the dynamic structure of g(xt, θ) can also be

made in the GEL context (see ?, ?, ? and ?). The adjustment consists of smoothing the

original moment conditions g(xt, θ). Defining the smoothed moment conditions as

gtT (θ) =
1
MT

t−1∑
m=t−T

k

(
m

MT

)
g(xt−m, θ)

for t = 1, . . . , T and MT is a bandwidth parameter, k(·) a kernel function and we define

where kj =
∫∞
−∞ k(a)jda. In the time series context, the criteria is then given by:

T∑
t=1

[ρ(kγ′gtT (θ))− ρ0]
T

where k = k1
k2

(see ?).

3 Full and partial-samples GEL estimators

To establish the asymptotic distribution theory of tests for structural change in the

parameters based on implied probabilities we need to elaborate on the specification of the

parameter vector in our generic setup. We will consider parametric models indexed by param-

eters (β, δ). With no structural change we define a vector of parameters (β, δ) ⊂ B×∆ ∈ Rp

with p = r+ ν. Following ?, we make a distinction between pure structural change when no

subvector δ appears and the entire parameter vector is subject to structural change under the

alternative and partial structural change which corresponds to cases where only a subvector

β is subject to structural change under the alternative. The generic null can be written as

follows:

H0 : βt = β0 ∀t = 1, . . . , T. (1)
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The tests considered assume as alternative that at some point in the sample there is a

single structural break. For example,

βtT =
{
β1(s) t = 1, ..., [Ts]
β2(s) t = [Ts] + 1, ..., T

where s determines the fraction of the sample before and after the assumed breakpoint and

[.] denotes the greatest integer function. The separation [Ts] represents a possible breakpoint

which is governed by an unknown parameter s ∈ S ⊂ (0, 1). Hence, we will consider a setup

with a parameter vector which encompasses any kind of partial or pure structural change

involving a single breakpoint. In particular, we consider a 2r + ν dimensional parameter

vector θ = (β′1, β
′
2, δ
′)′ where β1 and β2 ∈ B ⊂ Rr and θ ∈ Θ = B × B ×∆ ⊂ R2r+ν . The

parameters β1 and β2 apply to the samples before and after the presumed breakpoint and

the null implies that:

H0 : β1 = β2 = β0. (2)

We will formulate all our models in terms of θ. Special cases could be considered whenever

restrictions are imposed in the general parametric formulation. One such restriction would

be that θ0 = (β′0, β
′
0)′, which would correspond to the null of a pure structural change

hypothesis. Once moment conditions are defined, we will translate them into a subspace

identifying the parameters and a subspace for the overidentifying restrictions and relate

these two translations to structural change tests, following the analysis of ? and ?.

3.1 Definitions

We need to impose restrictions on the admissible class of functions and processes in-

volved in estimation to guarantee well-behaved asymptotic properties of GEL estimators

using the entire data sample or subsamples of observations. A set of regularity conditions is

also required to obtain weak convergence of partial-sample GEL estimators to a function of

Brownian motions. To streamline the presentation we provide a detailed description of them

in Appendix 7.1.

In the GEL setting, the parameter vector θ is augmented by a vector of auxiliary parame-

ters γ where each element of this vector is associated to an element of the smoothed moment

conditions gtT (θ). Under the null of no structural change relative to the specification of the

model, the generic null hypothesis for this vector of auxiliary parameters can be written as

follows:

H0 : γt = γ0 = 0 ∀t = 1, . . . , T. (3)

As for the parameter vector β, the tests that we will consider assume as alternative that
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at some point in the sample there is a single structural break, namely:

γt =
{
γ1 t = 1, ..., [Ts]
γ2 t = [Ts] + 1, ..., T.

Thus, under the null of no structural change H0 : γ1 = γ2 = γ0 = 0. ? show that a structural

change in γ is associated with instability in the overidentifying restrictions.

We now formally define the GEL estimator using the full sample.

Definition 3.1. Let ρ(φ) be a function of a scalar φ that is concave on its domain, an open

interval Φ that contains 0. Also, let Γ̃T (β, δ) = {γ : kγ′gtT (β, δ) ∈ Φ, t = 1, . . . , T} with

k = k1
k2

. Then, the full-sample GEL estimator {(β̃T , δ̃T )} is a sequence of random vectors

such that: (
β̃′T , δ̃

′
T

)′
= arg min

(β,δ)∈B×∆
sup

γ∈eΓT (β,δ)

T∑
t=1

[ρ (kγ′gtT (β, δ))− ρ0]
T

where ρj() = ∂jρ()/∂φj and ρj = ρj(0) for j = 0, 1, 2, . . . .

The criteria is normalized so that ρ1 = ρ2 = −1 (see ?). This GEL estimator encompasses

the ET, EL and CU estimators, as mentioned earlier. Let θ̃T =
(
β̃′T , β̃

′
T , δ̃
′
T

)′
be a 2r +

ν-vector. Hereafter, the vector θ̃T is called the full-sample estimator of θ. This restricted

estimator is consistent only under the null that β1 = β2.

The GEL estimator is obtained as the solution to a saddle point problem. Firstly, the

criterion is maximized for given vector (β, δ). Thus,

γ̃T (β, δ) = arg sup
γ∈Γ̃(β,δ)

T∑
t=1

[ρ (kγ′gtT (β, δ))− ρ0]
T

.

Secondly, the GEL estimator
(
β̃′T , δ̃

′
T

)′
is given by the following minimization problem:

(
β̃′T , δ̃

′
T

)′
= arg min

(β,δ)∈B×∆

T∑
t=1

[
ρ
(
kγ̃T (β, δ)′ gtT (β, δ)

)
− ρ0

]
T

.

To characterize the asymptotic distribution we define the following matrices:

Ω = lim
T→∞

V ar

(
1√
T

T∑
t=1

g(xt, β0, δ0)

)
.

Gβ = lim
T→∞

1
T

T∑
t=1

E∂g(xt, β0, δ0)/∂β′ ∈ Rq×r,

Gδ = lim
T→∞

1
T

T∑
t=1

E∂g(xt, β0, δ0)/∂δ′ ∈ Rq×ν ,
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G = [ Gβ Gδ ] ∈ Rq×p,

where p = r + ν. From now on, following ? and ? we focus on the truncated kernel defined

by

k(x) = 1 if |x| ≤ 1 and k(x) = 0 otherwise

to obtain the following smoothed moment conditions

gtT (β, δ) =
1

2KT + 1

KT∑
j=−KT

g(xt−j , β, δ).

To handle the endpoints, we use the approach of ? and ? which sets

gtT (β, δ) =
1

2KT + 1

min{t−1,KT }∑
j=max{t−T,−KT }

g(xt−j , β, δ).

We can easily show for this kernel that k = k1
k2

= 1. A consistent estimator of the long-run

covariance matrix is then given by:

Ω̃T =
2KT + 1

T

T∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′.

The weighting matrix obtained using this type of kernel is similar to the one obtained with

the Bartlett kernel estimator of the long-run covariance matrix of the moment conditions

(see ?). Define also the derivatives of the smoothed moment conditions as:

GtT (β, δ) =
1

2KT + 1

KT∑
j=−KT

∂g(xt−j , β, δ)
∂ (β′, δ′)

.

Now consider a possible breakpoint [Ts]. Define the vector of auxiliary parameters γ(s) =

(γ1(s)′, γ2(s)′)′ where γ1 is the vector of the auxiliary parameters for the first part of the

sample e.g. t = 1, . . . , [Ts] and γ2 for the second part of the sample; t = [Ts] + 1, . . . , T . The

partial-sample GEL estimators for s ∈ S based on the first and the second subsamples are

formally defined as:

Definition 3.2. Let ρ(φ) be a function of a scalar φ that is concave on its domain, an

open interval Φ that contains 0. Also, let Γ̂T (θ, s) = {γ(s) = (γ′1, γ
′
2)′ : kγ(s)′gtT (θ, s)}. A

partial-sample General Empirical Likelihood (PS-GEL) estimator {θ̂T (s)} is a sequence of

random vectors such that:

θ̂T (s) = arg min
θ∈Θ

sup
γ(s)∈Γ̂T (θ,s)

T∑
t=1

[ρ(kγ(s)′gtT (θ, s))− ρ0]
T

= arg min
θ∈Θ

sup
γ(s)∈Γ̂T (θ,s)

[Ts]∑
t=1

[ρ(kγ′1gtT (β1, δ))− ρ0]
T

+
T∑

t=[Ts]+1

[ρ(kγ′2gtT (β2, δ))− ρ0]
T


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for all s ∈ S, where gtT (θ, s) = (gtT (β1, δ)′, 0′)
′ ∈ R2q×1 for t = 1, . . . , [Ts] and gtT (θ, s) =

(0′, gtT (β2, δ)′)
′ ∈ R2q×1 for t = [Ts] + 1, . . . , T with γ(s) = (γ′1, γ

′
2)′ ∈ R2q×1.

According to the definition above θ̂T (s) =
(
β̂1T (s)′, β̂2T (s)′, δ̂T (s)′

)′
is a 2r + ν-vector

with an estimator β̂1T (s) that uses the first subsample t = 1, . . . , [Ts], an estimator β̂2T (s)

that uses the second subsample t = [Ts] + 1, . . . , T and an estimator δ̂T (s) that uses all the

sample.

To be more precise, the first-order conditions corresponding to the Lagrange multiplier γ

are obtained from the maximization of the partial-sample GEL criterion for a given β1, β2, δ.

Thus,

γ̂1T (β1, δ, s) = arg sup
γ1∈Γ̂1T (β1,δ,s)

[Ts]∑
t=1

[ρ(kγ1(β1, δ)′gtT (β1, δ))− ρ0]
T

,

γ̂2T (β2, δ, s) = arg sup
γ2∈Γ̂2T (β2,δ,s)

T∑
t=[Ts]+1

[ρ(kγ2(β2, δ)′gtT (β2, δ))− ρ0]
T

.

with Γ̂1T (β1, δ, s) = {γ1 : kγ′1gtT (β1, δ) ∈ Φ, t = 1, . . . , [Ts]} and Γ̂2T (β2, δ, s) = {γ2 :

kγ′2gtT (β2, δ) ∈ Φ, t = [Ts] + 1, . . . , T}.

We need to define Ω(s) as

Ω(s) = lim
T→∞

V ar

(
1√
T

[ ∑[Ts]
t=1 g(xt, β0, δ0)∑T

t=[Ts]+1 g(xt, β0, δ0)

])

which under the null (2) is asymptotically equal to

Ω(s) =
[
sΩ 0
0 (1− s)Ω

]
.

We also define

G(s) =
[
sGβ 0 sGδ

0 (1− s)Gβ (1− s)Gδ

]
∈ R2q×(2r+ν).

A consistent estimator of estimator Ω(s) is given by

Ω̂T (s) =
[
sΩ̂1T (s) 0

0 (1− s)Ω̂2T (s)

]
.

with

Ω̂1T (s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β̂1T (s), δ̂T (s))gtT (β̂1T (s), δ̂T (s))′

and

Ω̂2T (s) =
2KT + 1
T − [Ts]

T∑
t=[Ts]+1

gtT (β̂2T (s), δ̂T (s))gtT (β̂2T (s), δ̂T (s))′.
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We now present the corresponding implied probabilities. The general formula of the im-

plied probabilities for the full-sample GEL estimator is defined by the following ratio (see

Smith, 2004):

πGELt (θ̃T ) =
ρ1

(
γ̃′T gtT (θ̃T )

)
∑T
t=1 ρ1

(
γ̃′T gtT (θ̃T )

) .
Implied probabilities for the full-sample ET, EL and CU estimators with the smoothed

moment conditions are respectively given by:

πETt (θ̃T ) =
exp[γ̃T ′gtT (θ̃T )]∑T
t=1 exp[γ̃′T gtT (θ̃T )]

,

πELt (θ̃T ) =
1

T [1 + γ̃′T gtT (θ̃T )]
,

and

πCUEt (θ̃T ) =
1
T
− 1
T
gtT (θ̃T )

[
1
T

T∑
t−1

gtT (θ̃T )gtT (θ̃T )′
]−1

1
T

T∑
t=1

gtT (θ̃T ).

Note that 2K+1
T

∑T
t−1 gtT (θ̃T )gtT (θ̃T )′ is a consistent estimator of Ω.

The general formula for the unrestricted partial-sample implied probabilities for the GEL

are defined for s ∈ S as:

πGELt (θ̂T (s), s) =
ρ1

(
γ̂T (s)′gtT (θ̂T (s), s)

)
∑T
t=1 ρ1

(
γ̂T (s)′gtT (θ̂T (s), s)

) . (4)

For example, in the case of t between observations 1 and [Ts], we get for the unrestricted

implied probabilities at t:

πGELt (β̂1T (s), δ̂T (s), s) =
ρ1

(
γ̂1T (s)′gtT (β̂1T (s), δ̂T (s))

)
∑T
t=1 ρ1

(
γ̂1T (s)′gtT (β̂1T (s), β̂2T (s), δ̂T (s), s)

) .
with γ̂1T (s) = γ̂1T

(
β̂1T (s), δ̂T (s), s

)
.

For the commonly used GEL partial-sample estimators, we get

πETt (θ̂T (s), s) =
exp[γ̂T (s)′gtT (θ̂T (s), s)]∑T
t=1 exp[γ̂T (s)′gtT (θ̂T (s), s)]

,

πELt (θ̂T (s), s) =
1

T [1 + γ̂T (s)′gtT (θ̂T (s), s)]
,

πCUEt (θ̂T (s), s) =
1
T
− 1
T
gtT (θ̂T (s), s)

[
1
T

T∑
t−1

gtT (θ̂T (s), s)gtT (θ̂T (s), s)′
]−1

1
T

T∑
t=1

gtT (θ̂T (s), s).

The purpose of the next subsection is to refine the null hypothesis of no structural change.

Such a refinement will enable us to construct various tests for structural change in the spirit

of ? and Hall and Sen (1999).
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3.2 Refining the null hypothesis

The moment conditions for the full sample under the null can be written as:

Eg(xt, θ0) = 0, ∀t = 1, . . . , T. (5)

Following ?, we can project the moment conditions on the subspace identifying the param-

eters and the subspace of overidentifying restrictions. In particular, considering the (stan-

dardized) moment conditions for the full-sample GMM estimator, such a decomposition

corresponds to:

Ω−1/2Eg(xt, θ0) = PGΩ−1/2Eg(xt, θ0) + (Iq − PG)Ω−1/2Eg(xt, θ0), (6)

where PG = Ω−1/2G
[
G′Ω−1G

]−1
G′Ω−1/2. The first term is the projection identifying the

parameter vector and the second term is the projection for the overidentifying restrictions.

The projection argument enables us to refine the null hypothesis (2). For instance, following

Hall and Sen (1999) we can consider the null, for the case of a single possible breakpoint s,

which separates the identifying restrictions across the two subsamples:

HI
0 (s) =

{
PGΩ−1/2E[g(xt, θ0)] = 0 ∀t = 1, . . . , [Ts]
PGΩ−1/2E[g(xt, θ0)] = 0 ∀t = [Ts] + 1, . . . , T.

Moreover, the overidentifying restrictions are stable if they hold before and after the

breakpoint. This is formally stated as HO
0 (s) = HO1

0 (s) ∩HO2
0 (s) with:

HO1
0 (s) : (Iq − PG)Ω−1/2E[g(xt, θ0)] = 0 ∀t = 1, . . . , [Ts]

HO2
0 (s) : (Iq − PG)Ω−1/2E[g(xt, θ0)] = 0 ∀t = [Ts] + 1, . . . , T.

The projection reveals that instability must be a result of a violation of at least one of

the three hypotheses: HI
0 (s), HO1

0 (s) or HO2
0 (s). Various tests can be constructed with local

power properties against any particular one of these three null hypotheses (and typically no

power against the others). To elaborate further on this we consider a sequence of Pitman

local alternatives based on the moment conditions:

Assumption 3.1. A sequence of local alternatives is specified as:

Eg(xTt, θ0) =
h(η, τ, tT )
√
T

(7)

where h(η, τ, s), for r ∈ [0, 1], is a q-dimensional function. The parameter τ locates structural

changes as a fraction of the sample size and the vector η defines the local alternatives.2

2The function h(·) allows for a wide range of alternative hypotheses (see Sowell (1996b)). In its generic form

it can be expressed as the uniform limit of step functions, η ∈ Ri, τ ∈ Rj such that 0 < τ1 < τ2 < . . . < τj < 1

and θ∗ is in the interior of Θ. Therefore it can accommodate multiple breaks.
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Note that the true structural change breakpoint τ is allowed to differ from the possible

breakpoint s chosen by the researcher. These local alternatives are chosen to show that the

structural change tests presented in this paper have non trivial power against a large class

of alternatives. Also, our asymptotic results can be compared with Sowell’s results for the

GMM framework.

Following the decomposition in equation (6) , the sequence of alternatives can be rewritten

as:

Ω−1/2Eg(xTt, θ0) = PGΩ−1/2h(η, τ, tT )
√
T

+ (Iq − PG) Ω−1/2h(η, τ, tT )
√
T

(8)

where the first component is the local alternative on the identifying moments and the second

is the local alternative on the overidentifying restrictions.

For instability in the parameter vector, consider a general local alternative of the form

(see ?)

βTt = β0 +
f(η, τ, tT )
√
T

for t = 1, . . . , T . A Taylor expansion of g(xTt, θTt) yields

Eg(xTt, β0) = −Gβ
f(η, τ, tT )
√
T

+ op(1). (9)

If we substitute this expression into (8), the expression above is orthogonal to the second

component of (8) and therefore puts restrictions on the first component (the identifying re-

strictions). In the case of pure structural PG = PGβ = Ω−1/2Gβ

[
G′βΩ−1Gβ

]−1

G′βΩ−1/2.

The alternative that at some point there is a single structural break at τ , HI
A(τ), is repre-

sented as:

βTt =
{
β0 t = 1, ..., [Tτ ]
β0 + η√

T
t = [Tτ ] + 1, ..., T

which corresponds to a specific form for f(η, τ, tT ).

For instability of the overidentifying restrictions at a single breakpoint τ occurring before

and/or after the breakpoint, this is formally stated as HO
A (τ) = HO1

A (τ) ∩HO2
A (τ) with:

HO1
A (τ) : (Iq − PG)Ω−1/2E[g(xt, θ0)] =

η1√
T

∀t = 1, . . . , [Tτ ]

HO2
A (τ) : (Iq − PG)Ω−1/2E[g(xt, θ0)] =

η2√
T

∀t = [Tτ ] + 1, . . . , T.

and η1 6= η2.3 This formulation of the alternative for a single breakpoint corresponds to a

specific form of h(η, τ, tT ) in (8).

3This specification allows for the overidentifying restrictions to be violated just after the breakpoint (η1 = 0

and η2 6= 0), just before the breakpoint (η1 6= 0 and η2 = 0) or both (η1 6= 0, η2 6= 0 and η1 6= η2).
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4 Tests for a structural change based on implied probabilities

Ramalho and Smith (2005) introduced in an i.i.d. setting a specification test for moment

conditions based on implied probabilities similar in spirit to the classical Pearson chi-square

goodness-of-fit test. The test is based on the following statistic:

T∑
t=1

(
TπGELt (θ̃T )− 1

)2

.

They showed that such statistic is asymptotically equivalent to the overidentifying moment

restrictions J-test proposed by ?. ? and ? also used this statistic in the time series context

and showed that:

1
2K + 1

T∑
t=1

(
Tπt(θ̃T )− 1

)2

(10)

is asymptotically first-order equivalent to the overidentifying moment restrictions J-test.

However, as shown by ?, the J-test has no power to detect structural change in parameter

values, a property that is shared by the specification tests, (11), and the one just above, as

we demonstrate below.

In the same spirit, we first consider a test statistic based on the partial-sample implied

probabilities evaluated at the restricted estimator for GEL. The implied probabilities struc-

tural change (IPSC) test statistic proposed to detect instability is given by the following

partial sum:

IPSCGELT (s) =
s

2KT + 1

[Ts]∑
t=1

(
TπGELt (θ̃T , s)− 1

)2

(11)

with

πGELt (θ̃T , s) =
ρ1

(
γ̃1T (s)′gtT (θ̃T , s)

)
∑T
t=1 ρ1

(
γ̃T (s)′gtT (θ̃T , s)

) ,
where for the numerator γ̃1T (s) = γ̃1T (β̃T , δ̃T , s) is the solution of the following maximization

problem:

γ1T (β, δ, s) = arg sup
γ1∈Γ̂T (β,δ,s)

[Ts]∑
t=1

[ρ(γ1(β, δ)′gtT (β, δ))− ρ0]
T

(12)

evaluated at the restricted estimator θ̃T and for the denominator γ̃T (s) = (γ̃1T (s)′, γ̃2T (s)′)′

with γ̃1T (s) defined as above and

γ2T (β, δ, s) = arg sup
γ2∈Γ̂T (β,δ,s)

T∑
t=[Ts]+1

[ρ(γ2(β, δ)′gtT (β, δ))− ρ0]
T

. (13)
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at θ̃T . It is crucial to note that this statistic is based on the unrestricted implied probabil-

ities evaluated at the restricted estimator of θ.

The next Theorem establishes the asymptotic distribution for this general test of a struc-

tural change under the null and the sequence of alternatives defined in (7).

Theorem 4.1. Under Assumptions (7.1) to (7.12), the following processes indexed by

s for s ∈ [0, 1] satisfy, under the null (5),

IPSCGELT (s)⇒ BBp(s)′BBp(s) +B′(q−p)(s)B(q−p)(s)

and under the alternative (7)

IPSCGELT (s) ⇒ BBp(s)′BBp(s) + (H(s)− sH(1))′Ω−1/2PGΩ−1/2 (H(s)− sH(1))

+Bq−p(s)′Bq−p(s) +H(s)′Ω−1/2 (I − PG) Ω−1/2H(s),

where B(q−p)(s) is a (q− p)-vector of standard Brownian motion, BBp(s) = Bp(s)−
sBp(1) is a p-vector of Brownian bridge with p = r + ν and H(s) =

∫ s
0 h(η, τ, r)dr.

Proof: See the Appendix.

The Theorem shows that the structural change test based on this quadratic form of the

partial-sample sum of the implied probabilities evaluated at the full-sample estimator com-

bines two components. The first component of the limiting distribution, which is a function

of Brownian bridges, corresponds to a stability test for the whole set of parameters (β and

δ) and the second component to a stability test for the overidentifying restrictions. This

test statistic, based on implied probabilities, can be viewed as a more general form of mis-

specification due to instability than just a test for parameter variation. The predictive tests

proposed by Ghysels, Guay and Hall (1997) shares the same properties. In the Appendix we

show that the IPSC test is asymptotically equivalent to the test statistic proposed by ?.

He showed that his test statistic is optimal for a one time jump in all moment conditions

where the location of the jump is unknown and consistent for arbitrary alternatives. These

properties are then shared by our test. Note that the limiting distribution exists for s = 0

which is trivially equal to 0. For s = 1, the test statistic corresponds to the specification

test for moment conditions developed by ? and ? and by the above Theorem the limiting

distribution is given by:

Bq−p(1)′Bq−p(1) +H(1)′Ω−1/2 (I − PG) Ω−1/2H(1).

This limiting distribution shows that this test statistic has a chi-square distribution with

q − p degrees of freedom under the null and has local power equal to the size to detect
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instability in parameter values, as the J-test proposed by Hansen (1982). Moreover, the test

statistic (10) can not detect asymptotically instability in the overidentifying restrictions for

which (I − PG) Ω−1/2H(1) = 0.

When the breakpoint is unknown, one can construct statistics across s ∈ S. In the context

of maximum likelihood estimation, ? derive asymptotic optimal tests for a gaussian a priori

of the amplitude of the structural change based on the Neyman-Pearson approach which are

characterized by an average exponential form. The ? optimal tests are a generalization of the

Andrews and Ploberger approach to the case of two measures that do not admit densities.

The most powerful test is given by the Radon-Nikodym derivative of the probability measure

implied by the local alternative with respect to the probability measure implied by the null

hypothesis.

The optimal average exponential form applied to a statistic QT (s) for s ∈ S has the

following form:

Exp−QT = (1 + c)−q/2
∫

exp
(

1
2

c

1 + c
QT (s)

)
dJ(s),

where various choices of c determine power against close or more distant alternatives and

J(·) is the weight function over the value of s ∈ S. In the case of close alternatives (c = 0),

the optimal test statistic takes the average form, aveQT =
∫
S
QT (s)dJ(s). For a distant

alternative (c = ∞), the optimal test statistics takes the exponential form, expQT =

log
(∫
S

exp[ 1
2QT (s)]dJ(s)

)
. The supremum form often used in the literature corresponds to

the case where c
(1+c) →∞. The sup test is given by supQT = sups∈S QT (s).

The following Theorem gives the asymptotic distribution for the average exponential

mapping for QIPSCT (s) where QIPSCT (s) corresponds to the statistic presented above based

on the implied probabilities.

Theorem 4.2. Under the null hypothesis H0 in (5) and Assumptions 7.1 to 7.12, the

following processes indexed by s for a given set S whose closure lies in [0,1] satisfy:

supQIPSCT ⇒ sup
s∈S

Qp,q−p(s), aveQIPSCT ⇒
∫
S
Qp,q−p(s)dJ(s), expQIPSCT ⇒ log

(∫
S

exp[
1
2
Qp,q−p(s)]dJ(s)

)
,

with

Qp,q−p(s) = BBp(s)′BBp(s) +B(q−p)(s)
′B(q−p)(s)

and J(s) is the weighting distribution function for the location of the instability s.

This result is obtained through the application of the continuous mapping theorem (see

?). The asymptotic critical values were obtained using simulated Brownian motions and
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Brownian bridges over 10,000 replications for maximum values of p and q− p set at 10. The

critical values appear in Tables 1 to 3 for symmetric intervals S = [s0, 1− s0]. Critical values

for the entire sample appear at s0 = 04.

An asymptotically equivalent modified statistic to (11) in the spirit of the Neyman-

modified chi-square test is given by:

IPSCMGEL
T (s) =

s

2KT + 1

[Ts]∑
t=1

(
TπGELt (θ̃T , s)− 1

)2

TπGELt (θ̃T , s)

since TπGELt (θ̃T , s) = 1 + op(1) under the null.

In the sequel, we propose structural change tests based on implied probabilities spe-

cially designed to detect instability in the parameters of interest or in the overidentifying

restrictions.

4.1 Tests for a structural change in the parameters based on implied

probabilities

The test statistics proposed to specifically detect parameter instability are based on

the difference between the partial sum of unrestricted implied probabilities evaluated at the

unrestricted estimator θ̂T (s) and the partial sum of unrestricted implied probability evaluated

at the restricted estimator θ̃T . More precisely the test statistic is defined as:

IPSCI,GELT (s) =
1

2KT + 1

T∑
t=1

(
TπGELt (θ̂T (s), s)− TπGELt (θ̃T , s)

)2

with

πGELt (θ̃T , s) =
ρ1

(
γ̃T (s)′gtT (θ̃T , s)

)
∑T
t=1 ρ1

(
γ̃T (s)′gtT (θ̃T , s)

) ,
where γ̃T (s) = (γ̃1T (s)′γ̃2T (s)′)′ is the solution of the respective maximization problems

defined in equations (12) and (13) and πGELt (θ̂T (s), s) is defined in equation (4).

The next Theorem establishes the asymptotic distribution for this test of structural

change in the parameter values under the null that the vector β is constant throughout

the sample.

Theorem 4.3. Under the null hypothesis H0 in (2) and Assumptions (7.1) to (7.12), the

following processes indexed by s for a given set S whose closure lies in (0, 1) satisfy:

IPSCI,GELT (s)⇒ Qr(s) =
BBr(s)′BBr(s)

s(1− s)
4Tables 1 to 3 can be obtained at http://coffee.econ.brocku.ca/jfl/research
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and under the alternative (7)

Qr(s) =
BBr(s)′BBr(s)

s(1− s)
+

(H(s)− sH(1))′Ω−1/2PGβΩ−1/2 (H(s)− sH(1))
s(1− s)

,

where BBr(s) = Br(s)− sBr(1) is a Brownian bridge, Br is r-vector of independent

Brownian motions and PGβ = Ω−1/2Gβ
[
(Gβ)′Ω−1Gβ

]−1 (Gβ)′Ω−1/2. Moreover,

sup IPSCI,GELT ⇒ sup
s∈S

Qr(s), aveIPSCI,GELT ⇒
∫
S
Qr(s)dJ(s),

expIPSCI,GELT ⇒ log

(∫
S

exp[
1
2
Qr(s)]dJ(s)

)
.

Proof: See the Appendix.

The Theorem shows that the asymptotic distribution of the test based on implied proba-

bilities is asymptotically equivalent under the null and the alternative to the Wald, LM and

LR tests for parameter instability (see Andrews, 1993). More precisely, the limiting distribu-

tion is function of a r-vector of Brownian bridge with the same dimension as the parameter

vector β. However, the small sample properties of tests based on implied probabilities can

differ to those of more standard tests. Note that, in contrast to Theorem 4.2, the limiting

distribution in Theorem 4.3 is valid only for S in the open interval (0, 1).

The two following modified statistics are asymptotically equivalent to the one defined

above:

IPSCM1I,GELT (s) =
1

2KT + 1

T∑
t=1

(
TπGELt (θ̂T (s), s)− TπGELt (θ̃T , s)

)2

TπGELt (θ̂T (s), s)

and

IPSCM2I,GELT (s) =
1

2KT + 1

T∑
t=1

(
TπGELt (θ̂T (s), s)− TπGELt (θ̃T , s)

)2

TπGELt (θ̃T , s)
.

4.2 Tests for a structural change in the overidentifying restrictions based

on implied probabilities

Now, we propose a test statistic based on implied probabilities designed specially to detect

instability in the overidentifying restrictions. The statistic is powerful against violation of

HO1
0 (s) and HO2

0 (s) and is asymptotically equivalent to the ones proposed by Hall and Sen

(1999) and thus shares its asymptotic properties, but perhaps not its small sample properties.

As previously, the sample is split in two subamples with a single breakpoint at [Ts]. An

estimator of the parameter vector is obtained with the first subsample (for t = 1, . . . , [Ts])
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and with the second subsample (for t = [Ts] + 1, . . . , T ). The entire parameter vector is

allowed to vary for both subsamples. The proposed statistic designed to detect instability in

the overidentifying restrictions is based on the specification test for moment conditions given

in equation (10) for the first and second subsamples.

More precisely the statistic is defined as:

IPSCO,GELT (s) =
1

2KT + 1

[Ts]∑
t=1

(
[Ts]πGELt (θ̂1T (s), s)− 1

)2

+
1

2KT + 1

T∑
t=[Ts]+1

(
(T − [Ts])πGELt (θ̂2T (s), s)− 1

)2

where θ̂1T (s) = β̂1T (s) and θ̂2T (s) = β̂2T (s). The statistic is the sum of the overidentifying

restrictions statistics (10) but for the first and the second parts of the sample evaluated at

the unrestricted estimator.

The next Theorem establishes the asymptotic distribution of this statistic and the corre-

sponding mappings.

Theorem 4.4. Under Assumptions (7.1) to (7.12), the following processes indexed by

s for a given set S whose closure lies in (0, 1) satisfy

IPSCO,GELT (s)⇒ Qq−r(s)

with under the null of no structural change

Qq−r(s)⇒
Bq−r(s)′Bq−r(s)

s
+

[Bq−r(1)−Bq−r(s)]′ [Bq−r(1)−Bq−r(s)]
1− s

and under the alternative (7)

Qq−r(s) ⇒
Bq−r(s)′Bq−r(s)

s
+
H(s)′Ω−1/2 (I − PG) Ω−1/2H(s)

s

[Bq−r(1)−Bq−r(s)]′ [Bq−r(1)−Bq−r(s)]
1− s

+
[H(1)−H(s)]′Ω−1/2 (I − PG) Ω−1/2 [H(1)−H(s)]

(1− s)
,

where Bq−r(s) is a q − r-vector of standard Brownian motion and PG = PGβ with

PGβ = Ω−1/2Gβ

(
G′βΩ−1Gβ

)−1
G′Ω−1/2. Moreover,

sup IPSCO,GELT ⇒ sup
s∈S

Qq−r(s), aveIPSCO,GELT ⇒
∫
S
Qq−r(s)dJ(s),

expIPSCO,GELT ⇒ log

(∫
S

exp[
1
2
Qq−r(s)]dJ(s)

)
.
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Proof: See the Appendix.

The Theorem shows that the proposed test statistics can detect instability occurring in

overidentifying restrictions before and after the breakpoint. Indeed, the term H(s)′Ω−1/2(I−PG)Ω−1/2H(s)
s

corresponds to a structural change in the moment conditions before the breakpoint s while

the term
[H(1)−H(s)]′Ω−1/2(I−PG)Ω−1/2[H(1)−H(s)]

(1−s) to a structural change after the breakpoint s.

The asymptotic critical values for the interval S = [.15, .85] can be found in Hall and

Sen (1999). For other symmetric interval [s0, 1− s0], critical values can be obtained in Guay

(2003), Tables 1 to 3 for a number of overidentifying restrictions divided by 2 (in those

tables). To see this, note that the critical values for the supremum, the average and the log

exponential mappings applied to B2q−2r(s)′B2q−2r(s)
s are equivalent to ones corresponding to

Bq−r(s)′Bq−r(s)
s + (Bq−r(1)−Bq−r(s))′(Bq−r(1)−Bq−r(s))

1−s for a symmetric interval S.5

An asymptotically equivalent statistic to IPSCO,GELT (s) in the spirit of the Neyman-

modified chi-square test is given by:

IPSCMO,GEL
T (s) =

1
2KT + 1

[Ts]∑
t=1

(
[Ts]πGELt (θ̂1T (s), s)− 1

)2

[Ts]πGELt (θ̂1T (s), s)

+
1

2KT + 1

T∑
t=[Ts]+1

(
(T − [Ts])πGELt (θ̂2T (s), s)− 1

)2

(T − [Ts])πGELt (θ̂2T (s), s)
.

4.3 A structural change test robust to weak identification or cases in

which parameters are completely unidentified

We propose here a test statistic robust to the context of weak identification, as defined

by ?, or robust to cases in which parameters are completely unidentified. Consider the pure

structural change case with θ = (β′, β′)′. We need to introduce a restricted estimator θ̃T (s)

obtained with the partial-sample GEL objective function. A restricted partial-sample General

Empirical Likelihood estimator {θ̃T (s)} is a sequence of random vectors such that:

θ̃T (s) = arg min
θ∈Θ

sup
γ(s)∈Γ̃T (θ,s)

T∑
t=1

[ρ(kγ(s)′gtT (θ, s))− ρ0]
T

= arg min
β∈B

sup
γ(s)∈Γ̃T (θ,s)

[Ts]∑
t=1

[ρ(kγ′1gtT (β))− ρ0]
T

+
T∑

t=[Ts]+1

[ρ(kγ′2gtT (β))− ρ0]
T


5This is verified by comparing the critical values in Hall and Sen (1999) and Guay (2003). The critical values

in Table 1 in Hall and Sen for q − r in our notation are the same than the critical values in Guay (2003) but for

2q − 2r.
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for all s ∈ S where gtT (θ, s) = (gtT (β)′, 0′)′ ∈ R2q×1 for t = 1, . . . , [Ts] and gtT (θ, s) =

(0′, gtT (β)′)′ ∈ R2q×1 for t = [Ts] + 1, . . . , T with γ(s) = (γ1(s)′, γ2(s)′)′ ∈ R2q×1 and

Γ̃T (θ, s) = {γ(s) = (γ1(s)′, γ2(s)′)′ : kγ(s)′gtT (θ, s)}

The statistic is defined as:

IPSCR,GELT (s) =
1

2KT + 1

[Ts]∑
t=1

(
[Ts]πGELt (θ̃T (s), s)− 1

)2

+
1

2KT + 1

T∑
t=[Ts]+1

(
(T − [Ts])πGELt (θ̃T (s), s)− 1

)2

.

The statistic depends on unrestricted implied probabilities for the first and the second

parts of the sample evaluated at the restricted partial-sample GEL estimators.

We show in the Appendix that this test statistic is asymptotically equivalent at first-order

to the S-based test in ?. The test statistic is not asymptotically pivotal but asymptotically

boundedly pivotal. The bound is then free of nuisance parameters and robust to identification

problems under the null. The following theorem gives this asymptotic bound under the null

of no structural change and the local alternative (7).

Theorem 4.5. Under Assumptions (7.1) to (7.12), the following processes indexed by

s for a given set S whose closure lies in (0, 1) satisfy

IPSCR,GELT (s)⇒ Qq(s)

are asymptotically boundedly pivotal and the asymptotic bound distribution is given

by:

Qq(s)⇒
Bq(s)′Bq(s)

s
+

[Bq(1)−Bq(s)]′ [Bq(1)−Bq(s)]
1− s

under the null of no structural change and under the alternative (7) by

Qq(s) ⇒
Bq(s)′Bq(s)

s
+
H(s)′Ω−1H(s)

s
[Bq(1)−Bq(s)]′ [Bq(1)−Bq(s)]

1− s
+

[H(1)−H(s)]′Ω−1 [H(1)−H(s)]
(1− s)

,

where Bq(s) is a q-vector of standard Brownian motion.

Proof: See the Appendix.

The asymptotic bounds are valid for strong, weakly identified and completely unidentified

cases. Critical values under the null for the different mappings are given in the same tables

as those of subsection 4.2. The asymptotic bound under the local alternative allows us to
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examine the power of the test under different assumptions with respect to identification.

Consider the decomposition of the alternative according to (8), namely

h(η, τ, tT )
√
T

= PGβΩ−1/2h(η, τ, tT )
√
T

+
(
Iq − PGβ

)
Ω−1/2h(η, τ, tT )

√
T

.

This decomposition and the asymptotic bound under the alternative show that the ability

of the test statistic to detect a structural change in the parameter values depends on the

Jacobian matrix Gβ (see equation 9). Under weak identification, Gβ has a weak value which

means that Gβ,T (θ0) = C√
T

for a C matrix of dimension q× p. In this case, the test statistic

has trivial power equals to the size. Obviously, it is also the case when the parameters are

unidentified because G = 0. In fact, the test statistic will detect instability in parameter

values for alternatives such that h(η,τ, tT )

Tα for α ≥ 1 in the weak identification (again see ?).

For instance, the test statistic will detect structural change in the parameter values with no

trivial power for the following fixed alternative:

HI
A(s) =

{
βTt = β0 ∀t = 1, . . . , [Ts]
βTt = β0 + η ∀t = [Ts] + 1, . . . , T.

The discussion above also holds for the S-based test statistic proposed by ? who derived the

bound only under the null.

5 Simulation evidence

To evaluate the performance of the test statistics, and to facilitate comparison with

previous studies, we use the data generating process found in Ghysels et al. (1997) and in

Hall and Sen (1999). The time series model used is an AR(1) process for the variable xt.

One parameter is estimated, the autoregressive parameter (denoted by θ in the expression

below), using two moment conditions formed with the lagged values of xt.

The data generating process is given by

xt = θixt−1 + ut (14)

for t = 1, . . . , T . Structural change in the identifying restrictions (in the parameter) is studied

by considering different values of θi where the index i = 1, 2 denotes the first or second

subsamples. Structural change in the overidentifying restrictions is studied by allowing for

an ARMA(1,2) model

xt = θixt−1 + ut + αut−2 (15)

and considering nonzero values of α in the second subsample. The break is set at T/2. In the

above, ut ∼ N(0, 1). The sample size was set to 200 observations and the number of Monte
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Carlo replications was 2000 (for each replication one constrained and 242 unconstrained

optimization problems were solved for a total of 486,000 numerical optimization).

Table 4 summarizes the different parameterizations. The null hypothesis of structural

stability is denoted by HSS
0 (DGP 1 to 3). For those DGPs we vary the magnitude of

the autoregressive parameter θ. The alternatives of instability in the parameters or in the

overidentifying restrictions are denoted by HI
A (DGP 4 to 6), where we vary the magnitude of

the change in the autoregressive parameter, and HO
A (DGP 7 to 10) where we consider various

values of the moving average parameter, respectively. In this situation only one parameter

is estimated using two moment conditions created with the first two lags of xt. Under HSS
0 ,

where α = 0, the instruments are appropriate. Under the first class of alternative hypothesis

(HI
A) the two instruments are also valid while they no longer are for the second part of the

sample with the second class of alternative hypothesis (HO
A ).

Smoothing the moment conditions can be done via an appropriate choice of KT . In a

GMM setting this is equivalent to using some form of estimate of the long-run covariance

matrix of the moment conditions (for example using the Newey-West estimator as the weight

matrix in quadratic form). Most of the previous simulation work considered a fixed degree

of smoothing (see for example ? and ?). ? did look at fixed smoothing but also looked at

applying the automatic bandwidth selection rule of Newey and West (1994).

Our Monte Carlo study is not particularly designed to investigate smoothing because

under the null hypothesis the optimal value of KT is 0 while it is not 0 under the alternative

hypothesis HO
A . For this reason we set KT = 0 for all DGPs except DGPs 7, 8, 9 and 10.

For these DGPs we select a bandwidth parameter chosen via the automatic, data-driven,

procedure which chooses a bandwidth mT which is then transformed as KT = [(mT − 1)/2].

The average, taken over Monte Carlo replications, KT was found to vary between 1.6 and

2.3, increasing with the moving average component. A complete analysis of the effects of

smoothing is left for future work. Lastly, a trimming rule of 0.15 was used, namely S =

[.15, .85].

Table 5 contains the results for the general specification tests IPSC and IPSCM (the

supremum, exponential and average version of the test statistics are presented). Table 6

contains the rejection frequencies for the test statistics designed to have power against a

structural change in the parameters while Table 7 presents the results for test statistics which

are designed to have power against a structural change in the overidentifying restrictions. All

test statistics were computed in the GEL setting using exponential tilting. The tests used

for comparison appear in ?. For completeness we report the Wald, LM, LR and O tests (all

24



computed in a GEL environment) below:

WaldT (s) = T
(
β̂1T (s)− β̂2T (s)

)′
(V̂Ω(s))−1

(
β̂1T (s)− β̂2T (s)

)
,

where V̂Ω(s) =
(
V̂1(s)/s+ V̂2(s)/(1− s)

)
and V̂i(s) =

(
Ĝβi,tT (s)′Ω̂−1

i,T (s)Ĝβi (s)
)−1

for i = 1, 2

corresponding to the first and the second part of the sample. For the first part of the sample:

Ĝβ1,tT (s) =
1

[Ts]

[Ts]∑
t=1

∂gtT (β̂1(s), δ̂(s))
∂β′1

Ω̂1T (s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β1(s), δ)gtT (β̂1(s), δ̂(s))′

and for the second part of the sample:

Ĝβ2,tT =
1

T − [Ts]

T∑
t=[Ts]+1

∂gtT (β̂2(s), δ̂(s))
∂β′2

Ω̂2T (s) =
2KT + 1
T − [Ts]

T∑
t=[Ts]+1

gtT (β̂2(s), δ̂(s))gtT (β̂2(s), δ̂(s))′.

The Lagrange Multiplier statistic is given by:

LMT (s) =
T

s(1− s)
g1T (θ̃T , s)′Ω̂−1

T ĜβtT

[
(ĜβtT )′Ω̂−1

T ĜβtT

]−1

(ĜβtT )′Ω̂−1
T g1T (θ̃T , s).

where

g1T (θ̃T , s) =
1
T

[Ts]∑
t=1

gtT (θ̃T ),

ĜβtT =
1
T

T∑
t=1

∂gtT (β̃, δ̃)
∂β′

,

Ω̂T =
2KT + 1

T

T∑
t=1

gtT (β̃, δ̃)gtT (β̃, δ̃)′.

The LR-like statistic is defined as:

LRT (s) =
2T

2K + 1

 T∑
t=1

[
ρ(γ̃(s)′gtT (θ̃, s))− ρ0

]
T

−
T∑
t=1

[
ρ(γ̂(s)′gtT (θ̂(s), s))− ρ0

]
T


And finally, the test statistic proposed by Hall and Sen (1999) is

OT (s) = O1T (s) +O2T (s)

where

O1T (s) =

 1√
[Ts]

[Ts]∑
t=1

gtT (β̂1(s), δ̂(s))

′ Ω̂−1
1T (s)

 1√
[Ts]

[Ts]∑
t=1

gtT (β̂1(s), δ̂(s))


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and

O2T (s) =

 1√
(T − [Ts])

[T ]∑
t=[Ts]+1

gtT (β̂2(s), δ̂(s))

′ Ω̂−1
2T (s)

 1√
(T − [Ts])

∑
t=[Ts]+1

gtT (β̂2(s), δ̂(s))


Focusing first on size, all tests, except the modified tests, have rejection frequencies that

are quite good, with some overrejection except for the O test statistics which slightly under-

rejects. The supremum and exponential versions of the test statistics show some overrejection

while the average version exhibits rejection frequencies closer to the desired sizes. The LM

test statistics (supremum, average and exponential mappings) significantly underreject for

all DGPs (1 to 3) under the null and have poor power for other DGPs. For these reasons,

the rejection frequencies for the LM test statistics are not reported in the tables.

The modified tests (IPSCM , IPSCM1I , IPSCM2I and IPSCMO) based on implied

probabilities have rejection frequencies that are much too large. The intuition for this is that

the modified test statistics contain a more volatile term in the denominator which can inflate

the value of the tests and hence increase the rejection frequencies.6

The study of power is divided into two cases. In case 1, structural change occurs in the

parameter θ while in case 2, structural change occurs in the overidentifying restrictions.

Under the alternative of instability in the parameter, HI
A (DGP 4 to 6), we see that the

newly proposed test statistics based on implied probabilities have good rejection frequencies.

The power of these test statistics is greater than the power of the standard Wald and LR

tests. The IPSCO and O test statistics, geared toward instability in the overidentifying

restrictions, have no useful power while the more general specification test, IPSC, has some

reasonable power.

Under the alternative of instability in the overidentifying restrictions, e.g. HO
A , (DGP 7

to 10), we see that the test statistics specially designed to detect a change in the parameter

IPSCI , and the standard Wald and LR tests have little power while the targeted IPSCO

and O tests have very good power. Importantly the tests based on implied probabilities are

seen to have significantly higher power than O tests for all cases. In some cases, the gain

in power can be twice as important. As expected, the general specification tests based on

implied probabilities, IPSC, have rejection frequencies that fall in between those of IPSCO

and IPSCI .

The increase in the autoregressive coefficient from 0 to 0.8 does not impact greatly on

the rejection frequencies under the null hypothesis but under the alternative hypotheses the

6Only the results for the test IPSCM are included in the tables. The results for the other modified tests can

be obtained upon request.
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magnitude of the change is important. Under HI
A, for example, we see that power is close

to unity when the change in the autoregressive parameter is quite extreme (0 to 0.8). Under

HO
A , which captures a change in the overidentifying restrictions, an increase (in absolute

terms) in the moving average coefficient increases power.

Overall, structural change tests based on impled probabilities have very good size and

power properties.

6 Conclusion

As noted by Back and Brown (1993), implied probabilities obtained from estimation of

models using estimating equations could be used as an additional tool for model specification

in the researcher’s tool kit. An important specification test that has received considerable

attention in the econometric literature has been a test for structural stability of either the

underlying key parameters composing the estimation equations and, or, the stability of the

additional equations (the overidentifying restrictions) that are often used in estimation. In

this paper we have focused on the class of estimators based on the Generalized Empirical

Likelihood approach. This approach is appealing intuitively because it requires the search for

a vector of weights, one for each observation, that yields the most probable data distribution.

We view these weights as potentially containing information on the content of the moment

conditions (the estimating equations). In a pure entropy setting with no estimating equations

the vector of weights is found to be maximally uninformative. That is, we obtain weights

fluctuating around 1/T where T is the sample size. With constraints, the weights are chosen

to be as maximally uninformative as the constraints will allow.

In this sense, the weights make use of the available information contained in the sample.

In particular we use the weights to detect an unknown structural change. We suggest different

types of testing procedures for the detection of a structural change each based on different

measures of the discrepancy between the estimated weights and the unconstrained weights
1
T . Specifically, we propose general structural change tests to detect instability both in the

identifying restrictions and in the overidentifying restrictions, instability in the identifying

restrictions and instability in the overidentifying restrictions. We also propose a boundedly

pivotal structural change test based on implied probabilities robust to cases of weak identifi-

cation and cases in which parameters are completely unidentified. We found that tests based

on these implied probabilities have good finite sample size and competitive power properties.

An important attractive feature is that these tests are computed in a single step which elimi-

nates the need to compute the weighting matrix required to perform for alternative structural
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change tests in GEL and for GMM estimation and testing. This weighting matrix is often

linked to the poor finite sample properties of GMM-based estimators and test statistics. An

issue that was not investigated in length in this paper was the impact of smoothing (to take

into account serial dependence) on the performance of the tests. This interesting avenue of

research is left for future work.
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7 Appendix

7.1 Assumptions

We consider triangular arrays because they are required to derived asymptotic results

under the Pitman drift alternatives. Define X to be the domain of g (·, θ) to include the

support of XTt,∀t and ∀T . Let B0 and ∆0 denote compact subsets of Rr and Rν that

contain neighborhoods of β0 and δ0 in the parameter spaces B and ∆. Finally, let µTt denote

the distribution of XTt and let µ̄T = (1/T )
∑T
t=1 µTt. Throughout the Appendix, w.p.a.1

means with probability approaching one; ‖ · ‖ denotes the Euclidean norm of a vector or

matrix;
p→ and d→ denote respectively convergence in probability and in distribution and ⇒

denotes weak convergence as defined by Pollard (1984, pp. 64-66).

Assumption 7.1. {xTt : t ≤ T, T ≥ 1} is a triangular array of X-valued rv’s that is L0-

near epoch dependent (NED) on a strong mixing base {YTt : t = . . . , 0, 1, . . . ;T ≥ 1}, where

X is a Borel subset of Rk, and {µTt : T ≥ 1} is tight on X.7

Define the smoothed moment conditions as:8

gtT (β, δ) =
1
RT

t−1∑
r=t−T

k

(
r

RT

)
g (xTt−r, β, δ)

for an appropriate kernel. From now on, we consider the uniform kernel proposed by Kitamura

and Stutzer (1997):

gtT (β, δ) =
1

2KT + 1

KT∑
r=−KT

g (xTt−r, β, δ) .

Assumption 7.2. KT /T
2 → 0 and KT → ∞ as T → ∞ and KT = Op

(
T

1
2η

)
for some

η > 19.

Assumption 7.3. For some d > max
(

2, 2η
η−1

)
, {g (xTt, β, δ) : t ≤ T, T ≥ 1} is a trian-

gular array of mean zero Rq-valued random variables that are L2-near epoch dependent of

size − 1
2 on a strong mixing base {YTt : t = . . . , 0, 1, . . . ;T ≥ 1}, of size −d/(d − 2) and

sup ‖g (xTt, βδ) ‖d <∞.

Assumption 7.4. V ar
(

1√
T

∑Ts
t=1 g (xTt, β, δ)

)
→ sΩ ∀s ∈ [0, 1] for some positive definite

q × q matrix Ω.

The above assumptions are sufficient to yield weak convergence of the standardized partial

sum of the smoothed moment conditions under the null and the alternatives. In the following,

xt is used to denote xTt for notational simplicity.
7For a definition of Lp-near epoch dependence and tightness, see Andrews (1993, p. 829-830). For a presentation

of the concept of near epoch dependence, we refer the reader to ?.
8Note here that gtT denotes the smoothed moment conditions and xTt a triangular array of random variables.
9This assumption is slightly different than that in Smith (2004) but facilitates the proofs at no real cost.
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Assumption 7.5. g̃ (β0, δ0) = 0 with (β0, δ0) ∈ B×∆ where g̃ (β0, δ0) = limT→∞
∑T
t=1Eg (xt, β, δ)

and B and ∆ are bounded subsets of Rr and Rν , g(xt, β, δ) is continuous in x for all

(β, δ) ∈ B × ∆ and is continuous in (β, δ) uniformly over (β, δ, x) ∈ B × ∆ × C for all

compact sets C ⊂ X.

Assumption 7.6. For every neighborhood Θ0 ⊂ Θ of θ0, infs∈S
(
infθ∈Θ/Θ0 ‖g(θ, s)‖

)
> 0

where g(θ, s) = (sg̃(β1, δ)′, (1− s)g̃(β2, δ)′)
′.

Assumption 7.7. (a) ρ(·) is twice continuously differential and concave on its domain, an

open interval Φ containing 0, ρ1 = ρ2 = −1; (b) γ(s) ∈ Γ(s) where Γ(s) = {γ(s) : ‖γ(s)‖ ≤
D
(
T/(K2

T

)−ζ} for some D > 0 with 1
2 > ζ > 1

d(1−1/η) .

Assumption 7.7 (b) is similar to the assumption in Newey and Smith (2004) and

Smith (2004) but for γ(s) = (γ1(s)′, γ2(s)′)′. It specifies bounds on γ(s) and with the

existence of higher than second moments in Assumption 7.3, it leads to the arguments

γ(s)′gtT (θ, s) being in the domain Φ of ρ(·) w.p.a. 1 in the first subsample for all

β1, δ and 1 ≤ t ≤ [Ts] and in the second subsample for all β2, δ and [Ts]+1 ≤ t ≤ T .

Under Assumptions 7.1, 7.2, 7.3, 7.5, 7.6 and 7.7, Guay and Lamarche (2009)

show for the partial-sample GEL that sups∈S ‖θ̂T (s)− θ0‖
p→ 0, sups∈S ‖γ̂T (s)‖ p→ 0,

‖γ̂T (s)‖ = Op
(
T/K2

T

)−1/2 and sups∈S ‖ 1
T

∑T
t=1 gtT (θ̂T (s), s)‖ = Op(T−1/2).

The consistency of the full-sample GEL estimator is obtained by slight modi-

fications of Assumptions 7.6 and 7.7 (b). Assumption 7.6 must be modified by a

simplified version with g̃(β, δ) instead of g(θ, s). Assumption 7.7 (b) holds but for

the full sample Lagrange multiplier γ. The consistency result that θ̃T
p→ θ0 is then

derived under weaker conditions than in Smith (2004).

The following high level assumptions are sufficient to derive the weak convergence

under the null and the alternative of the PS-GEL estimators θ̂T (s) and γ̂T (s) (see

Guay and Lamarche, 2009). These assumptions are similar to the ones in Andrews

(1993).

Assumption 7.8. sups∈S ‖Ω̂iT (s) − Ω‖ p→ 0 where Ω is defined in Section 3.1 and

S whose closure lies in (0, 1) for i = 1, 2.

Assumption 7.8 holds under conditions given in Andrews (1991) and Lemma A.3

in Smith (2004). To respect these conditions, Assumption 7.3 can be replaced by the

following assumption:

Assumption 7.3′. {g (xTt, θ) : t ≤ T, T ≥ 1} is a triangular array of mean zero

Rq-valued rv’s that is α-mixing with mixing coefficients
∑∞

j=1 j
2α(j)(ν−1)/ν <∞ for
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some ν > 1 and supt≤T,T≥1E‖g (xTt, θ) ‖d <∞ for some d > max
(

4ν, 2η
η−1

)
.

Assumptions 7.3′ and 7.8 guarantee for the full-sample and partial-sample GEL

that

Ω̃T =
2K + 1
T

T∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′
p→ Ω

and

Ω̂T (s) =
2K + 1
T

T∑
t=1

gtT (θ̂T (s), s)gtT (θ̂T (s), s)′
p→ Ω(s).

Now, let G(β, δ) = limT→∞
1
T

∑
t=1T E [∂g(xt, β, δ)/∂ (β′, δ′)] and G = G(β0, δ0).

Assumption 7.9. g(x, β, δ) is differentiable in (β, δ) , ∀ (β, δ) ∈ B0×∆0 ∀x ∈ X0 ⊂
X for a Borel measurable set X0 that satisfies P (xt ∈ X0) = 1∀t ≤ T, T ≥ 1,

g(x, β, δ) is Borel measurable in x ∀ (β, δ) ∈ B0 × ∆0, ∂g(xt, β, δ)/∂ (β′, δ′) is con-

tinuous in (x, β, δ) on X×B0 ×∆0,

sup
1≤t≤T

E

[
sup

(β,δ)∈B0×∆0

‖∂g(xt, β, δ)/∂
(
β′, δ′

)
‖d/(d−1)

]
<∞

and rank(G) = p+ ν.

Assumption 7.10. limT→∞
1
T

∑Ts
t=1EgtT (β, δ) exists uniformly over (β, δ, s) ∈ B×

∆× S and equals s limT→∞
1
T

∑T
t=1Eg(xt, β, δ) = sg̃(β, δ).

Assumption 7.11. limT→∞
1
T

∑Ts
t=1E∂gtT (β0, δ0)/∂ (β′, δ′) exists uniformly over

s ∈ S and equals sG ∀s ∈ S and S whose closure lies in (0, 1).

Assumption 7.12. G(s)′Ω(s)−1G(s) is nonsingular ∀s ∈ S and has eigenvalues

bounded away from zero ∀s ∈ S and S whose closure lies in (0, 1).

7.2 Lemmas

The following Lemmas are necessary to establish the proofs of the Theorems:

Lemma 7.1. We denote {B(s) : s ∈ [0, 1]} as q-dimensional vectors of mutually

independent Brownian motion on [0, 1] and define

J(s) =
[

Ω1/2B(s)
Ω1/2(B(1)−B(s))

]
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where B(π) is a q-dimensional vector of standard Brownian motion. Under Assump-

tions 7.1 to 7.12, every sequence of PS-GEL estimators {θ̂(·), γ̂(·), T ≥ 1} satisfies

√
T
(
θ̂T (·)− θ0

)
⇒ −

(
G(·)′Ω(·)−1G(·)

)−1
G(·)′Ω(·)−1J(·),

√
T

2KT + 1
γ̂T (·) ⇒ −

(
Ω(·)−1 − Ω(·)−1

(
G(·)′Ω(·)−1G(·)

)−1
G(·)′Ω(·)−1

)
J(·)

as a process indexed by s ∈ S, where S has closure in (0,1). Further, the sequence of

GEL estimators θ̂T (·) and the sequence of auxiliary estimators γ̂T (·) are asymptoti-

cally uncorrelated. Under the alternative (7), the same results hold except that:

J(s) =
[

Ω1/2B(s) +H(s)
Ω1/2(B(1)−B(s)) +H(1)−H(s)

]
where H(s) =

∫ s
0 h(r)dr with h(r) = h(η, τ, r) to simplify the notation.

Proof of Lemma 7.1: see Guay and Lamarche (2009).

Lemma 7.2. Under Assumptions 7.1 to 7.12, for the unrestricted implied probabil-

ities evaluated at the restricted estimator, we get

πGELt (θ̃T , s) =
1
T

+
1
T
gtT (θ̃T , s)′γ̃T (s)(1 + op(1)) +Op

(
KT /T

2
)

and πGELt (θ̃T ) = 1
T + op(1) uniformly in t = 1, . . . , T . According to the notation in

Definition 3.2, for t = 1, . . . , [Ts],

TπGELt (θ̃T , s)− 1 = gtT (β̃T , δ̃T )′γ̃1T (1 + op(1)) +Op (KT /T )

and for t = [Ts] + 1, . . . , T ,

TπGELt (θ̃T , s)− 1 = gtT (β̃T , δ̃T )′γ̃2T (1 + op(1)) +Op (KT /T ) .

Proof of Lemma 7.2

We need to derive the asymptotic distribution of the partial-sample implied prob-

abilities evaluated at the full-sample estimator:

πGELt (θ̃T , s) =
ρ1

(
γ̃T (s)′gtT (θ̃T , s)

)
∑T

t=1 ρ1

(
γ̃T (s)′gtT (θ̃T , s)

) .
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A mean value expansion for πGELt (θ̃T , s) around (θ̃T , γ̃T ) = (θ̃T , 0) yields:

πGELt (θ̃T , s) =
1
T

+
ρ2

(
γ̄T (s)′gtT (θ̃T , s)

)
∑T

t=1 ρ1

(
γ̃T (s)′gtT (θ̃T , s)

)gtT (θ̃T , s)′γ̃T (s)−

ρ1

(
γ̃T (s)′gtT (θ̃T , s)

)
[∑T

t=1 ρ1

(
γ̄T (s)′gtT (θ̃T , s)

)]2

T∑
t=1

ρ2

(
γ̄T (s)′gtT (θ̃T , s)

)
gtT (θ̃T , s)′γ̃T (s)

where γ̄T (s) lies on the line segment joining γ̃T (s) and 0 and may differ from row to

row.

Since γ̃T (s) converges in probability to 0 and using Lemma 4.3 in Guay and

Lamarche (2009), this yields that ρj
(
γ̄T (s)′gtT (θ̃T , s)

)
= ρj(0)+op(1) = −1+op(1),

for j = 1, 2, ∀t. Thus, we get:

πGELt (θ̃T , s) =
1
T

+
1
T

[
gtT (θ̃T , s)′γ̃T (s) (1 + op(1))

]
− 1
T 2

[
T∑
t=1

gtT (θ̃T , s)′γ̃T (s) (1 + op(1))

]
.

As
∑T

t=1 g(θ̃T ) =
∑T

t=1 gtT (θ̃T )+Op
(
K2/(2K + 1)

)
= Op(T 1/2) which implies

∑T
t=1 gtT (θ̃T , s) =

Op(T 1/2), gtT (θ̃T , s) = Op((2KT + 1)−1/2) and γ̃T (s) = Op(2KT + 1/
√
T ) 10yields:

πGELt (θ̃T , s) =
1
T

+
1
T

[
gtT (θ̃T , s)′γ̃T (s) (1 + op(1))

]
+Op

(
KT /T

2
)

and

πGELt (θ̃T , s) =
1
T

(1 + op(1))

uniformly in t = 1, . . . , T . Thus, we get:

TπGELt (θ̃T , s)− 1 = gtT (β̃T , δ̃T )′γ̃1T (1 + op(1)) +Op (KT /T ) (16)

uniformly in t = 1, . . . , [Ts] and

TπGELt (θ̃T , s)− 1 = gtT (β̃T , δ̃T )′γ̃2T (1 + op(1)) +Op (KT /T ) (17)

uniformly in t = [Ts] + 1, . . . , T.

10See Kitamura and Stutzer (1997) and ?.
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7.3 Proofs of Theorems

Proof of Theorem 4.1

We expand the FOC of the Lagrange multiplier vector for the partial-sample GEL

evaluated at the restricted estimator in a Taylor series about 0 for the first part of

the sample t = 1, . . . , [Ts]. Thus

1
T

[Ts]∑
t=1

ρ1

(
γ̃′1T gtT (β̃T , δ̃T )

)
gtT (β̃T , δ̃T ) = − 1

T

[Ts]∑
t=1

gtT (β̃T , δ̃T )− 1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′γ̃1T

+
1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )
∞∑
j=2

1
j!
ρj+1(0)

(
gtT (β̃T , δ̃T )′γ̃1T

)j
where γ̃1T is the partial-sample Lagrange multiplier evaluated for the restricted es-

timator for t = 1, . . . , [Ts] and ρ1(0) = ρ2(0) = −1. By the fact that gtT (β̃T , δ̃T ) =

Op
(
(2KT + 1)−1/2

)
, this yields

1
T

[Ts]∑
t=1

ρ1

(
γ̃′1T gtT (β̃T , δ̃T )

)
gtT (β̃T , δ̃T ) = − 1

T

[Ts]∑
t=1

gtT (β̃T , δ̃T )− 1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′γ̃1T

+ Op

(
(2KT + 1)−3/2‖γ̃1T ‖2

)
.

By using a consistent estimator Ω̃T = 2K+1
[Ts]

∑[Ts]
t=1 gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′ and γ̃1T =

Op

(
(2KT + 1)/

√
T
)

, we get under the null:

0 =
1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T ) +
s

2K + 1
Ω̃T γ̃1T +Op

(
(2KT + 1)−3/2‖γ̃1T ‖2

)
which yields

s

2KT + 1
γ̃1T = −Ω̃−1

T

1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T ) +Op

(
K

1/2
T /T

)
. (18)

Now, expanding this expression around β0 and δ0 gives:

s
√
T

2KT + 1
γ̃1T = −Ω̃−1

T

1√
T

[Ts]∑
t=1

gtT (β0, δ0)− sΩ̃−1
T G
√
T

(
β̃T − β0

δ̃T − δ0

)
+ op(1).

We can easily show for the restricted estimators under the null that (see also Smith,

2004):

√
T

(
β̃T − β0

δ̃T − δ0

)
= −

(
G′Ω−1G

)−1
G′Ω−1 1√

T

T∑
t=1

gtT (β0, δ0) + op(1). (19)
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Combining the two preceding results, we obtain

s
√
T

2KT + 1
γ̃1T = −Ω−1 1√

T

[Ts]∑
t=1

gtT (β0, δ0) + sΩ−1G(G′Ω−1G)−1G′Ω−1 1√
T

T∑
t=1

gtT (β0, δ0) + op (1).

By Lemma 5.1 in ?, under the null of no structural change, we have

Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β0, δ0)⇒ B(s) (20)

and under the generic alternative (7),

Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β0, δ0)⇒ B(s) + Ω−1/2H(s) (21)

where B(s) is a q-vector of standard Brownian motions and H(s) =
∫ s

0 h(r)dr. Note

also that:

1
T

[Ts]∑
t=1

gtT (β0, δ0) =
1
T

[Ts]∑
t=1

gt(β0, δ0) + op(1).

Using Lemma 7.2 and the derivation above,

TπGELt (θ̃T , s)− 1 = −

2K + 1
s

Ω̃−1
T

1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T ) +Op

(
K

3/2
T /T

)′ ×(22)

gtT (β̃T , δ̃T )(1 + op(1)) +Op(KT /T ). (23)

Let us now examine the asymptotic distribution of the expression on the right-

hand side. First, we show the following asymptotic result for the partial sums of the

moments conditions evaluated at θ̃T :

Ω−1/2

 1√
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )

⇒ B(s)− sΩ−1/2G[G′Ω−1G]−1G′Ω−1/2B(1).

By a mean value expansion:

1√
T

[Ts]∑
t=1

gtT (β̃T , δ̃T ) =
1√
T

[Ts]∑
t=1

gtT (β0, δ0) +
1
T

[Ts]∑
t=1

∂gtT (β̄T , δ̄T )
∂ (β′, δ′)

(
β̃T − β0

δ̃T − δ0

)
where β̄T lies on the line segment joining β̃T and β0 and may differ from row to row

and respectively for δ̄T . By applying eq. (19), we obtain

1√
T

[Ts]∑
t=1

gtT (β̃T , δ̃T ) =
1√
T

[Ts]∑
t=1

gtT (β0, δ0)− sG[G′Ω−1G]−1G′Ω−1 1
T

T∑
t=1

gtT (β0, δ0) + op(1).(24)
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It follows by (20) that

Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )⇒ B(s)− sΩ−1/2G[G′Ω−1G]−1G′Ω−1/2B(1). (25)

By (22), the following partial sum can be shown to be:

[Ts]∑
t=1

[T πGELt (θ̃T , s)− 1]2 =

2K + 1
s

Ω̃−1
T

1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )

′ [Ts]∑
t=1

gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′

×

2K + 1
s

Ω̃−1
T

1
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )

+ op(1).

Considering that Ω̃T = 2K+1
[Ts]

∑[Ts]
t=1 gtT (β̃T , δ̃T )gtT (β̃T , δ̃T )′, the expression above

gives:

[Ts]∑
t=1

[T πGELt (θ̃T , s)− 1]2 =
2K + 1

s

 1√
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )

′ Ω̃−1
T

 1√
T

[Ts]∑
t=1

gtT (β̃T , δ̃T )

+ op(1).

By the result above, the partial sum of interest yields by equations (25) and the

consistency of Ω̃T :

s

2K + 1

[Ts]∑
t=1

[TπGELt (θ̃T , s)− 1]2 ⇒
[
B(s)− sΩ−1/2G[G′Ω−1G]−1G′Ω−1/2B(1)

]′
×(26)[

B(s)− sΩ−1/2G[G′Ω−1G]−1G′Ω−1/2B(1)
]
.(27)

The expression
[
B(s)− sΩ−1/2G[G′Ω−1G]−1G′Ω−1/2B(1)

]
can be rewritten as:

[I − PG]B(s) + PG [B(s)− sB(1)]

with PG = Ω−1/2G[G′Ω−1G]−1G′Ω−1/2. We can now decompose:

Ω−1/2G(G′Ω−1G)−1G′Ω−1/2 = C ′ΛC (28)

where CC ′ = I and

Λ =
[
Ip 0
0 0

]
and Ip is an identity matrix with dimension p × p where p = r + ν with r and ν

the respective dimension of the vectors β and δ. Note also that CB(s) has the same
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asymptotic distribution as B(s). The RHS of expression (27) can then be rewritten

as:

B(s)′
[
I − C ′ΛC

]
B(s) + [B(s)− sB(1)]′C ′ΛC [B(s)− sB(1)]

which is equal in distribution to

B(q−p)(s)
′B(q−p)(s) +BBp(s)′BBp(s)

where B(q−p)(s) is a (q − p)-vector of standard Brownian motion and BBp(s) =

Bp(s)− sBp(1) is a p-vector of Brownian bridge. The result follows. The asymptotic

distribution under the alternative (7) can be easily obtained similarly using (21).

Proof of Theorem 4.3

By Lemma 7.2 applied to the difference between the partial-sample implied prob-

abilities evaluated at the unrestricted and at the restricted estimators we get:

T
[
π̂t(θ̂T (s), s)− π̃t(θ̃T , s)

]
= gtT (θ̂T (s), s)′γ̂T (s)− gtT (θ̃T , s)′γ̃T (s) + op(T−1/2).

Let us define the following selection matrices:

H1 =
[
Ir×r 0r×r 0r×ν
0ν×r 0ν×r Iν×ν

]
and

H2 =
[

0r×r Ir×r 0r×ν
0ν×r 0ν×r Iν×ν

]
.

and the corresponding estimator: θ̂1T (s) = H1θ̂T (s) =
(
β̂1T (s)′, δ̂T (s)′

)′
and θ̂2T (s) =

H2θ̂T (s) =
(
β̂2T (s)′, δ̂T (s)′

)′
. Similarly, for the restricted estimator θ̃1T (s) = H1θ̃T (s) =(

β̃T (s)′, δ̃T (s)′
)′

and θ̃2T (s) = H2θ̃T (s) =
(
β̃T (s)′, δ̂T (s)′

)′
where θ̃T (s) =

(
β̃T (s)′, β̃T (s)′, δ̃T (s)′

)′
.

Accordingly, we define θ1,0 = H1θ0 = (β′0, δ
′
0)′ and θ2,0 = H2θ0 = (β′0, δ

′
0)′.

Let us examine the expression for the first part of the sample, namely t =

1, . . . , [Ts]. Replacing the unrestricted and the restricted estimators of γ by the

corresponding expression (18), we get:

T
[
πt(θ̂T (s), s)− πt(θ̃T , s)

]
= −

(2KT + 1)Ω(s)−1 1
[Ts]

[Ts]∑
t=1

gtT (θ̂T (s), s) + op(1)

′ gtT (θ̂T (s), s)(1 + op(1))

+

(2KT + 1)Ω(s)−1 1
[Ts]

[Ts]∑
t=1

gtT (θ̃T , s) + op(1)

′ gtT (θ̃T , s)(1 + op(1))

+Op(KT /T )
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which equals

T
[
πt(θ̂T (s), s)− πt(θ̃T , s)

]
= −

 1
[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s))− 1
[Ts]

[Ts]∑
t=1

gtT (θ̃1T ) + op(1)

′(29)

×Ω−1(2KT + 1)gtT (θ̂1T (s))(1 + op(1)) +Op(KT /T )(30)

since GtT (·) = Op((2KT + 1)−1/2) and θ̂1T (s)− θ̃1T = Op(T−1/2).

Now, consider the following mean value expansion:

1
[Ts]

[Ts]∑
t=1

gtT (θ̃1T ) =
1

[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s)) +
1

[Ts]

[Ts]∑
t=1

∂gtT (θ̄1T (s))
∂θ′1

(
θ̃1T − θ̂1T (s)

)
.(31)

where θ̄1T (s) lies on the line segment joining θ̂1T (s) and θ̃1T and may differ from row

to row. Thus,

T
[
πt(θ̂T (s), s)− πt(θ̃T , s)

]
=

 1
[Ts]

[Ts]∑
t=1

∂gtT (θ̄1T (s))
∂θ′1

(
θ̃1T − θ̂1T (s)

)
+ op(1)

′
×Ω−1(2KT + 1)gtT (θ̂1T (s))(1 + op(1)) +Op(KT /T ).

The partial sum over the first subsample for the square of the LHS expression above

yields:

1
2K + 1

[Ts]∑
t=1

[
Tπt(θ̂T (s), s)− Tπt(θ̃T , s)

]2
= [Ts]

(
θ̃1T − θ̂1T (s)

)′
G′Ω−1G

(
θ̃1T − θ̂1T (s)

)
+ op(1)

as (2KT + 1) 1
[Ts]

∑[Ts]
t=1 gtT (θ̂1T (s), s)gtT (θ̂1T (s), s)′ is a consistent estimator of Ω.

Similarly for the second subsample t = [Ts] + 1, . . . , T , we obtain

1
2K + 1

T∑
t=[Ts]+1

[
Tπt(θ̂T (s), s)− Tπt(θ̃T , s)

]2
= (T − [Ts])

(
θ̃2T − θ̂2T (s)

)′
G′Ω−1G

(
θ̃2T − θ̂2T (s)

)
+ op(1)

By results derived above and some calculations, this yields

1
2K + 1

T∑
t=1

[
Tπt(θ̂T (s), s)− Tπt(θ̃T , s)

]2
= T

(
θ̃T − θ̂T (s)

)′
G(θ0, s)′Ω−1(s)G(θ0, s)

(
θ̃T − θ̂T (s)

)
+ op(1).

Andrews (1993, p. 851-852) shows that this expression is asymptotically equivalent

to the LMT (s) statistic for parameters instability. This gives the result under the

null. Under the alternative, ? show that the LMT (s) statistic for the restricted GEL
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estimator has the same asymptotic distribution as in Theorem 4.3. Since the asymp-

totic equivalence between the expression above and the LMT (s) statistic, the result

follows.

Proof of Theorem 4.4

The two subsamples are now evaluated separately. A direct application of Lemma

7.2 but for the estimation of the subsample with the first [Ts] observations gives

[Ts]πGELt (θ̂1T (s), s)− 1 = gtT (θ̂1T (s))′γ̂1T (s) + op([Ts]−1/2)

uniformly in t = 1, . . . , [Ts]. This is obtained with a proof similar to the one of

Lemma 7.2 but only for the first part of the sample. This yields(
[Ts]πGELt (θ̂1T (s), s)− 1

)2
= γ̂1T (s)′gtT (θ̂1T (s))gtT (θ̂1T (s)′γ̂1T (s)) + op([Ts]−1).

By summing the expression above to t = . . . , [Ts], and by (18) for the unrestricted

estimator applied to the sample t = 1, . . . , [Ts], this yields

[Ts]∑
t=1

(
[Ts] πGELt (θ̂1T (s), s)− 1

)2
= (2KT + 1)2 1√

[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s))′Ω−1 1
[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s))

×
(
gtT (θ̂1T (s))

)′
Ω−1 1√

[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s)) + op(1).

As (2KT + 1) 1
[Ts]

∑[Ts]
t=1 gtT (θ̂1T (s))gtT (θ̂1T (s))′ is a consistent estimator of Ω, this

gives

1
2KT + 1

[Ts]∑
t=1

(
[Ts] πGELt (θ̂1T (s), s)− 1

)2
=

1√
[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s))′Ω−1 1√
[Ts]

[Ts]∑
t=1

gtT (θ̂1T (s)) + op(1).(32)

Similarly, we can easily obtain that

1
2KT + 1

T∑
t=[Ts]+1

(
(T − [Ts]) πGELt (θ̂2T (s), s)− 1

)2
=

1√
T − [Ts]

T∑
t=[Ts]+1

gtT (θ̂2T (s))′Ω−1 1√
T − [Ts]

T∑
t=[Ts]+1

gtT (θ̂2T (s)) + op(1). (33)
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Now, by a mean value expansion and the consistency of θ̂T (s),

Ω(s)−1/2 1√
T

T∑
t=1

gtT (θ̂T (s), s) = Ω(s)−1/2

[
1√
T

∑[Ts]
t=1 gtT (β0, δ0)

1√
T

∑T
t=[Ts]+1 gtT (β0, δ0)

]
+ Ω(s)−1/2G(s)

√
T
(
θ̂T (s)− θ0

)
+ op(1).

By Lemma 7.1 and (20),

Ω(s)−1/2 1√
T

T∑
t=1

gtT (θ̂T (s), s) ⇒

[ 1√
s
B(s)

1√
(1−s)

(B(1)−B(s))

]
− Ω(s)−1/2G(s)

(
G(s)′Ω(s)−1G(s)

)−1

×G(s)′Ω(s)−1/2

[
B(s)

(B(1)−B(s))

]
.

The RHS can be rewritten as(
I − Ω(s)−1/2G(s)

(
G(s)′Ω(s)−1G(s)

)−1
G(s)′Ω(s)−1/2

)[ 1√
s
B(s)

1√
(1−s)

(B(1)−B(s))

]

Since the entire parameter vector is estimated for both subsample, e.g. θ̂1T (s) =

β̂1T (s) and θ̂2T (s) = β̂2T (s), the matrices Ω(s) and G(s) are block-diagonal and by

the definition of gtT (θ̂T (s), s), we get:

Ω−1/2 1√
T

[Ts]∑
t=1

gtT (β̂1T (s)) ⇒
(
Iq − Ω−1/2Gβ

(
G′βΩ−1Gβ

)−1
G′βΩ−1/2

)
B(s) (34)

and

Ω−1/2 1√
T

T∑
t=[Ts]+1

gtT (β̂2T (s)) ⇒
(
Iq − Ω−1/2Gβ

(
G′βΩ−1Gβ

)−1
G′βΩ−1/2

)
(B(1)−B(s)).

We can now decompose:(
I − Ω−1/2Gβ

(
G′βΩ−1Gβ

)−1
G′Ω−1/2

)
=
(
I − C ′ΛC

)
where CC ′ = I and

Λ =
[
Ir 0
0 0

]
and Ir is an identity matrix with dimension r × r+ with r is the dimension of the

vectors β. Noting that C (I − C ′ΛC)B(s) = (I − Λ)CB(s) and CB(s) is also a

r-vector of Brownian motion. Now consider the multiplication of the RHS term of

equation (34) by the matrix C, this yields

CΩ−1/2 1√
T

[Ts]∑
t=1

gtT (β̂1T (s))⇒ (Iq − Λ)B(s).
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Using this result, we obtain directly the asymptotic distribution of the statistic for

the first subsample by equation (32) considering that C ′C = Iq. The proof is similar

for the second subsample (eq. 33), hence obtaining the asymptotic distribution under

the null.

Under the alternative (7), the asymptotic distribution under the alternative is

derived similarly using Lemma 7.1.

Proof of Theorem 4.5

Define

P (θ(s), γ(s), s) =
T∑
t=1

[ρ(kγ(s)′gtT (θ, s))− ρ0]
T

and ĝT (θ, s) = 1
T

∑T
t=1 gtT (θ, s).

Since θ̃T (s) = arg minθ∈Θ P (θ, γ(s)), s)

sup
γ(s)∈Γ̃T (s)

P (θ̃T (s), γ(s), s) ≤ sup
γ(s)∈Γ̃T (s)

P (θ0, γ(s), s)

and this holds for all s ∈ S. Let γ̄T (s) = arg maxγs∈ΓT (s) P (θ0, γ(s), s) and γ̇(s) =

τ γ̄(s), 0 ≤ τ ≤ 1 and we have (2KT+1)
∑T

t=1 ρ2(γ̇(s)′gtT (θ0, s))gtT (θ0, s)gtT θ0, s)′/T
p→

−Ω(s). By a second-order Taylor expansion with Lagrange remainder,

1
2KT + 1

P (θ0, γ̄(s), s) = −
(

γ̄(s)
2KT + 1

)′
ĝT (θ0, s)

+
(

γ̄(s)
2KT + 1

)′( T∑
t=1

ρ2(γ̇(s)′gtT (θ0, s)ĝtT (θ0, s)gtT (θ0, s)′/T

)
γ̄(s)/2

= ĝT (θ0, s)′Ω(s)−1ĝT ((θ0, s)− ĝT (θ0, s)′Ω(s)−1ĝT (θ0, s)/2 + op(1)

= ĝT (θ0, s)′Ω(s)−1ĝT (θ0, s)/2 + op(1)

w.p.a.1 where the second equality holds by 1
2KT+1 γ̄(s) = −Ω̃(s)−1ĝT (θ0, s) + op(1).

Similarly, we can obtain

1
2KT + 1

P (θ̃T (s), γ̃(s), s) = ĝT (θ̃T (s), s)′Ω̃T (s)−1ĝT (θ̃T (s), s)/2 + op(1)

with γ̃T (s) = arg maxγs∈ΓT (s) P (θ̃T (s), γ(s), s) and

Ω̃T (s) =
[
sΩ̃1T (s) 0

0 (1− s)Ω̃2T (s)

]
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with

Ω̃1T (s) =
2KT + 1

[Ts]

[Ts]∑
t=1

gtT (β̃T (s))gtT (β̃T (s))′

and

Ω̃2T (s) =
2KT + 1
T − [Ts]

T∑
t=[Ts]+1

gtT (β̃T (s))gtT (β̃T (s))′.

Next, we show that the statistic IPSCR,GELT (s) is asymptotically equivalent at

first-order to 2
2KT+1P (θ̃T (s), γ̃(s), s). The following partial sum evaluated at the re-

stricted partial-sample GEL estimator yields:

[Ts]∑
t=1

[T πGELt (θ̃T (s), s)− 1]2 =

2K + 1
s

Ω̃1T (s)−1 1
T

[Ts]∑
t=1

gtT (β̃T )

′ [Ts]∑
t=1

gtT (β̃T (s))gtT (β̃T (s))′

×

2K + 1
s

Ω̃1T (s)−1 1
T

[Ts]∑
t=1

gtT (β̃T (s))

+ op(1).

Considering that Ω̃1T (s) = 2K+1
[Ts]

∑[Ts]
t=1 gtT (β̃T (s))gtT (β̃T (s))′, the expression above

gives:

[Ts]∑
t=1

[T πGELt (θ̃T (s), s)− 1]2 =
2K + 1

s

 1√
T

[Ts]∑
t=1

gtT (β̃T (s))

′ Ω̃1T (s)−1

 1√
T

[Ts]∑
t=1

gtT (β̃T (s))

+ op(1).

Similarly for the second subsample

T∑
t=[Ts]+1

[T πGELt (θ̃T (s), s)− 1]2 =
2K + 1
1− s

 1√
T

T∑
t=[Ts]+1

gtT (β̃T (s))

′ Ω̃2T (s)−1

 1√
T

T∑
t=[Ts]+1

gtT (β̃T (s))

+ op(1).

Then, we get for the statistic

IPSCR,GELT (s) =

 1√
T

[Ts]∑
t=1

gtT (β̃T (s))

′ Ω̃1T (s)−1

s

 1√
T

[Ts]∑
t=1

gtT (β̃T (s))


+

 1√
T

T∑
t=[Ts]+1

gtT (β̃T (s))

′ Ω̃2T (s)−1

1− s

 1√
T

T∑
t=[Ts]+1

gtT (β̃T (s))

+ op(1)

= T ĝT (θ̃T (s), s)′Ω̃T (s)−1ĝT (θ̃T (s), s) + op(1)
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with θ̃T (s) =
(
β̃T (s)′, β̃T (s)′

)′
. Since 2T

2KT+1P (θ̃T (s), γ̃(s), s) is asymptotically bounded

by 2T
2KT+1P (θ0, γ̄(s), s) for all s ∈ S and that IPSCR,GELT (s) is asymptotically equiva-

lent at first-order to 2T
2KT+1P (θ̃T (s), γ̃(s), s) for all s ∈ S, the statistic IPSCR,GELT (s)

is asymptotically bounded for all s ∈ S by the asymptotic distribution of T ĝT (θ0, s)′Ω(s)−1ĝT (θ0, s)

which is derived in ?. The result under the null follows and the asymptotic bound

under the alternative can be easily derived.
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Table 4: Data Generating Processes

HSS
0 HI

A HO
A

DGP1 θ1 = θ2 = 0 α = 0
DGP2 θ1 = θ2 = 0.4 α = 0
DGP3 θ1 = θ2 = 0.8 α = 0
DGP4 θ1 = 0, θ2 = 0.4 α = 0
DGP5 θ1 = 0, θ2 = 0.8 α = 0
DGP6 θ1 = 0.4, θ2 = 0.8 α = 0
DGP7 θ1 = θ2 = 0.4 α = 0.5
DGP8 θ1 = θ2 = 0.4 α = 0.9
DGP9 θ1 = θ2 = 0.4 α = −0.5
DGP10 θ1 = θ2 = 0.4 α = −0.9

Figure 1: Simulated Implied Probabilities

Notes: The constant case refers to no break, the pulse case to a one-time temporary jump at obser-
vation 50, the break case to a change in the mean for 60 time periods and the shift to a permanent
change in the mean at observation 20. For the CRRA case, a preference parameter is estimated using
two moments. The moment conditions are violated at observation 51. For the AR case a autoregres-
sive parameter is estimated. The data generating process is represented by an AR(1) process for
t ≤ 50 and by an ARMA(1, 2) otherwise. The sample is of size 100 and in all cases the horizontal
lines correspond to the empirical weights of 1/100.
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Table 5: Rejection Frequencies for General Tests of Structural Change

DGP Size (%) supIPSC aveIPSC expIPSC supIPSCM aveIPSCM expIPSCM

DGP1 1 0.0155 0.0145 0.0160 0.0770 0.0435 0.0590
5 0.0655 0.0615 0.0655 0.1575 0.1035 0.1275
10 0.1255 0.1255 0.1270 0.2295 0.1720 0.1870

DGP2 1 0.0145 0.0155 0.0145 0.0750 0.0385 0.0595
5 0.0660 0.0545 0.0610 0.1520 0.1005 0.1225
10 0.1260 0.1215 0.1245 0.2330 0.1735 0.1925

DGP3 1 0.0225 0.0140 0.0165 0.0835 0.0465 0.0575
5 0.0685 0.0670 0.0690 0.1525 0.1050 0.1215
10 0.1195 0.1225 0.1210 0.2300 0.1680 0.1875

DGP4 1 0.1465 0.1590 0.1515 0.4070 0.3190 0.3560
5 0.3955 0.3980 0.4010 0.5985 0.5365 0.5635
10 0.5590 0.5980 0.5885 0.7050 0.6840 0.6925

DGP5 1 0.9780 0.9710 0.9765 0.9990 0.9955 0.9980
5 0.9985 0.9980 0.9985 1.0000 0.9995 0.9995
10 1.0000 0.9995 1.0000 1.0000 0.9995 1.0000

DGP6 1 0.4095 0.3825 0.3995 0.7020 0.6130 0.6675
5 0.7040 0.6685 0.6885 0.8450 0.8020 0.8225
10 0.8170 0.8120 0.8220 0.8970 0.8810 0.8870

DGP7 1 0.2945 0.1835 0.2365 0.5535 0.3680 0.4780
5 0.5320 0.4005 0.4675 0.7090 0.5360 0.6270
10 0.6690 0.5660 0.6050 0.7805 0.6515 0.7145

DGP8 1 0.6080 0.4565 0.5340 0.8205 0.6555 0.7645
5 0.8120 0.7000 0.7620 0.9025 0.7955 0.8580
10 0.8910 0.8330 0.8645 0.9370 0.8720 0.9040

DGP9 1 0.3970 0.2385 0.3265 0.5580 0.3235 0.4630
5 0.6200 0.4825 0.5590 0.7005 0.4990 0.6150
10 0.7390 0.6415 0.6890 0.7810 0.6575 0.7180

DGP10 1 0.7975 0.6695 0.7535 0.8515 0.6685 0.7930
5 0.9420 0.8790 0.9175 0.9290 0.8545 0.9055
10 0.9730 0.9525 0.9650 0.9625 0.9435 0.9580
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Table 6: Rejection Frequencies for Tests of Structural Change in the Parameters

DGP Size (%) supIPSCI aveIPSCI expIPSCI supW aveW expW supLR aveLR expLR

DGP1 1 0.0190 0.0195 0.0220 0.0275 0.0190 0.0275 0.0220 0.0195 0.0240
5 0.0760 0.0765 0.0805 0.0855 0.0725 0.0815 0.0825 0.0730 0.0835
10 0.1455 0.1315 0.1475 0.1450 0.1225 0.1465 0.1435 0.1290 0.1470

DGP2 1 0.0200 0.0150 0.0195 0.0285 0.0150 0.0275 0.0235 0.0150 0.0225
5 0.0760 0.0740 0.0870 0.0880 0.0735 0.0900 0.0845 0.0720 0.0875
10 0.1450 0.1415 0.1555 0.1510 0.1295 0.1500 0.1525 0.1375 0.1550

DGP3 1 0.0160 0.0125 0.0155 0.0320 0.0120 0.0195 0.0170 0.0120 0.0145
5 0.0705 0.0670 0.0750 0.0980 0.0635 0.0825 0.0715 0.0675 0.0750
10 0.1465 0.1320 0.1420 0.1550 0.1300 0.1440 0.1425 0.1290 0.1390

DGP4 1 0.4880 0.5345 0.5450 0.4840 0.5205 0.5420 0.4840 0.5295 0.5475
5 0.6960 0.7540 0.7555 0.6915 0.7430 0.7500 0.6930 0.7510 0.7510
10 0.7915 0.8390 0.8350 0.7860 0.8280 0.8300 0.7875 0.8365 0.8325

DGP5 1 1.0000 1.0000 1.0000 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

DGP6 1 0.6955 0.7495 0.7655 0.7060 0.7475 0.7655 0.6950 0.7435 0.7625
5 0.8620 0.8975 0.9005 0.8590 0.8910 0.8955 0.8590 0.8975 0.9000
10 0.9160 0.9420 0.9395 0.9075 0.9345 0.9365 0.9140 0.9385 0.9370

DGP7 1 0.3225 0.2880 0.3395 0.2895 0.2215 0.3045 0.1845 0.1905 0.2205
5 0.5000 0.4965 0.5295 0.4605 0.4170 0.4795 0.3630 0.3855 0.4065
10 0.6190 0.6100 0.6350 0.5705 0.5275 0.5805 0.4915 0.5015 0.5190

DGP8 1 0.5460 0.5020 0.5710 0.4425 0.3800 0.4720 0.3575 0.3545 0.4000
5 0.7075 0.6920 0.7185 0.6160 0.5960 0.6460 0.5530 0.5760 0.5990
10 0.7875 0.7795 0.8085 0.7140 0.6900 0.7305 0.6595 0.6855 0.6950

DGP9 1 0.2910 0.1630 0.2665 0.2255 0.1275 0.2110 0.1120 0.0955 0.1240
5 0.4550 0.3515 0.4300 0.3660 0.2805 0.3640 0.2650 0.2415 0.2790
10 0.5705 0.4725 0.5440 0.4640 0.4015 0.4650 0.3770 0.3665 0.3960

DGP10 1 0.5665 0.3130 0.5175 0.4530 0.2825 0.4410 0.2150 0.1425 0.2130
5 0.7525 0.5545 0.6965 0.5960 0.4890 0.5920 0.4205 0.3340 0.4200
10 0.8295 0.6815 0.7800 0.6790 0.6050 0.6790 0.5540 0.4755 0.5385
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Table 7: Rejection Frequencies for Tests of Structural Change in the Overidentifying Restrictions

DGP Size (%) supIPSCO aveIPSCO expIPSCO supO aveO expO

DGP1 1 0.0195 0.0195 0.0175 0.0020 0.0075 0.0050
5 0.0715 0.0630 0.0675 0.0210 0.0420 0.0390
10 0.1290 0.1240 0.1320 0.0595 0.1005 0.0865

DGP2 1 0.0280 0.0145 0.0220 0.0040 0.0085 0.0085
5 0.0825 0.0630 0.0810 0.0270 0.0450 0.0440
10 0.1300 0.1225 0.1300 0.0595 0.0955 0.0865

DGP3 1 0.0270 0.0170 0.0240 0.0055 0.0090 0.0075
5 0.0790 0.0650 0.0780 0.0295 0.0490 0.0440
10 0.1345 0.1230 0.1420 0.0630 0.1035 0.0890

DGP4 1 0.0300 0.0170 0.0250 0.0050 0.0070 0.0080
5 0.0970 0.0725 0.0925 0.0360 0.0460 0.0445
10 0.1650 0.1370 0.1640 0.0810 0.0985 0.1075

DGP5 1 0.2930 0.1420 0.2885 0.1605 0.0805 0.1725
5 0.5165 0.3420 0.4975 0.3805 0.2630 0.4040
10 0.6380 0.5000 0.6200 0.5305 0.4300 0.5420

DGP6 1 0.0415 0.0220 0.0390 0.0085 0.0110 0.0145
5 0.1100 0.0740 0.0960 0.0505 0.0515 0.0615
10 0.1820 0.1430 0.1695 0.0925 0.1055 0.1140

DGP7 1 0.6080 0.5790 0.6340 0.0425 0.1725 0.1290
5 0.7755 0.7800 0.7965 0.2380 0.5415 0.4740
10 0.8370 0.8580 0.8695 0.4380 0.7255 0.6790

DGP8 1 0.7955 0.8080 0.8230 0.0850 0.3275 0.2375
5 0.8935 0.9135 0.9100 0.3620 0.7540 0.6755
10 0.9275 0.9525 0.9510 0.5875 0.8820 0.8410

DGP9 1 0.8780 0.8900 0.9065 0.0960 0.4185 0.2975
5 0.9565 0.9625 0.9660 0.4575 0.8230 0.7810
10 0.9760 0.9845 0.9840 0.7150 0.9445 0.9245

DGP10 1 0.9950 0.9955 0.9960 0.1140 0.6610 0.4790
5 0.9980 1.0000 0.9995 0.6080 0.9780 0.9470
10 0.9995 1.0000 1.0000 0.8645 0.9970 0.9925
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