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Abstract

We advocate in this paper the use of a sequential partial indirect inference (SPII) approach, in

order to account for calibration practice where dynamic stochastic general equilibrium models

(DGSE) are studied only through their ability to reproduce some well-chosen moments. We stress

that, despite a lack of statistical formalization, the controversial calibration methodology addresses a

genuine issue on the consequences of misspecification in highly nonlinear and dynamic structural

macro-models. We argue that a well-driven SPII strategy might be seen as a rigorous calibrationnist

approach, that captures both the advantages of this approach (accounting for structural

‘‘a-statistical’’ ideas) and of the inferential approach (precise appraisal of loss functions and

conditions of validity). This methodology should be useful for the empirical assessment of structural

models such as those stemming from the real business cycle theory or the asset pricing literature.
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1. Introduction

Dynamic stochastic general equilibrium (DSGE) models are the common framework of
new classical macroeconomics, with the ambition to provide structural microfoundations
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for macroeconomics. However, this ambition comes at a price. Nobody can believe that
DSGE models present a descriptively realistic model of the economic process. ‘‘Of course,
the model is not ‘true’’’ (Lucas, 1987) and this is probably the reason why the advent of
DSGE models has led new classical macroeconomics to turn to calibration methods as an
alternative to classical econometrics, involving estimation and testing.
The endorsement of calibration as an alternative to estimation, and the related

endorsement of verification as an alternative to statistical tests may lead to the conclusion
that ‘‘the new classical macroeconomics is now divided between calibrators and
estimators’’ (Hoover, 1995). However some econometricians claim that considering, as
Lucas (1987) and Kydland and Prescott (1991) do that ‘‘the specification errors being
committed are of sufficient magnitude as to make conventional estimation and testing of
dubious value’’ is simply misunderstanding econometrics since ‘‘traditional model building
never proceeded under the assumption that any model was true’’ (Kim and Pagan, 1995).
The approach we advocate in this paper is somewhere in between the two extreme views

that either some unrealistic features of DSGE models should lead to eschew orthodox
econometrics altogether or that calibrators simply misunderstand that traditional
econometrics ‘‘never proceed under the assumption that any model was true’’. On the
contrary, we do think that econometricians have something to learn from calibrators and
we try to go further in the research program put forward by Hansen and Heckman (1996):
‘‘model calibration and verification can be fruitfully posed as econometric estimation and
testing problems’’.
We argue, by contrast with the ‘‘never’’ claim above, that more often than not

econometric practices are seriously flawed with a maintained assumption of model truth.
The recent regain of popularity of maximum likelihood (MLE) approaches to DSGE
precisely shows that many econometricians still consider that MLE is the best thing to do,
at least when it is tractable. However, there is no such thing in econometric theory as
compelling arguments in favor of MLE in the case of misspecified models. Of course,
properties of MLE in case of misspecification, also called quasi- or pseudo-maximum
likelihood (QMLE) are well known since White (1982) and Gouriéroux et al. (1984).
However, while the former stresses that QMLE converges towards a pseudo-true value of
the unknown parameters and that its asymptotic variance is no longer conformable to the
common Cramer Rao bound but must be replaced by the so-called sandwich formula, the
latter characterizes the very restrictive assumptions under which the pseudo-true value
coincides with the true unknown value. In other words, not only QMLE does not provide
such thing as an efficient asymptotic variance but, even worse, it leads to select a pseudo-
true value of unknown parameters which may be quite different from the one which would
be associated to an economically meaningful loss function.
The econometrician’s hopeless search for a well-specified parametric model (‘‘quest for

the Holy Grail’’ as dubbed by Monfort (1996)) and associated efficient estimators even
remain popular when MLE becomes intractable due to highly nonlinear dynamic
structures including latent variables. Efficiency properties of ‘‘efficient method of
moments’’ (EMM, Gallant and Tauchen, 1996) or more generally of generalized method
of moments (GMM, Hansen, 1982), simulated method of moments (SMM, Duffie and
Singleton, 1993) and indirect inference (II, Gouriéroux et al. (1993)) when the set of
moment conditions is sufficiently large to span the likelihood scores are often advocated as
if the likelihood score was something well specified. Actually, not only one should not
forget that we are the most often dealing with a pseudo-score but the resort to simulation
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requires even more care since the likely misspecified structural parametric model is used as
a simulator.

This paper is a contribution to the econometric literature that has ‘‘attempted to tame
calibration and return it to the traditional econometric fold’’ by interpreting ‘‘calibration
as a form of estimation by simulation’’ (Hoover, 1995) along the lines of Manuelli and
Sargent (1988), Gregory and Smith (1990), Canova (1994) and Bansal et al. (1995).
However, even more focus is put on the likely severe misspecification of structural models
stemming from the DSGE literature. This leads us to an explicit account of calibrators’
recommendations, while showing that they may be made compatible with a well-
established approach to econometrics. In other words, we aim at delineating a close
methodology which could be able to gather both the advantages of the inferential
approach (estimation, confidence sets and specification testing) and also the advantages of
the calibration approach that correspond, in our opinion, to consistent estimation of some
structural parameters of interest and robust prediction and induction despite misspecifica-
tion of the structural model.

Contributions of this paper are threefold.
First, we point out that asymptotic variance formulas for any kind of simulated

moment-based method (SMM, EMM or II) must take into account some kind of sandwich
formulas for the choice of efficient weighting matrices and associated formulas for
asymptotic variance of estimators. Forgetting this kind of correction is even more
detrimental than for QMLE since two kinds of sandwich formulas must be taken into
account, one for the data generating process (DGP) and one for the simulator which turns
out to be different from the DGP in case of misspecification. Moreover, since only
endogenous variables are simulated, correct formulas for asymptotic variance matrices
require a specific account for exogenous variables. In this respect, we extend the results of
Gouriéroux et al. (1993) theory of II to a case of possible misspecification of the simulator.

As for QMLE, misspecification may not only imply a violation of standard asymptotic
variance formulas but even more importantly, may lead the econometrician to consistently
estimate a pseudo-true value which may have nothing to do with the true unknown value
of the parameters of interest. The second contribution of this paper is to put forward the
encompassing tests methodology as a way to focus SMM or more generally II estimators
on the consistent estimation of the true unknown value y01 of a subset y1 of the full set
y ¼ ðy1; y2Þ of structural parameters. While a fully parametric model, that is a family of
probability distributions indexed by y ¼ ðy1; y2Þ is needed to get a simulator, there is no
hope to find any economic theoretical underpinnings for such parametric DSGE models
which cannot be more than a crude idealization of the economic process. Unfortunately,
the matching moment strategy of estimation is an indirect approach to inference about the
structural parameters y which goes through a binding function bðyÞ relating the structural
parameters y to some instrumental parameters b which can be directly estimated from their
sample counterparts. Note that in this respect, II approach to nonlinear analytically
intractable structural models is nothing but an extension of the old indirect least-squares
approach to linear simultaneous equations models. In our nonlinear and misspecified
structural model context, it is unfortunately highly hazardous to get a consistent estimator
of the true unknown value y01 of a subset y1 when solving with respect to y1 a sample and
possibly simulation-based counterpart of the equations bðy1; y

�
2Þ ¼ b0 where b0 denotes the

true unknown value of the instrumental parameters b (by definition easy to estimate)
but y�2 is only a pseudo-true value of y2. The necessary condition, that is b0 ¼ bðy01; y

�
2Þ
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precisely means that the structural model, albeit misspecified, encompasses the instru-
mental one.
The requirement of encompassing typically means that, if we do not want to proceed

under the maintained assumption that the structural model is true, we must be
parsimonious with respect to the number of moments to match or more generally to the
scope of macroeconomic evidence that is captured by the instrumental model, as
parameterized by b, like for instance the coefficients of a vector autoregression. This is at
odds with the efficiency kind of goal as advocated by Bansal et al. (1995) to endorse the
EMM approach to calibration: ‘‘if a structural model is to be implemented and evaluated
on statistical criteria i.e. one wants to take seriously statistical test and inference, the
structural model has to face all empirically relevant aspects of the data’’. We are not far to
think on the contrary like Prescott (1983) that ‘‘if any observation can be rationalized with
some approach, then that approach is no scientific’’ or at least like Lucas (1980) that
‘‘insistence on the ‘realism’ of an economic model subverts its potential usefulness in
thinking about reality’’. Economic reality may be interestingly captured by the parameters
of interest y1 while there is no hope to find the Holy Grail of a fully parametric true model
indexed by ðy1; y2Þ. Then, as often stressed by calibrators, it is important to have in mind a
hierarchy of moments, with first place given to some specific bs like unconditional means,
variances and correlations rather than more sophisticated characteristics of conditional
probability distributions. The key point is that while a true parametric model defining a
true unknown value ðy01; y

0
2Þ would by definition ensure the necessary encompassing

condition, whatever the dimension of b (even with at the limit an infinite dimensional
vector b of auxiliary parameters as for EMM), the equations bðy1; y

�
2Þ ¼ b0 are going to

characterize the true unknown y01 whatever the misspecification about y2, only if we have
chosen a convenient instrumental model which does not capture what goes wrong in the
paths simulated from the structural model endowed with the fictitious value ðy1; y

�
2Þ of the

structural parameters. This is the reason why we advocate in this paper the partial indirect
inference (PII) approach.
PII is well suited in case of partial encompassing. It means that only a subset of the

encompassing equations bðy01; y
�
2Þ ¼ b0 appear to be fulfilled. By restricting ourselves to

such a subset, we may have to renounce to the complete identification of the vector y of
structural parameters. By contrast to a narrow view of econometric identification, this is
typically something we can accept insofar as underidentification is only about some
‘‘pseudo-parameters’’ y2, that is to say quantities which are known to be poorly related to
economic reality, as captured by our structural model. Then, as calibrators do, we propose
to fix the value of these unidentified parameters to some ‘‘reasonable’’ levels. These
‘‘calibrated’’ values are needed to perform simulations for the determination of the binding
function but do not contaminate a subset of equations for which the encompassing
property turns out to be fulfilled. In other words, we find a rationale to the calibration
practice within a well founded econometric methodology. A good reason not to apply a
neutral moment matching to identify all the parameters is that it is along only some
selected dimensions that we may hope to get meaningful quantitative assessments from our
structural model. For example, as reminded by Hansen and Heckman (1996), some
‘‘particular time series frequencies could be deemphasized in adopting an estimation
criterion because misspecification of a model is likely to contaminate some frequencies
more than others (Hansen and Sargent, 1993)’’. By still seeking econometric identification
of all structural parameters y1 and y2, the econometrician runs the risk to contaminate the
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estimation of the parameters of interest y1 with the likely misspecification of the part of the
model concerning y2. Amazingly, our PII kind of extension of Gouriéroux et al. (1993)
theory of II fully concurs, even in the terminology, with the Hoover characterization of
Lucas (1980) and Prescott (1983) ‘‘discipline of the calibration method’’: it ‘‘comes from
the paucity of free parameters ð. . .Þ in some sense, the calibration method would appear to
be a kind of indirect estimation’’. We claim more precisely that it is because the estimation
of structural models is generally ‘‘indirect’’, in the sense that it takes a binding function
relating structural parameters to instrumental ones, that calibration matters to pin down
some ‘‘key parameters’’ y2 from calibrator’s knowledge rather than from an orthodox
moment matching procedure. These key parameters are so because they define some
components of y2, which prevent us from getting full encompassing an thus to estimate
consistently the parameters of interest y1, when contaminated by the identification of y2.

A third contribution of this paper is to propose a sequential approach to PII, in order to
accommodate not only the calibration step but also the verification step of the common
empirical practice for DSGE. More precisely, we do think as calibrators that the
specification tests should only be focused on the reproduction of stylized facts the
structural model is aimed to reproduce. But our additional discipline amounts to a second
step of specification testing, once the parameters of interest y1 have been hopefully
consistently estimated in a first step from matching moment simulated with a possibly
calibrated y2. The second step of simulated moment matching (or minimization of any
kind of economically meaningful loss function) with respect to these previously calibrated
components aims at controlling the degree of misspecification at a reasonable level, that is
there is no such thing like a gross inability of our structural model to reproduce the
economically meaningful moments. Since the procedure is a two step one, we call it a
sequential partial indirect inference (SPII). In our opinion, this two step simulated
moments matching methodology remains exactly true to the calibrators’ point of view:
reproducing some dimensions of interest under the constraint that some structural
parameters of interest are consistently estimated. This is precisely because the requirement
of consistency is maintained that the two steps are disentangled whatever the cost in terms
of efficiency of a two-step procedure of estimation. Of course, if the structural model were
well specified, a one step estimator of y1 and y2 jointly would be preferable. The aim of
roughly reproducing broad economic reality of interest must not make us running the risk
of inconsistently estimating the crucial structural parameters. Otherwise, it would be a
purely data-based approach. We claim on the contrary (see e.g. our reinterpretation below
of the Mehra and Prescott (1985) equity premium puzzle exercise) that consistent
estimation of a few structural parameters is a binding constraint for calibrators. The
second step of verification, as we perform it, is consistent with the Canova (1994) kind of
interpretation of the calibration practice. The question asked is: ‘‘Given that the model is
false, how true is it?’’.

As already mentioned, this paper is far to be the first to address the issue of a statistical
appraisal of the calibration methodology. However, only a few papers have focused on the
consequences of misspecification in simulated moments matching. While intriguing
Bayesian approaches to calibration of misspecified models have been proposed by Canova
(1994), Dejong et al. (1996), Geweke (1999) and Schorfheide (2000), we argue that SPII is
the convenient way to accommodate it with a frequentist point of view.

The paper is organized as follows. In Section 2, the issues of interest and the general
framework to address them are defined through some template examples of the calibration
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literature. The statistical theory of PII is set up in Section 3. Section 4 is devoted to
sequential extensions of PII and Section 5 concludes.

2. Calibration as econometrics of misspecified models

Our econometric formalization of calibration is introduced in this section through two
leading examples. Firstly, the Mehra and Prescott (1985) approach to the equity premium
puzzle provides a convenient example of the relevance of the PII framework for a statistical
rationalization of calibration. Secondly, more involved issues like the role of exogenous
variables and the usefulness of a sequential approach are described in a second subsection
about more general DSGE empirical issues.

2.1. The equity premium puzzle

In their presentation of the calibration approach, Kydland and Prescott (1991) lays the
emphasis on the crucial role of the research question which must be clearly defined.1 Mehra
and Prescott (1985) addresses the question whether the large differential between the
average return on equity and average risk free interest rate can be accounted for by models
neglecting any frictions in the Arrow and Debreu set up. The simple statement of this
question defines on the one hand the structural parameters of interest and on the other
hand the instrumental parameters through which the empirical evidence is summarized.
In order to statistically formalize the calibration concepts, we introduce in this section

general notations that are consistently maintained herein.
First, the structural parameters of interest for Mehra and Prescott’s question are two

taste parameters of a representative agent: y1 ¼ ðg; aÞ
0 in a Lucas (1978) type consumption-

based CAPM. The representative agent preferences over random consumption paths are
described by a time-separable expected power utility function

E0

X1
t¼0

gtUðctÞ,

where

UðctÞ ¼
c1�at � 1

1� a
and ct denotes the consumption at time t. Of course, this way of economically defining the
structural parameters of interest is tightly linked to the economic setting the modeler has
in mind and might be reducing since, while g represents the subjective discount factor,
a represents both relative risk aversion and inverse of the elasticity of intertemporal
substitution. This implicitly assumes that this reduction has no incidence on the answer to
the aforementioned question of interest. Anyway, we stress here that the structural
parameters of interest y1 are intrinsically defined through economic paradigms rather than
through falsifiable statistical relations.
Second, in this approach the structural model is empirically assessed through its ability

to reproduce some stylized facts of interest like here the high value of the equity premium.
In our statistical framework, these stylized facts are referred to as the set of instrumental
1Actually, the sole word question is used for a section title.
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parameters denoted b. The empirical relevance of the structural model is assessed precisely
through the matching between the observed instrumental characteristics and their
theoretical counterparts consistent with the structural model.

Perhaps one of the most difficult issue for a close statement of the calibration
methodology is that the reality check relies on additional assumptions which are not part
of the economic theory of interest. These additional assumptions may require the
specification of additional parameters y2 possibly of infinite dimension. In Mehra and
Prescott (1985), these parameters y2 define the technology, that is the Markov chain
assumed to govern the gross rate of dividend payments. More precisely, this gross rate xt is
described by a two states Markov chain:

Prfxtþ1 ¼ ljjxt ¼ lig ¼ fij ; i; j ¼ f1; 2g,

where

l1 ¼ 1þ mþ d; l2 ¼ 1þ m� d

and

f11 ¼ f22 ¼ f; f12 ¼ f21 ¼ 1� f.

In other words y2 ¼ ðm; d;fÞ. More generally, the vector y of structural parameters is
split into two parts y1 and y2 where y1 gathers the characteristics of interest while y2
corresponds to nuisance parameters which are needed for the statistical assessment. The
most usual case is the one where y1 is related to preference specifications (taste parameters)
and y2 describes environmental characteristics (technology parameters). However it may
be the case that, as it is for the question above, one is not interested in a complete
description of preferences. Then the specification of y1 focuses only on a subset of taste
parameters (discount factor, risk aversion coefficient) while y2 may include other
behavioral characteristics (e.g. elasticity of intertemporal substitution).

In any case, the main role of these nuisance parameters y2 consists in indexing a binding

function between the structural parameters of interest y1 and the instrumental para-
meters b:

b ¼ ebðy1; y2Þ. (1)

Of course, the value b of the instrumental parameters defined by (1) is the theoretical one
and may not coincide with the (population) value of the observed one; this is precisely the
question addressed by the calibration exercise. For sake of illustration, let us go into
further details in the presentation of the Mehra and Prescott (1985) model. They show that
the period return for the equity if the current state is i (with a level ct of consumption) and
the next period state is j is given by

reij ¼
ljðwj þ 1Þ

wi

� 1, (2)

where w1 and w2 are computed from the Euler equation through the linear system of two
equations:

wi ¼ g
X2
j¼1

fijl
1�a
ðwj þ 1Þ; i ¼ 1; 2.
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In other words the expected return on the equity is

Re ¼
X2
i;j¼1

pifijr
e
ij , (3)

where p ¼ ðp1; p2Þ
0 corresponds to the vector of stationary probabilities of the Markov

chain. The same type of characterization is available for the risk free return Rf and omitted
here.
Then formulas (2)–(3) define the binding function between y1 ¼ ðg; aÞ

0 and b ¼
gðRf ;ReÞ ¼ ðRf ;Re � Rf Þ

0 where the vector gð�Þ contains the moments of interest. Of
course, this function is indexed by the additional parameters y2 ¼ ðm; d;fÞ

0 which
characterize the Markov chain.
The specific feature of the calibration methodology with respect to more standard

statistical inference appears precisely at this stage: since our goal is to ask whether, given
the technology, there exist taste parameters capable of matching the returns data, this,
according the Cechetti et al. (1993) ‘‘dictates that we proceed in two steps, first estimating
the parameters of the endowment process, and then computing a confidence bound for the
taste parameters g and a’’.
With respect to more orthodox econometrics, this two steps procedure may arouse, at

least, two types of criticism: First, even though the only parameters of interest are the taste
parameters y1, one get in general more accurate estimators by a joint, possibly efficient,
estimation of y ¼ ðy01; y

0
2Þ
0. Second, even when ignoring the efficiency issue, it is somewhat

questionable with regard to consistent estimation to focus on taste parameters while the
technology corresponds obviously to a caricature of the reality. Nobody may believe that
the endowment process is conformable with a two states Markov chain and this
misspecification presumably contaminates the estimation of the parameters of interest. In
our opinion, a garbled answer to the above criticisms would consist in claiming that this
procedure should not be regarded as an econometric one attempting to consistently
estimate the parameters of interest. In this respect, we share Hansen and Heckman (1996)
point of view that the distinction drawn between calibrating and estimating the parameters
of a model is artificial at best.
Actually, the core principle of the calibration approach as illustrated in Mehra and

Prescott paper’s consists in concluding that the structural model is rejected on grounds of
‘‘computational experiments’’ leading to unlikely values of the parameters of interest.
Namely, in Mehra and Prescott (1985) it is argued that computed values of the discount
factor and the relative risk aversion parameter outside their commonly acknowledged
range ð0ogo1; 0pap10Þ proves the misspecification of the structural model. How could
they maintain such an argument if they did not think that these computed values are
consistent estimators of something which makes sense?
Consequently, we think that calibration should also be interpreted in terms of consistent

estimation of the parameters of interest, even though this issue is addressed in a
nonstandard way in several respects:
�
 First, as explained above, it is often addressed in a negative way. The model is rejected
because the estimators of its alleged parameters are obviously inconsistent.

�
 Second, consistency is the only focus of interest. Efficiency is irrelevant in this setting

since the calibration exercises gather a huge amount of historical information such as
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series of asset returns over the whole last century in such way that the efficient use of the
information is not an issue at all.

�
 Third, calibrators are fully aware that consistency might fail, precisely due to the

misspecification of the technology or more generally of the additional assumptions
about the nuisance parameters y2. Indeed, fully cautious about that, they advocate
calibration as a search for sensible values of y2.

The main goal of this paper is to statistically analyze into further details the latter point.
To the extent that the aforementioned consistency requirement is maintained, the crucial
concern is the following: When one uses the binding function ebð�; ȳ2Þ indexed by a
hypothetical value ȳ2 of y2 to recover an estimate by1 of the parameters of interest y1 from
an empirical measurement bb of the instrumental parameters b by solving:2

bb ¼ ebðby1; ȳ2Þ, (4)

is there any hope that by1 consistently estimates the true unknown value y01 of the structural
parameters of interest? Before answering this question, three preliminary remarks are in
order:
1.
 On the one hand, the sole idea of a true unknown value y01 of the structural parameters
relies on the maintained hypothesis that the DGP is conformable to our structural ideas.
This does not prevent from accounting for the calibrationnist approach which considers
the estimation issue in a negative way as already explained.
2.
 On the other hand, we do not question here the consistency of the instrumental
estimator bb since the instrumental parameters b0 are essentially defined as the
population value of bb.
3.
 Finally, we consider for the moment that the binding function ebð�; ȳ2Þ, for any
reasonable value ȳ2, is well defined and known as is the case of the Mehra and Prescott
(1985) framework. However, to capture complicated features of richer models,
simulations at different levels of the forcing processes and parameters may be useful
when analytical computation is intractable. This is perhaps the reason why calibrators
have extensively used simulations.

The hope for getting a consistent estimator by1 of y01 by solving (4) can then be supported
by two alternative arguments according to our degree of optimism: Either, one adopts an
optimistic approach wishing that history has provided sufficiently rich empirical evidence
to determine without ambiguity a value ȳ2 of the nuisance parameters. This is typically
what is referred to as the calibration step. However, one should keep in mind that the
technology is crudely misspecified (see the two states Markov chain above) in such a way
that the estimator by1 can be consistent only by chance whatever the choice of ȳ2. Or, to be
more cautious, one tries different values of ȳ2 to check whether the outcome of the
computational experiments is drastically changed. This is what is called the robustness of
results in Mehra and Prescott (1985) and more generally the sensitivity analysis in the
calibration literature.
We do not mention the issue on overidentification which might prevent one from finding an exact solution to

. See Section 3 for more details.



ARTICLE IN PRESS
R. Dridi et al. / Journal of Econometrics ] (]]]]) ]]]–]]]10
Of course, an ingenuous comment about this debate would be: one should jointly stati-
stically estimate ðb; y1; y2Þ under the constraint (4). But this proposal is irrelevant in the
calibration framework since the modeler knows a priori and before any statistical inference
that the nuisance parameters y2 do not make sense on their own. Moreover, one of the
main recommendations of this paper is to be suspicious in front of sophisticated strategies
of model choice and fit about the technology characteristics. For instance, following
Bonomo and Garcia (1994) it is true that by contrast with Cechetti et al. (1990) ‘‘a well-
fitted equilibrium asset pricing model’’ may account for some stylized facts but one cannot
be sure that the improvement in the technology specification is really relevant for the
question of interest since misspecification is always guaranteed. For the same reason, one
would not like neither to estimate the structural model through a large dimensional
instrumental parameter b like a semi-nonparametric score (Bansal et al., 1995) nor
assessing its goodness of fit with the associated large battery of diagnostic tests (Gallant et
al. 1997; Tauchen et al., 1997).
Roughly speaking, all what really matters to validate the calibration exercise is that the

structural model, when endowed with the pseudo-true value ðy01; ȳ2Þ, encompasses the
instrumental one in the sense that:

b0 ¼ bðy01; ȳ2Þ.

We want to stress here that this encompassing condition is a sufficient condition
for consistency of indirect estimators of the true unknown value y01of the structural
parameters of interest. This has almost nothing to do with the accuracy of the proxy
of the technology provided by the nuisance parameters to the extent that the
structural model is always ‘‘an abstraction of a complex reality’’ (Kydland and Prescott,
1991).
The calibration strategy adopted by Cechetti et al. (1993) reflects the concern for a

parsimonious choice of the instrumental model given the technology process. These
authors also investigate the equity premium through the first and second moments of the
risk-free rate and the return to equity. As in Mehra and Prescott, the utility function is
time-separable with a constant relative risk aversion. While Mehra and Prescott consider
consumption and dividend as equal and then calibrate on an univariate Markov process,
the model developed by Cechetti et al. (1993) explicitly disentangles consumption from
dividends and the endowment process is defined by a bivariate consumption-dividends
Markov-switching model.
Cechetti et al. (1993) are clearly aware of the problem of choosing a too large

set of moments to estimate both structural parameters of interest and the endowment.
They explicitly argue that it would not be well-suited to estimate the parameters
of interest and the endowment process jointly by MLE procedure. Such an estimation
strategy forces the model to match all the aspects of the data and it is unlikely that a
simple model could reproduce adequately all those aspects. They formalize the cali-
bration principle by the following two-step procedure. In a first step, the parameters of the
endowment process are estimated through a subset of moments chosen to match
the MLE estimates of a bivariate consumption-dividends Markov-switching model.
In the second step, a confidence interval bound is computed for the taste parameters
through first and second moments of returns data for a given endowment process. In our
notation, this approach amounts to define two subvectors of instrumental parameters
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namely:

b1 ¼ b1ðy1; y2Þ,

b2 ¼ b2ðy2Þ,

where y1 ¼ ðg; aÞ
0 and y2 gathers the parameters for the endowment process. The subvector

b2ð�Þ corresponds to the subset of moments chosen to match the MLE estimates of the
bivariate consumption-dividends Markov-switching model. The subvector b1ð�Þ contains
the first and second moments of return data used to estimate the structural parameters y1
given the technology characterized by y2. As in Mehra and Prescott, the model evaluation
relies on the plausibility of the confidence interval bound for the discount factor parameter
(g) and the relative risk aversion parameter (a). In other words, while the notation b2 ¼
b2ðy2Þ formalizes the fact that the calibrated values of y2 come themselves from some
moment matching, and the notation b1 ¼ b1ðy1; y2Þ stresses the fact that we are going to be
parsimonious about the stylized facts the structural parameters y1 of interest are supposed
to account for (for a given pseudo-true value of the nuisance structural parameters y2 ) it
remains true that consistent confidence sets for y1 are going to be obtained from this two-
step procedure only if one maintains the assumption of full encompassing of the
instrumental model by the structural one.
2.2. General equilibrium approach to business cycles: an illustration

Kydland and Prescott (1982) introduced a neoclassical one-sector growth model driven
by technology shocks to reproduce cyclical properties of US economy. The model includes
a standard neoclassical production, standard preferences to describe agent’s willingness to
substitute intratemporally and intertemporally between consumption and leisure and an
exogenously driven latent process characterizing technology shocks. The Kydland and
Prescott’s model and the subsequent macro dynamic equilibrium models based only on
real shocks with no role for monetary shocks are called real business cycle (RBC) models.3

The clear-cut question addresses by Kydland and Prescott (1982) is the following: How
much would the US economy have fluctuated if technology shocks had been the only
source of fluctuations? Obviously the model is misspecified. In particular, it implies some
unrealistic stochastic singularity for the vector of endogenous variables.4

This question addressed by Kydland and Prescott defines the moments (instrumental
parameters) through which the empirical fit of the model has to be assessed. The
instrumental parameters correspond to second moments describing the cyclical properties
of US postwar economy. While these moments can be easily estimated from the data,
simulations are often required to compute their theoretical counterpart. In the strategy
advocated by Kydland and Prescott (1982) the answer to the question of interest is then
given by an informal distance between empirical instrumental parameters and the
instrumental parameters under the structural model. The values of the structural
3For extensions of this model see e.g. Hansen (1985), Beaudry and Guay (1996) and Burnside and Eichenbaum

(1996).
4Some empirical applications bypass this misspecification problem by augmenting the theoretical solution of the

model with a measurement error for each endogenous variables. The augmented model is then estimated by MLE

(see Hansen and Sargent (1979), Christiano (1988)). See Watson (1993) and Ruge-Murcia (2003) for a discussion.



ARTICLE IN PRESS
R. Dridi et al. / Journal of Econometrics ] (]]]]) ]]]–]]]12
parameters are previously deduced from applied micro-studies or by matching long run
properties of US economy.
For sake of illustration, we consider here a benchmark RBC model (King et al., 1988a,

b). The social planner of this economy maximizes

E0

X1
t¼0

gt½lnðCtÞ þ f lnðLtÞ�,

where Ct is per capita consumption, Lt is leisure, g is the discount factor and f is the
weight of leisure in the utility function. The intertemporal maximization problem is subject
to the following budget constraint:

Ct þ Ktþ1 � ð1� dÞKtpK1�a
t ðZtNtÞ

a,

where Kt is the capital stock, Nt are the hours worked, Zt is the labor augmenting
technology process, a is the labor share in the Cobb–Douglas production function and d
the depreciation rate of the capital stock. As mentioned by Kydland and Prescott (1996),
the law of motion of the latent process Zt in the model is not provided by any economic
theory. Additional assumptions which are neither given by economic theory nor by any
statistical procedure are then required. Following King et al. (1988b), we consider here that
the law of motion for Zt is characterized by the following random walk with drift:

ln Zt ¼ mþ lnZt�1 þ et,

where m is the growth rate of the economy and is et i.i.d. Normal ð0;seÞ. Obviously, this law
of motion of the technology process is a caricature of the true unknown process.
Consequently, this misspecification could presumably contaminate the estimation of the
structural parameters of interest. However, with such a driven process, the log-linear
solution of the model is compatible with a unit root process for output, consumption,
investment and real wages (see King et al., 1988b, 1991) and cointegration relationships
between these variables which are consistent with US data.
We consider here that there are four deep structural parameters in this model and three

auxiliary parameters. In our notation, y1 ¼ ðg; d; aÞ
0 gathers the parameters of interest and

y2 ¼ ðf; m;seÞ
0 the nuisance parameters needed for statistical implementation, that is to

index the binding function. We will explain later why f is considered as nuisance
parameter.
While Mehra and Prescott ask the question of existence of reasonable values of

parameters of interest able to reproduce the observed risk premium, the RBC modeler asks
the question: ‘‘Given a set of parameters of interest calibrated from micro-evidence or long
run averages, what is the ability of the model to reproduce some well documented ‘‘stylized
facts’’?’’
As explained above, Mehra and Prescott (and Cechetti et al., 1993) considers estimation

issue in a negative way: they search for values of structural parameters (y1 in our notation)
reproducing as well as possible the observed instrumental parameters b. The goodness of
fit of the model is assessed through the order of magnitude of these values. Kydland and
Prescott (1982) evaluate the performance of the model by its ability to reproduce well
defined ‘‘stylized facts’’ which are computed by simulations at given values of the
structural parameters (y1). The assigned value of the parameter vector y1 comes from other
applied studies or by matching long run average values for the economy. In contrast to
Mehra and Prescott strategy, the instrumental parameters used to assess the model differs
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from the ones used to obtain an estimator of the structural parameters. More precisely, the
strategy advanced by Kydland and Prescott (1982) consists in two steps:
�

5

par
6

oth
First, structural parameters are calibrated to values used in applied studies and to match
long run average values.

�
 Second, the verification is implemented by judging the adequacy of the model to

reproduce well chosen ‘‘stylized facts’’. When they could not find reliable estimations of
a subset of parameters in economic literature or by matching long run properties, these
parameters are treated as free parameters. Their values are then chosen to minimize the
distance between the well chosen ‘‘stylized facts’’ of the US economy and the
corresponding ones of the model.

The first step corresponding to calibration is the most controversial one. Indeed, several
authors have shown that parameters obtained from micro-applied studies can be plugged
to a representative agent model to produce empirically concordant aggregate model only
under very special circumstances (see Hansen and Heckman (1996) for a discussion on this
point). However, matching long run properties is more conformable to the estimation step
in classical econometrics. In fact, this practice consists in matching a just-identified set of
moments where the corresponding instrumental parameters are the long-run averages. For
instance, Kydland and Prescott (1982) calibrate the deterministic version of their model so
that consumption/investment shares, factor/income shares, capital/output ratio, leisure/
market-time shares and depreciation shares match the average values of US economy.
Since this matching is not done through a formal GMM-type estimation procedure,5

uncertainty inherent to computed values is not taken into account in the results.
The matching of long run properties of the economy corresponds in our setting to

obtaining an estimator of y ¼ ðy01; y
0
2Þ
0 by matching

b ¼ bðy1; y2Þ,

where b captures these long run average properties. It is important to note that these long
run properties correspond to stationary transformations of variables. Generally speaking,
to avoid an obvious violation of common theoretical assumptions as listed in Section 3
below, moments conditions b must be defined on stationary transformations of variables.6

Moreover, the notion of ‘‘free parameters’’ in Kydland and Prescott (1982) corresponds
to the idea that only a subset y21 of nuisance structural parameters y2 actually shows up in
the binding function bðy1; y2Þ. More precisely there is what we are going to define as partial

encompassing of the instrumental model by the structural one because y2 is partitioned in
y2 ¼ ðy21; y22Þ and b0 ¼ bðy01; ȳ21Þ for some pseudo-true value ȳ21 of y21. Of course finite
sample and possibly simulation-based counterparts of bðy01; ȳ21Þmay depend on some given
value ȳ22 of y22 needed to characterize the DGP but, as far as asymptotic estimation is
concerned, the pseudo-true value ðy01; ȳ21Þ obtained by matching with the instrumental
parameters do not depend on y22. This invariance comes at the price of not identifying the
free parameters y22 from the instrumental parameters b.
See Christiano and Eichenbaum (1992) and Burnside and Eichenbaum (1996) for the estimation of structural

ameters by a just-identified GMM.

See Christiano and Eichenbaum (1992), Burnside and Eichenbaum (1996), Beaudry and Guay (1996), among

ers, for the estimation of structural models with technology process characterized by a random walk with drift.
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The verification step (second step) performed by the calibrator precisely involves the
identification of these free parameters. While for calibrators it is based on a quite informal
distance criterion for selected ‘‘stylized facts’’, it can be formalized in our setting by a
choice of additional instrumental parameters corresponding to the ‘‘stylized facts’’ to
reproduce. In fact, we try to judge whether we can reject with a certain metric the following
null hypothesis:

c ¼ cðy01; ȳ21; ȳ22Þ

evaluated at the pseudo-true value obtained ðy01; ȳ2Þ with the instrumental parameters Nc

for some convenient choice of the pseudo-true value ȳ22. In other words, the estimator of
the pseudo-true value ȳ22 of the nuisance parameters is obtained from the sample (and
possibly simulation based) counterpart of some minimum distance program:

ȳ22 ¼ arg min
y222Y22

ðc0
� ecðy01; ȳ21; y22ÞÞ0Ocðc0

� ecðy01; ȳ21; y22ÞÞ, (5)

where Oc is a positive matrix on Rqc and qc ¼ dim c. For the benchmark RBC model, the
free parameter f corresponding to the weight of leisure in the utility function may be
difficult to estimate at the first step. In such a situation, an estimator can then be obtained
by (5). In a more complicated model, Kydland and Prescott fix seven parameters by
minimizing the distance between the model and data for 23 moments describing US
business cycle. Those parameters are the substitutability of inventories and capital, two
parameters determining intertemporal substitutability of leisure, the risk aversion
parameter and three parameters for the technology process.
It is worth noticing that, even when more recent econometric studies of DSGE models

claim to use more formal statistical techniques because ‘‘an important advantage of our
GMM procedures, however, is that they let us quantify the degree of uncertainty in our
estimates of the model’s parameters’’ (Christiano and Eichenbaum, 1992), they often
realize that efficient GMM a la Hansen (1982) is not well-suited in such a misspecified
setting and what they actually do resembles much more the two steps of calibration and
verification described above. For sake of illustration, we focus here on the example of
Christiano and Eichenbaum (1992) but the general features of this study as described
below are largely shared with most empirical studies of DSGE models. Roughly speaking,
their application of GMM is far to be orthodox for the following reasons.
First, as above, there is an implicit partition of the vector y of structural parameters

between three subsets. The vector y1 of structural parameters of interest includes a; d;f in
order to characterize both the central planner utility function (up to the subjective discount
factor g) and the production function. Actually, at it is written, the utility function includes
another parameter N which is the time endowment of the representative consumer seen as
an upper bound of the leisure time Lt defined above. It is rather clear that the two nuisance
structural parameters y21 ¼ ðg;NÞ are highly difficult to estimate but however are ‘‘key
parameters’’ that may contaminate the estimation of the structural parameters y1 of
interest. Therefore, in spite of the claim of taking parameters uncertainty into account, the
value of these two parameters is fixed only from the calibrator knowledge, without any
attempt to identify them statistically, while strictly speaking, they are identified by the
structural model. In other words, a very parsimonious binding finction b0 ¼ bðy1; ȳ21Þ,
actually just identified with respect to y1 is written to get partial encompassing for the fixed
value ȳ21 of the nuisance parameters. To do so, the authors neglect on purpose the
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identifying content (about both y1 and y21) of Euler intertemporal optimality conditions
and only use unconditional moment restrictions to just identify y1.

Second, while the Christiano and Eichenbaum (1992) model includes five other
structural parameters characterizing the dynamics of the aggregate shock to technology
and of an additional process of public consumption as well, these parameters define a
vector y22 which may not be simultaneously estimated with y1. Actually, Christiano and
Eichenbaum (1992) do estimate them simultaneously, but only within a just identified
GMM framework where the estimation of y22 does not contaminate the estimation of the
structural parameters of interest y1. It is important to realize that in more involved DSGE
models with latent processes where structural moments need to be simulated because there
are no close form formulas, this kind of cut between the two sets of parameters could be
obtained only by giving up a number of possible binding functions between structural
parameters and observable moments. As a matter of fact, such a problematic interaction
between parameters of interest and nuisance parameters is only met by Christiano and
Eichenbaum (1992) when they come to the second step of model verification about ‘‘labor-
market moments’’. Then, as explained above, is only when it comes to the assessment of
the ability of the model to reproduce some stylized facts that the interaction between
nuisance parameters y22 and parameters of interest y1 is explicitly acknowledged. The
latter stylized facts define an additional set c ¼ cðy01; ȳ21; ȳ22Þ of moments conditions
which are not used for a joint efficient estimation of all the structural parameters within the
first step of calibration.

Finally, it is worth reminding that, while it has been possible in this simple model to
perform GMM inference from moment conditions that are available in closed form, it is
often the case that preliminary simulations in the structural model are needed to get a
simulation-based counterpart of the binding function. In such a case, it would be a pity to
contaminate the estimation of the structural parameters of interest, simply because a
simulator of exogenous variables, like public consumption in Christiano and Eichenbaum
(1992) model, has been wrongly specified. In other words, common formulas of simulated
method of moments kind of inference have to be corrected for the effect of not simulating
the paths of observed exogenous processes.

3. A partial indirect inference approach to calibration

We present in this section the principles of PII. While this methodology may be relevant
for other applications (see e.g. Dridi and Renault (1998) for an application to stochastic
volatility models), we give here the general theory, as an extension of Gouriéroux et al.
(1993) II, but we set the focus on the calibration framework as formalized in Section 2.

The main goal of this section is to give a precise content to the calibration kind of
interpretation of II, as put forward in Section 2, that is ‘‘given that the model is false’’,
some elements of truth involved in the model (for instance some taste parameters) should
be caught by matching some well-chosen moments. The rigorous meaning of ‘‘elements of
truth’’ lies in the semi-parametric modeling widely adopted in modern econometrics as an
alternative to the hopeless search for a well-specified parametric model that is more often
than not impossible to deduce from economic theory. On the opposite, the partial
approach to II specifies only some parameters of interest raised out by the underlying
economic theory. We first present the theoretical results (consistency, asymptotic
probability distribution) available for PII.
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3.1. The general framework

The data consist in the observation of a stochastic process fðyt;xtÞ; t 2 Zg for
t ¼ 1; . . . ;T . We denote by P0 the true unknown p.d.f. of fðyt;xtÞ; t 2 Zg.

Assumption (A1). (i) P0 belongs to a family P of p.d.f. on ðX�YÞZ.

(ii) ey1 is an application from P onto a part Y1 ¼
ey1ðPÞ of Rp1 .

(iii) ey1ðP0Þ ¼ y01, the true unknown value of the parameters of interest, belongs to the

interior Y
o

1 of Y1.ey1ðPÞ ¼ y1 is the vector unknown parameters of interest. Typically, in the case of a
stationary process fðyt;xtÞ; t 2 Zg, it may be defined through a set h of identifying moment
restrictions:

E
P

hðyt;xt; yt�1;xt�1; . . . ; yt�K ;xt�K ; y1Þ ¼ 0 ¼) y1 ¼ ey1ðPÞ.
In such a partially parametric model, not only the MLE estimator is no longer available,
but even more robust M-estimators or minimum distance estimators may be intractable
due to a complicated dynamic structure of P. This is the reason why we refer to II
associated with a given pair of ‘‘structural’’ model (used as simulator) and ‘‘auxiliary’’ (or
‘‘instrumental’’) criterion.
In order to get a simulator useful for PII on y1, we plug the partially parametric model

defined by (A1) into a structural model that is fully parametric and misspecified in general
since it introduces additional assumptions on the law of motion of ðy; xÞ which are not
suggested by any economic theory. These additional assumptions require a vector y2 of
additional parameters. The vector y of ‘‘structural parameters’’ is thus given by
y ¼ ðy01; y

0
2Þ
0. We then formulate a nominal assumption (B1) to specify a structural model

conformable to the previous section, even though we know that (B1) is likely to be
inconsistent with the true DGP.7

Nominal assumptions (B1). fðyt;xtÞ; t 2 Zg is a stationary process conformable to the
following nonlinear simultaneous model:
�

7

QM
rðyt; yt�1;xt; ut; yÞ ¼ 0;

jðut; ut�1; et; yÞ ¼ 0

y ¼ ðy01; y
0
2Þ
0
2 ðY1 �Y2Þ ¼ Y a compact subset of Rp1þp2 ,
�
 the exogenous process fxt; t 2 Zg is independent of fet; t 2 Zg,

�
 fet; t 2 Zg is a white noise with a known distribution G�.
Then, for each given value of the parameters y, it is possible to simulate values
fey1ðy; z0Þ; . . . ; eyT ðy; z0Þg conditionally on the observed path of exogenous variables
fx1; . . . ;xT g and for given initial conditions z0 ¼ ðy0; u0Þ. This is done by simulating
values fee1; . . . ;eeT g from G�. We denote by P� the probability distribution of the process
fxt; et; t 2 Zg.
We denote by B the nominal assumptions, that is assumptions that are used for a quasi-II (by extension of the

LE).
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We focus here on II about the true value y01 of the parameters of interest y1. The II
principle is still defined from the two basic components: a ‘‘structural’’ model (B1) and an
instrumental model Nb which defines pseudo-true values of instrumental parameters as
limits in probability of some extremum estimator associated to a criterion function
QT ðyT

;xT ;bÞ to minimize. Here we assume for simplicity that b 2 B a compact subset of

Rq and y
T
, xT denote the lagged values of yt and xt for a fixed number K of lags.

For example, in the case of moment conditions, the corresponding criterion is defined as

QT ðyT
;xT ;bÞ ¼

1

2

1

T

XT

t¼1

gðy
t
; xtÞ � b

 !0
1

T

XT

t¼1

gðy
t
;xtÞ � b

 !
.

We introduce the estimators bbT and ebTSðy1; y2Þ associated with the general criterion:bbT ¼ arg min
b2B

QT ðyT
;xT ;bÞ,

ebs

T ðy1; y2Þ ¼ arg min
b2B

QT ðeys

T
ðy; zs

0Þ;xT ; bÞ,

ebTSðy1; y2Þ ¼
1

S

XS

s¼1

ebs

T ðy1; y2Þ,

where eys

t
ðy; zs

0Þ ¼ feys
tðy; z

s
0Þ; eys

t�1ðy; z
s
0Þ; . . . ; eys

t�K ðy; z
s
0Þg for S simulated paths s ¼ 1; 2; . . . ;S

associated to a given value y ¼ ðy01; y
0
2Þ
0 of the structural parameters. Note that by contrast

with a current practice in calibration studies, the simulation noise can be reduced by
simulating S paths of length T for the endogenous variables (while repeating S times the
observed bias of exogenous variables) with T equal to the length of observed paths and S
larger than one. Roughly speaking, when the simulator is well-specified, this will lead to
multiply the standard asymptotic variance matrices of GMM by a factor of (1+1/S) to
take into account the simulation noise for simulated moments. With a misspecified
structural model used as a simulator, the factor (1+1/S) does not show up anymore since
observed moments and simulated moments are no longer produced from the same DGP.
However, as shown in asymptotic variance formulas below, increasing S still provides
variance reduction like (1/S). By contrast, it is important to simulate paths of length T to
get the same order of magnitude of finite sample bias in estimators of instrumental
parameters computed on both observed and simulated paths. The key point is that, such a
finite sample path, while especially significant for estimating persistence of dynamic
processes, will be erased by matching observed and simulated moments which involve the
same kind of finite sample bias (see Gouriéroux et al., 2000).

Under usual regularity conditions, estimators computed on observed paths and
simulated paths as well converge, when T is going to infinity, uniformly in ðy1; y2Þ to

P0 lim
T!1

bbT ¼ b0 ¼ bðP0Þ,

P� lim
T!1

ebTS ¼
ebðy1; y2Þ.

We refer to P0 lim
T!þ1

and P� lim
T!þ1

as the limit with respect to the P0 and the P� probabilities

when T goes to infinity.
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Assumption (A2). ebð�; �Þ is one-to-one.
According to Gouriéroux and Monfort (1995) terminology, b0 is the true value of

instrumental parameters and ebð�; �Þ is the binding function from the structural model to the
instrumental one.
A PII estimators by1;TS is then defined as follows:byTS ¼ ð

by01;TS;
by02;TSÞ

0
¼ arg min

ðy1;y2Þ2Y1�Y2

½bbT �
ebTSðy1; y2Þ�

0bOT ½
bbT �

ebTSðy1; y2Þ�,

where P� lim
T!þ1

bOT ¼ O is positive definite matrix on Rq.

In order to derive a necessary and sufficient condition for the consistency of the PII
estimator by1;TS to y01, we define the so-called ‘‘generalized inverse’’ eb� of eb byeb�ðbÞ ¼ arg min

ðy1;y2Þ2Y1�Y2

kb� ebðy1; y2ÞkO.
In our partially parametric setting, we are only interested in the projection of eb�½bðPÞ� on
the set Y1 of the parameters of interest. Let us denote by Q1 the projection operator:

Q1 : Rp1 � Rp2 ! Rp1 ,

ðy01; y
0
2Þ
0
! y1.

We are then led to the following consistency criterion:

Proposition 3.1. Under assumptions (A1)–(A2), by1;TS is a consistent estimator of the

parameters of interest y01 if and only if, for any P in the family P of p.d.f. delineated by the

model (A1)

Q1½
eb�ðbðPÞÞ� ¼ ey1ðPÞ.

In order to test the consistency property, we focus on a sufficient encompassing
condition. We say that (B1) endowed with the pseudo-true value ðy001 ; ȳ

0

2Þ
0 fully encom-

passes (Nb) if:

b0 ¼ ebðy01; ȳ2Þ.
In this framework, we get easily under standard regularity conditions a sufficient

condition for the consistency of the PII estimator by1;TS:

Proposition 3.2. Under assumptions (A1)–(A2), if there exists ȳ2 2 Y2 such that (B1)
endowed with the pseudo-true value ðy001 ; ȳ

0

2Þ
0 fully encompasses (Nb), then by1;TS is a

consistent estimator of the parameters of interest y01.

Proposition 3.2 is a direct corrollary of Proposition 3.1.
When the structural misspecified model (B1) endowed with the pseudo-true value
ðy001 ; ȳ

0

2Þ
0 for ȳ2 2 Y2 does not fully encompasses the instrumental model Nb, we are led to

extend the encompassing concept to a property of partial encompassing defined through a
subvector b01 of q1 instrumental parameters ðq1pqÞ. The corresponding subvector functioneb1ð�; �Þ of the binding function is defined from Y1 �Y21 onto Rq1 :eb1 : Y1 �Y21! Rq1 , (6)
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ðy1; y21Þ ! eb1ðy1; y21Þ, (7)

where y21 corresponds to the subvector of the nuisance parameters y2 ¼ ðy
0
21; y

0
22Þ
0 which

does play a role in the first q1 components of the binding function b. y21 belongs to Y21,
subset of Rp21 with the assumed factorization of the nuisance parameters set of
Y2 ¼ Y21 �Y22. We say that (B1) endowed with the pseudo-true value ðy001 ; ȳ

0

2Þ
0 partially

encompasses Nb if the following conditions are fulfilled:
(i)
 eb1ð�; �Þ is one-to-one;

(ii)
 b01 ¼ eb1ðy01; ȳ21Þ:
We introduce the following estimators bb1;T ; and ebs

1;T ðy1; y2Þ, respectively, defined as the

subvectors of size q1 of the estimators bbT and ebTSðy1; y2Þ. These estimators converge
uniformly in y1; y2 to:

P0 lim
T!1

bb1;T ¼ b01,

P� lim
T!1

eb1;TSðy1; y2Þ ¼ eb1ðy1; y21Þ.
In this context, since the PII estimator by1;TS is possibly not consistent for y01, we propose

to focus on another class of partial indirect estimator by1;TSðȳ22Þ based on a subvector b1 of
the instrumental parameters and defined by:

by1TSðȳ22Þ ¼ ðby101;TSðȳ22Þ;by1021;TSðȳ22ÞÞ
0

¼ arg min
ðy1;y21Þ2Y1�Y21

½bb1;T � eb1;TSðy1; y21; ȳ22Þ�
0bO1;T ½

bb1;T � eb1;TSðy1; y21; ȳ22Þ�,

where P� lim
T þ1

bO1;T ¼ O1 is a positive definite matrix. We denote by ȳ22 the value assigned to

the nuisance parameters y22 in order to perform the simulations. In this framework, we are
able to prove the following sufficient condition for the consistency of the PII estimatorby11;TSðȳ22Þ:

Proposition 3.3. Under assumptions (A1)–(A2), and if there exists ȳ2 2 Y2 such that (B1)

endowed with the pseudo-true value ðy001 ; ȳ
0

2Þ
0 partially encompasses Nb, then by11;TSðȳ22Þ is a

consistent estimator of the parameters of interest y01.

3.2. Asymptotic probability distribution of partial indirect inference estimators

In this section, we derive the asymptotic probability distribution of PII estimators. While
the general statement of regularity conditions and the methodology of proofs remain
conformable to standard asymptotic theory of extremum estimation, two specific features
have to be emphasized. First the possible discrepancies between the DGP and the
simulator lead to define two sets of information kind of matrices, whatever their expression
as gradient of the score or Hessian of the objective function. Second, the fact same some
exogenous variables are not simulated but only duplicated may introduce some perverse
correlations between observed and simulated paths. We distinguish two sets of asymptotic
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results, depending upon the fact they are obtained under the maintained assumption of
either full or only partial encompassing.
3.2.1. Full-encompassing partial indirect inference estimator

We focus here on the asymptotic properties of the II estimator byTS under the full-

encompassing hypothesis: there exists ȳ2 2 Y2 such that (B1) endowed with the pseudo-

true value ðy001 ; ȳ
0

2Þ
0 fully encompasses Nb. Let us then assume as usual for extremum

estimation that:
First,

ðA3Þ
1ffiffiffiffi
T
p

qQT

qb
ðy

T
;xT ; b

0
Þ,

is asymptotically normally distributed with mean zero and with an asymptotic covariance
matrix I0 and second:

ðA4Þ J0 ¼ P0 lim
T!1

q2QT

qbqb0
ðy

T
;xT ;b

0
Þ.

Of course, since QT may not be the log-likelihood, the information matrix equality is
not guaranteed and I0 and J0 may differ. Moreover, since DGP and simulator may differ,
we must also consider a second set of similar matrices associated to the simulator when the
pseudo-true value of the parameters is used for simulation. More precisely, we assume
that:

ðA5Þ
1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;b

0
Þ,

is asymptotically normally distributed with mean zero and with an asymptotic covariance
matrix I�0 and independent of the initial values zs

0; s ¼ 1; . . . ;S, and

ðA6Þ J�0 ¼ P� lim
T!1

q2QT

qbqb0
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;b

0
Þ.

Note that this setting is also relevant for performing simulated MLE, as it is popular
nowadays for estimating DSGE models. While we have known since White (1982) that, as
soon as one think about possible misspecifications of the likelihood functions, like omitted
variables, omitted heteroskedasticity, and so on, one should use a robustified asymptotic
covariance matrix taking into account that I0 and J0 may differ, we stress here that it is as
important to realize that I0, J0, I�0 and J�0 may be four different matrices. The four ones are
going to be at stake in asymptotic variances of simulation-based estimators.
Finally, one must also take into account the perverse correlation between observed and

simulated paths (and associated score functions) due to the fact that observed exogenous
variables paths are duplicated within simulated paths, in order to avoid a likely wrong
simulation of exogenous variables. Once more, this is even more relevant in the case of
simulated likelihood approaches where no such thing that a probability distribution for
exogenous processes should be specified. In this case too, one must distinguish score
functions as produced by the true DGP and score functions produced by the simulator, so
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that two matrices of asymptotic covariance have to be defined:

ðA7Þ lim
T!þ1

Cov�
1ffiffiffiffi
T
p

qQT

qb
ðy

T
;xT ; b

0
Þ;

1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;b

0
Þ

� �
¼ K0,

independent of the initial values zs
0; s ¼ 1; . . . ;S, and

ðA8Þ lim
T!þ1

Cov�
1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;b

0
Þ;

1ffiffiffiffi
T
p

qQT

qb
ðeyl

T
ðy01; ȳ

0

2; z
l
0Þ;b

0
Þ

� �
¼ K�0,

independent of the initial values zs
0 and z!0, for sa‘.

Finally, as for standard minimum distance estimation asymptotic theory, we assume
that:

ðA9Þ P� lim
T!þ1

qebs

T

qy0
ðy01; ȳ2Þ ¼

qeb
qy0
ðy01; ȳ2Þ,

is full-column rank ðpÞ.
We are now able to state the following result:

Proposition 3.4. Under the null hypothesis of full encompassing and assumptions (A1)–(A9),
the optimal II estimator by�TS is obtained with the weighting matrix O� defined below. It is

asymptotically normal, when S is fixed and T goes at infinity:

ffiffiffiffi
T
p by1;TS � y01by2;TS � ȳ2

0@ 1A!D Nð0;W ðS;OÞÞ

with

W ðS;OÞ ¼
qðebÞ0
qy
ðy01; ȳ2ÞðF

�
0ðSÞÞ

�1 qeb
qy0
ðy01; ȳ2Þ

( )�1
, ð8Þ

O� ¼ F�0ðSÞ
�1,

F�0ðSÞ ¼ J�10 I0J�10 þ
1

S
J��10 I�0J��10 þ 1�

1

S

� �
J��10 K�0J��10

� J�10 K0J
��1
0 � J��10 K 00J

�1
0 . ð9Þ

Proof. see Appendix A. &

Note that in the case where the structural model (B1) is well specified, F�0ðSÞ reduces to
ð1þ 1

S
ÞJ�10 ðI0 � K0ÞJ

�1
0 since then K0 ¼ K 00.
3.2.2. Partial-encompassing partial indirect inference estimator

We now focus on the asymptotic properties of the II estimator by1TSðȳ22Þ under the partial
encompassing hypothesis H1

0ðȳ22Þ: The main difference with the full encompassing case is
that now all the asymptotic covariances depend on some ȳ22 which has been calibrated
before any formal estimation procedure. We first maintain assumptions (A3) and (A4) and

we denote eb0ðȳ22Þ ¼ ebðy01; ȳ2Þ for the given value ȳ22 of the nuisance parameters. We made
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the following assumptions for a given value ȳ22:

ðA10Þ lim
T!þ1

Cov�
1ffiffiffiffi
T
p

qQT

qb
ðy

T
; xT ; b

0
Þ;

1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;
eb0ðȳ22ÞÞ� �

¼ K0ðȳ22Þ,

independent of the initial values zs
0; s ¼ 1; . . . ;S:

ðA11Þ
1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;
eb0ðȳ22ÞÞ,

is asymptotically normally distributed with mean zero and with an asymptotic covariance
matrix I�0ðȳ22Þ and independent of the initial values zs

0; s ¼ 1; . . . ;S.

ðA12Þ J�0ðȳ22Þ ¼ P� lim
T!1

q2QT

qbqb0
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;
eb0ðȳ22ÞÞ,

ðA13Þ lim
T!þ1

Cov�
1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ

0

2; z
s
0Þ;
eb0ðȳ22ÞÞ; 1ffiffiffiffi

T
p

qQT

qb
ðeyl

T
ðy01; ȳ

0

2; z
l
0Þ;
eb0ðȳ22ÞÞ� �

¼ K�0ðȳ22Þ,

independent of the initial values zs
0 and z!0, for sa‘.

ðA14Þ P� lim
T!þ1

qebs

1;T

q y1
y21

� �0 ðy01; ȳ2Þ ¼ qeb1
q y1

y21

� �0 ðy01; ȳ21Þ,
is full-column rank ðp1 þ p21Þ. We are then able to prove the following result:

Proposition 3.5. Under the null hypothesis H1
0ðȳ22Þ, assumptions (A1)–(A4), (A10)–(A14),

the optimal II estimator by1�TSðȳ22Þ is obtained with the weighting matrix O�1ðȳ22Þ defined below.

It is asymptotically normal, when S is fixed and T goes to infinity:

ffiffiffiffi
T
p by11;TSðȳ22Þ � y01by121;TSðȳ22Þ � ȳ21

0@ 1A!D N 0;W 1ðS;O�1ðȳ22ÞÞ
� 	

with

W 1ðS;O�1ðȳ22ÞÞ ¼
qeb01

q y1
ȳ21

� � ðy1; ȳ21ÞðF�0;1ðS; ȳ22ÞÞ�1 qeb1
q y1

y21

� �0 ðy01; ȳ21Þ
264

375
�1

,

O�1ðȳ22Þ ¼ F�0;1ðS; ȳ22Þ
�1,

F�0ðSÞ ¼ J�10 I0J
�1
0 þ

1

S
J��10 ðȳ22ÞI

�
0ðȳ22ÞJ

��1
0 ðȳ22Þ

þ 1�
1

S

� �
J��10 ðȳ22ÞK

�
0ðȳ22ÞJ

��1
0 ðȳ22Þ

� J�10 K0ðȳ22ÞJ��10 ðȳ22Þ � J��10 ðȳ22ÞK
0
0ðȳ22ÞJ

�1
0 .
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and F�0;1ðS; ȳ22Þ is the ðq1 � q1Þ left-upper bloc diagonal submatrix of the ðq� qÞ matrix

F�0ðS; ȳ22Þ.

Proof. see Appendix A. &

Although calibrator’s knowledge ȳ22 is more often than not considered as free of
parameter uncertainty thanks to the availability of a large bunch of empirical evidence, it is
worth noticing that the above results remain valid even when it is explicitly acknowleged
that in practice the exact value ȳ22 is not known but only a root-T consistent estimator of it
is available to define the simulator. More precisely, it can be easily shown that one can
replace the value ȳ22 of the nuisance parameters y22 by a consistent estimator by22;TS such
that

ffiffiffiffi
T
p
ðby22;TS � ȳ22Þ ¼ OP�ð1Þ without modifying the asymptotic probability distribution

of the PII estimator. The detailled proof is not provided here since this result can actually
be understood as a corollary of a very general adaptivity principle for extremum
estimation. While the partial encompassing property precisely means that consistency of
the estimators of the parameters of interest is not impaired by the chosen value for
nuisance parameters, it also means by the same token that asymptotic probability
distributions of these estimators do not depend on a specific choice of a root-T consistent
estimator of the nuisance parameters.

3.3. Identifying the moments to match

The general idea is to start from a set of moments to match that are suggested by
economic theory or any other features of the data the econometrician wishes to reproduce.
The key hypothesis to test is the full encompassing property of theses moments by the
structural model of interest. When the full encompassing hypothesis is rejected, one has to
find a well suited selection, or more generally projection, of the initial instrumental
characteristics in order to get at least partial encompassing. As explained above, this is the
condition required to build a consistent partial indirect estimator as well as reliable
predictions under hypothetical policy interventions.

Proposition 3.6. Under assumptions (A1)–(A9) and the null hypothesis H0 of full-

encompassing of Nb by (B1)

xT ;S ¼ T min
y2Y

bbT �
1

S

XS

s¼1

ebs

T ðy1; y2Þ

" #0bO�T ðSÞ bbT �
1

S

XS

s¼1

ebs

T ðy1; y2Þ

" #
,

where bO�T ðSÞ is a consistent estimator of the optimal metric O�ðSÞ ¼ F�0ðSÞ
�1 defined in

Proposition 3.4, is asymptotically distributed as a w2 with ðq� pÞ degrees of freedom where

q ¼ dim b and p ¼ dim y.

Proof. see Appendix A. &

The associated specification test of asymptotic level a is defined by the critical region:

Wa ¼ fxT ;S4w21�aðq� pÞg.

In case of rejection, we may look for a reduction through an appropriate projection of the
set of moments. This is based on the following partial encompassing test.
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Proposition 3.7. Under assumptions (A1)–(A4), (A10)–(A14) and the null hypothesis H0ðȳ22Þ
of partial encompassing of Nb by (B1)

x1T ;Sðȳ22Þ ¼ T min
y1;y212Y1�Y21

bb1;T � 1

S

XS

s¼1

ebs

1;T ðy1; y21; ðȳ22ÞÞ

" #0bO�1;T ðSÞ
� bb1;T � 1

S

XS

s¼1

ebs

1;T ðy1; y21; ðȳ22ÞÞ

" #
,

where O�1;T ðSÞ is a consistent estimator of the optimal metric O�1ðS; ȳ22Þ ¼ F�0;1ðS; ȳ22Þ
�1

defined in Proposition 3.5, is asymptotically distributed as a w2 with ðq1 � p1 � p21Þ degrees if

freedom where q1 ¼ dim b1; p1 ¼ dim y; p21 ¼ dim y21.

The proof is omitted here since it is a simple extension of the previous one. The
associated specification test of asymptotic level a is defined by the following critical region:

W1
a ¼ fx

1
T ;Sðȳ22Þ4w21�aðq1 � p1 � p21Þg.

The previous result is not modified if y22 is replaced by a consistent estimator by22;TS

such that
ffiffiffiffi
T
p
ðby22;TS � ȳ22Þ ¼ OP�ð1Þ. In case of rejection of any trial run of partial

encompassing, the pair (structure model, instrumental model) is inadequate and has to be
changed. However, it may also be the case that several pairs lead to acceptation.
4. Sequential partial indirect inference

The previous sections have shown how a well-driven PII estimation strategy may yield a
consistent estimator for the structural parameters of interest y1 given the nuisance
parameters y2, partly estimated (y21) and partly calibrated (y22). With this estimator in
hands, one can now evaluate the model through some additional dimensions of interest.
These additional dimensions are summarized by an instrumental model Nc, the
parameters of which are c as characterized by an extremum estimation defined as a
minimizer of a criterion MT ðyT

;xT ;cÞ. Typically, this criterion is the loss function used to

assess in a second step of verification how true the structural model is with respect to the
stylized facts of interest, under the maintained assumption of consistent first step
estimation of the parameters of interest.
In the case of moment conditions, the corresponding criterion is defined as:

MT ðyT
; xT ;cÞ ¼

1

2

1

T

XT

t¼1

kðy
t
;xtÞ � c

 !0
1

T

XT

t¼1

kðy
t
;xtÞ � c

 !
,

where kð�Þ are the moments of interest. The estimators bcT and ecTSðy1; y2Þ associated with
the criterion are:

bcT ¼ argmin
c2C

MT ðyT
;xT ;cÞ,

ecs

T ðy1; y2Þ ¼ argmin
c2C

MT ðeys

T
ðy; zs

0Þ; xT ;cÞ,
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ecTSðy1; y2Þ ¼
1

S

XS

s¼1

ecs

T ðy1; y2Þ.

Under usual regularity conditions, these estimators converge uniformly in ðy1; y2Þ to:

P0 lim
T!1

bcT ¼ c0
¼ cðP0Þ,

P� lim
T!1

ecTS ¼
ecðy1; y2Þ.

An evaluation of the structural model can then be performed by measuring a distance
between the empirical instrumental parameters bc and the theoretical one ecðy1; y2Þ. In the
case of full-encompassing, this corresponds to a Wald test and the statistic test is given by

TðbcT �
eck

TSð
by1;TS;by2;TSÞÞ

0bOc
T ð
bcT �

ecTSð
by1;TS;by2;TSÞÞ,

where bOc
T is a estimator of Oc;� and

Oc� ¼ Fc;�
0 ðSÞ

�1,

Fc;�
0 ðSÞ ¼ A; I½ �F�0ðSÞ A; I½ �0,

A ¼ �
qec
qy0
ðy01; ȳ2Þ

0
ðW ðS;O�ÞÞ�1

qeb0
qy
ðy01; ȳ2ÞO

�

" #
with F�0ðSÞ defined in Appendix B.

This statistic is asymptotically distributed as a w2 with dim ðcÞ degrees of freedom. Our
proposed approach is then a two steps procedure. At the first step, we estimate the
parameters of interest and at the second step, we evaluate the structural model. For this
reason, we call this procedure as SPII. This typically corresponds to the Christiano and
Eichenbaum (1992) strategy when they come to the second step of model verification about
‘‘labor-market moments’’. Note also that this two-step kind of approach is similar in spirit
to what is done in Schorfheide (2000) when several loss functions are proposed to assess
the discrepancy between DSGE model predictions and an overall posterior distribution of
population characteristics that the researcher is trying to match.

Let us now consider the case of partial encompassing. As discussed above with the DSGE
illustration, an estimator of the nuisance parameter vector y22 can be obtained through the
instrumental model of interest Nc. We then define the estimator by22;TS as follows:

by22;TS ¼ arg min
y222Y22

ðbcT �
ecTSð

by1TSðȳ22Þ; y22ÞÞ
0bOc
ðbcT �

ecTSð
by1TSðȳ22Þ; y22ÞÞ,

for a given initial value ȳ22. Note that the estimator by1TSðȳ22Þ of (y1; y21Þ that we use here is
the one associated to the initially calibrated value ȳ22 and not to the fitted value y22
produced at the verification stage. Once more, the idea is to disentangle the calibration and
the verification steps. Of course, nothing would prevent us to make an eventual
comparison of the competing empirical assessments of parameters y22. However, this
should not be the focus of our interest since they are typically nuisance parameters.

Following Newey (1984), we can show the following proposition with assumptions
(A.15)–(A.20) stated in the appendix:
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Proposition 4.1. Under the null hypothesis of the instrumental model Nc and assumptions

(A1)–(A4), (A15)–(A20), the optimal II estimator by�22;TS is obtained with the weighting

matrix defined below. It is asymptotically normal, when S is fixed and T goes at infinity:ffiffiffiffi
T
p
ðby�22;TS � y�22Þ!

D
Nð0;WcðS;Oc;�ÞÞ,

where

y�22 ¼ P0
T!1

limby�22;TS,

WcðS;Oc;�Þ ¼
qec0
qy22
ðy01; ȳ21; y

�
22ÞðF

c;�
0 ðSÞÞ

�1 qec
qy022
ðy01; ȳ21; y

�
22Þ

( )�1
,

Oc;� ¼ Fc;�
0 ðSÞ

�1,

Fc;�
0 ðSÞ ¼ ½A; I �F

�
0½A; I �

0,

A ¼ �
qec

q y1
ȳ21

� �0 ðy01; ȳ21; y�22ÞðW �
1;Sðȳ22ÞÞ

�1 qeb01
q y1

y21

� � ðy01; ȳ21; y�22ÞO�1ðȳ22Þ
264

375
and F�0 is defined in Appendix B.
Proof. Appendix B. &

It should be emphasized that the asymptotic distribution given by Proposition 4.1 holds
only for the same simulated values es

t , t ¼ 1; . . . ;T , s ¼ 1; . . . ;S for both instrumental
models Nb and Nc.
The SPII procedure is then the following for the partial encompassing case. At the first

step, the estimators of y01ðȳ22Þ and ȳ21ðȳ22Þ are given by minimizing the following objective
function:

J1;TSðy1ðȳ22Þ; y21ðȳ22ÞÞ ¼ ½bb1;T � eb1;TSðy1; y21; ȳ22Þ�
0

�bO1;T ½
bb1;T � eb1;TSðy1; y21; ȳ22Þ�

for a given ȳ22.
At the second step, the estimator of the nuisance parameters y22 is given by minimizing

the following objective function:

J2;TSðy22Þ ¼ ðbcT �
ecTSð

by1TSðȳ22Þ; y22ÞÞ
0bOc
ðbcT �

ecTSð
by1TSðȳ22Þ; y22ÞÞ.

An evaluation of the structural model can then be performed by measuring a distance
between the empirical instrumental parameters bc and the theoretical one ecTSðy1; y21; y22Þ.
In this context, the test corresponds to an overidentifying restrictions test. The test statistic
is given by

TJ2;TSð
by22;TSÞ.

This statistic is asymptotically distributed as a w2 with ðdimðcÞ � dimðy22ÞÞ degrees of
freedom.
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5. Concluding remarks

The SPII methodology proposed in this paper aims at reconciling the calibration and
verification steps proposed by the calibrationnist approach with their econometric
counterparts, that is, estimation and testing procedures. We propose a general framework
of multistep estimation and testing:
�
 First, for a given (calibrated) value ȳ22 of some nuisance parameters, a consistent

asymptotically normal estimator by11;TSðȳ22Þ of the vector y1 of parameters of interest is

obtained by partial indirect inference. A pseudo-true value ȳ21 of some other nuisance
parameters may also be consistently estimated by the same token.

�
 Second, overidentification of the vector ðy1; y21Þ of structural parameters by the selected

instrumental moments b1 provides a specification test of the pair (structural model,
instrumental model).

�
 Finally, the verification step, including a statistical assessment of the calibrated value

ȳ22, can be performed through another instrumental model Nc.

The proposed formalization enables us to answer most of the common statistical
criticisms about the calibration methodology, insofar as one succeeds to split the model in
some true identifying moment conditions and some nominal assumptions. The main
message is twofold. First, acknowledging that any structural model is misspecified while
aiming at producing consistent estimators of the true unknown value of some parameters
of interest as well as robust predictions, one should rely, as informally advocated in
calibration exercises, on parsimonious and well chosen dimensions of interest. Second, in
so doing, it may be the case that simultaneous joint estimation of the true unknown value
of the parameters of interest as well as of the pseudo-true value of the nuisance parameters
is impossible. In this context, one should resort to a two step procedure that we call
sequential partial indirect inference (SPII). This basically introduces a general loss
function. This again corresponds to a statistical formalization of the common practice in
calibration exercises using previous estimates and a priori selection.
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Appendix A
Proof of Proposition 3.4. First-order conditions for the indirect estimator byTS:
The first-order conditions corresponding to the optimization problem:

min
ðy1;y2Þ2Y1�Y2

bbT �
XS

s¼1

ebs

T ðy1; y2Þ

" #0bO bbT �
XS

s¼1

ebs

T ðy1; y2Þ

" #
,
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are:

1

S

XS

s¼1

qebs0

T

qy
ðby1;TS;by2;TSÞbOT

ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

T ð
by1;TS;by2;TSÞ

" #
¼ 0.

The expansion of the first-order conditions around the limit value ðy001 ; y
0

21Þ
0 gives

1

S

XS

s¼1

qebs0

T

qy
ðy01; y2ÞO

ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ �

1

S

XS

s¼1

qebs

T

qy0
ðy01; ȳ2Þ

by1;TS � y01by2;TS � y2

0@ 1A24 35
¼ op� ð1Þ,

which leads to

ffiffiffiffi
T
p by1;TS � y01by2;TS � ȳ2

0@ 1A ¼ qeb0
qy
ðy01; y2ÞO

qeb
qy0
ðy01; y2Þ

( )�1

�
qeb0
qy
ðy01; y2ÞO

ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

( )
þ op� ð1Þ,

since under assumption (A9) we have

P� lim
T!þ1

1

S

XS

s¼1

qebs

T

qy
ðy01; ȳ2Þ ¼

qebs0

T

qy
ðy01; ȳ2Þ

and the transpose of the right-hand term is of full-column rank p.

Expansions of bbT and ebs

T ðy
0
1; y2Þ:

We begin with the first-order conditions on the instrumental criterion:

qQT

qb
ðy

T
;xT ;

bbT Þ ¼ 0.

The expansion of the latter equation around the limit value b0 yields:ffiffiffiffi
T
p qQT

qb
ðy

t
;xT ;b

0
Þ þ

q2QT

qbqb0
ðy

T
;xT ;b

0
Þ
ffiffiffiffi
T
p
½bb� b0� ¼ oP0

ð1Þ,

which leads toffiffiffiffi
T
p
½bbT � b0� ¼ �J�10

ffiffiffiffi
T
p qQT

qb
ðy

T
;xT ; b

0
Þ þ oP0

ð1Þ.

By using the same argumentsffiffiffiffi
T
p
½ebs

T ðy
0
1; y2Þ � ebðy01; y2Þ� ¼ �J��10

ffiffiffiffi
T
p qQT

qb
ðeys

T
ðy01; y2; z

s
0Þ;xT ;

ebðy01; y2Þ þ oP� ð1Þ

and by full-encompassing hypothesis H0 : b
0
¼ ebðy1; y2Þ we getffiffiffiffi

T
p
½ebs

T ðy
0
1; y2Þ � b0� ¼ �J��10

ffiffiffiffi
T
p qQT

qb
ðeys

t
ðy01; y2; z

s
0Þ;xT ; b

0
Þ þ oP� ð1Þ.
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Asymptotic distribution of:
ffiffiffiffi
T
p
½bbT �

1
S

PS
s¼1
ebs

T ðy
0
1; y2Þ�:ffiffiffiffi

T
p bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

" #
¼ � J�10

ffiffiffiffi
T
p qQT

qb
ðy

T
;xT ;b

0
Þ

þ J��10

ffiffiffiffi
T
p 1

S

XS

s¼1

qQT

qb
ðeys

T
ðy01; y2; z

s
0Þ;xT ;b

0
Þ þ oP� ð1Þ.

Under assumption (A1)–(A9),
ffiffiffiffi
T
p
½bbT �

1
S

PS
s¼1
ebs

T ðy
0
1; y2Þ� is asymptotically normally

distributed with mean zero and a covariance matrix given by F�0ðSÞ:

F�0ðSÞ ¼ J�10 I0J�10 þ
1

S
J��10 I0J

��1
0 þ 1�

1

S

� �
J��10 K�0J��10 � J�10 K0J��10 � J��10 K 00J

�1
0 .

As usual the optimal choice of the matrix O which minimizes the asymptotic variance of
the II estimator is O� ¼ F�0ðSÞ

�1 and the result of Proposition 3.4 follows. &

Proof of Proposition 3.7. The optimal value of the objective function is

xT ;S ¼ T bbT �
1

S

XS

s¼1

ebs

tð
by1;TS;by2;TSÞ

" #0bO�T bbT �
1

S

XS

s¼1

ebs

T ð
by1;TS;by2;TSÞ

" #
,

where ðby01;TS;
by02;TSÞ

0 corresponds to the optimal II estimator. The first-order expansion of
xT ;S around the limit value ðy01

0
; y
0

2Þ
0 gives

xT ;S ¼ T bbT �
1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ �

qeb
qy0
ðy01; y2Þ

by1;TS � y01by2;TS � y2

0@ 1A24 350O�
� bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ �

qeb
qy0
ðy01; y2Þ

by1;TS � y01by2;TS � y2

0@ 1A24 35þ oP� ð1Þ.

By using the asymptotic expansion of
ffiffiffiffi
T
p by1;TS � y01by2;TS � y2

0@ 1A around the limit value (y01
0
; y
0

2Þ
0

previously given, we get
qeb
qy0
ðy01; y2Þ

ffiffiffiffi
T
p by1;TS � y01by2;TS � y2

0@ 1A ¼ qeb
qy0
ðy01; y2Þ

qeb0
qy
ðy01; y2ÞO

� qeb
qy0
ðy01; y2Þ

( )�1

�
qeb0
qy
ðy01; y2ÞO

�
ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

" #
þ oP� ð1Þ

and thus

ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ �

qeb
qy0
ðy01; y2Þ

by1;TS � y01by2;TS � y2

0@ 1A24 35
¼ ½Idq �M�

ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

" #
þ oP� ð1Þ,
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where M is the orthogonal projector on the space spanned by the columns of qeb
qy0 ðy

0
1; y2Þ for

the inner product O� that is

M ¼
qeb
qy0
ðy01; y2Þ

qeb0
qy
ðy01; y2ÞO

� qeb
qy0
ðy01; y2Þ

( )�1
qeb0
qy
ðy01; y2ÞO

�.

With these notations, the statistic xT ;S is equal to

xT ;S ¼ T bbT �
1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

" #0
Idq �M
� 	0O� Idq �M

� 	 bbT �
1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

" #
þ oP� ð1Þ.

As previously seen
ffiffiffiffi
T
p
½bbT �

1
S

PS
s¼1
ebs

T ðy
0
1; y2Þ�!

D
N½0;O��1� as T!1 and qeb

qy0 ðy
0
1; y2Þ is

full-column rank (p) which implies that

T bbT �
1

S

XS

s¼1

ebs

T ðy
0
1; y2Þ

" #0
ðIdq �MÞ0O�ðIdq �MÞ bbT �

1

S

XS

s¼1

ebs

tðy
0
1; y2Þ

" #
!
D

w2ðq� pÞ,

as T!1 and the result of Proposition 3.7 follows. &

Proof of Proposition 3.5. First-order conditions for the indirect estimator by11;TSðy22Þ: The
first-order conditions corresponding to the optimization problem:

min
ðy1;y21Þ2Y1�Y21

bb1;T � 1

S

XS

s¼1

ebs

1;T ðy1; y21;by22;TSÞ

" #0bO1;T
bb1;T � 1

S

XS

s¼1

ebs

1;T ðy1; y21;by22;TSÞ

" #
,

where by22;TS is a consistent estimator of the value y22 of the nuisance parameters y22 and
such that

ffiffiffiffi
T
p
ðby22;TS � y22Þ ¼ OP� ð1Þ; are

1

S

XS

s¼1

qebs0

1;T

q y1
y21

� � ðbys

1;TSðȳ22Þ;by21;TSðȳ22Þ;by22;TSÞbO1;T

ffiffiffiffi
T
p

� bb1;T � 1

S

XS

s¼1

ebs

1;T ð
by11;TSðȳ22Þ;by121;TSðȳ22Þ;by22;TSÞ

" #
¼ 0.

The expansion of the first-order conditions around the limit value ðy01
0
; ȳ02Þ

0 gives

1

S

XS

s¼1

qebs0

1;T

q y1
y21

� � ðy01; ȳ2ÞO1

ffiffiffiffi
T
p bb1;T � 1

S

XS

s¼1

ebs

1;T ðy
0
1; ȳ2Þ �

1

S

XS

s¼1

qebs

1;T

q y1
y21

� �0 ðy01; ȳ2Þ by11;TSðy22Þ � y01by121;TSðy22Þ � y21

0B@
1CA

264
375

¼ oP� ð1Þ,
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since under H1
0 :

qeb1
qy022
ðy1; y2Þ ¼ 0: This leads to

ffiffiffiffi
T
p

by11;TSðȳ22Þ � y01by121;TSðȳ22Þ � ȳ21

264
375 ¼ qeb01

q y1
y21

� � ðy01; ȳ21ÞO1
qeb1

q y1
y21

� �0 ðy01; ȳ21Þ
264

375
�1

�
qeb01

q y1
y21

� � ðy01; ȳ21ÞO1

ffiffiffiffi
T
p bbT �

1

S

XS

s¼1

ebs

1;T ðy
0
1; ȳ2Þ

" #
þ oP� ð1Þ,

since under assumption (A14), we have

P� lim
T!þ1

qebs

1;T 0

q y1
y21

� � ðy01; ȳ2Þ ¼ qeb01
q y1

y21

� � ðy01; ȳ21Þ
and under H1

0:

qeb1
q y1

y21

� �0 ðy01; ȳ2Þ ¼ qeb1
q y1

y21

� �0 ðy01; ȳ21Þ,
is of full-column rank ðp1 þ p21Þ.

Expansions of bb1;T and ebs

1;T ðy
0
1; ȳ2Þ:

We begin with the expansion of the first-order conditions on the instrumental model
around the limit value b0:

qQT

qb
ðy

t
;xT ;

bbT Þ ¼ 0.

The expansion of the latter equation around the limit value b0 yields

ffiffiffiffi
T
p qQT

qb
ðy; x;b0Þ þ

q2QT

qbqb0
ðy;xT ; b

0
Þ
ffiffiffiffi
T
p
½bbT � b0� ¼ oP0

ð1Þ,

which leads to

ffiffiffiffi
T
p
½bbT � b0� ¼ �J�10

ffiffiffiffi
T
p qQT

qb
ðy;xt;b

0
Þ þ oP0

ð1Þ.

By using the same argument:

ffiffiffiffi
T
p
½ebs

T ðy
0
1; ȳ2Þ � eb0ðȳ22Þ� ¼ �J��10 ðȳ22Þ

ffiffiffiffi
T
p qQT

qb
ðeys

t
ðy01; ȳ2; z

s
0Þ;xT ;

eb0ðȳ22ÞÞ þ oP� ð1Þ.

Asymptotic distribution of
ffiffiffiffi
T
p
½bb1;T � 1

S

PS
s¼1
ebs

1;T ðy
0
1; ȳ2Þ�:
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We have

ffiffiffiffi
T
p bbT � b0 �

1

S

XS

s¼1

ebs

T ðy1; ȳ2Þ þ eb0ðȳ22Þ
" #

¼ �J�10

ffiffiffiffi
T
p qQT

qb
ðy

t
; xT ; b

0
Þ þ J��10 ðȳ22Þ

ffiffiffiffi
T
p 1

S

XS

s¼1

qQT

qb
ðeys

t
ðy01; ȳ2; z

s
0Þ; xT ;

eb0ðȳ22ÞÞ þ oP� ð1Þ.

The statistic
ffiffiffiffi
T
p
½bbT � b0 � 1

S

PS
s¼1
ebs

T ðy
0
1; ȳ2Þ þ eb0ðȳ22Þ� is asymptotically normally distrib-

uted with mean zero and a covariance matrix given by F�0ðS; ȳ22):

F�0ðS; ȳ22Þ ¼ J�10 I0J
�1
0 þ

1

S
J��10 ðȳ22ÞI

�
0ðȳ22ÞJ

��1
0 ðȳ22Þ þ 1�

1

S

� �
J��10 ðȳ22ÞK

�
0ðȳ22ÞJ

��1
0 ðȳ22Þ

� J�10 K0ðȳ22ÞJ��10 ðȳ22Þ � J��10 ðȳ22ÞK
0
0ðȳ22ÞJ

�1
0 .

Let F�0;1ðS; ȳ22Þ be the ðq1 � q1Þ left-upper bloc diagonal sub-matrix of the ðq� qÞ matrix

F�0ðS; ȳ22). By the partial-encompassing hypothesis H1
0: b

0
1 ¼

eb1ðy01; ȳ21Þ we get

ffiffiffiffi
T
p bb1;T � b01 �

1

S

XS

s¼1

ebs

1;T ðy
0
1; ȳ21Þ þ eb1ðy01; ȳ21Þ

" #
¼

ffiffiffiffi
T
p bb1;T � 1

S

XS

s¼1

ebs

1;T ðy
0
1; ȳ21Þ

" #
.

The statistic
ffiffiffiffi
T
p
½bb1;T � 1

S

PS
s¼1
ebs

1;T ðy
0
1; ȳ21Þ� is asymptotically normally distributed with

mean zero and a covariance matrix given by F�0;1ðS; ȳ22Þ. As usual the optimal choice of
the matrix O1 which minimizes the asymptotic covariance of the II estimator based on the
sub-vector binding function is O�1ðȳ22Þ ¼ F0;1ðS; ȳ22Þ

�1 and the result of Proposition 3.5
follows. &

Appendix B

We define the vector

1ffiffiffiffi
T
p

qVT

qg
ðy

T
;xT ; gÞ ¼

1ffiffiffiffi
T
p

qQT

qb
ðy

T
; xT ;bÞ

0;
1ffiffiffiffi
T
p

qMT

qc
ðy

T
; xT ;cÞ

0

� �0
,

where g ¼ ðb0;c0Þ0. The corresponding vector for the structural model is

1ffiffiffiffi
T
p

qV T

qg
ðeys

T
ðy01; ȳ2; z

s
0Þ; gÞ ¼

1ffiffiffiffi
T
p

qQT

qb
ðeys

T
ðy01; ȳ2; z

s
0Þ;bÞ

0;
1ffiffiffiffi
T
p

qMT

qc
ðeys

T
ðy01; ȳ2; z

s
0Þ;cÞ

0

� �0
.

We make the following assumptions:

ðA15Þ
1ffiffiffiffi
T
p

qV T

qg
ðy

T
; xT ; g

0Þ,

is asymptotically normally distributed with mean zero and with an asymptotic covariance
matrix A0.

ðA16Þ B0 ¼ P0 lim
T!1

q2V T

qgqg0
ðy

T
; xT ; g

0Þ,
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ðA17Þ lim
T!þ1

Cov�
1ffiffiffiffi
T
p

qVT

qg
ðy

T
;xT ; g

0Þ;
1ffiffiffiffi
T
p

qV T

qg
ðeys

T
ðy01; ȳ2; z

s
0Þ; g

0Þ

� �
¼ C0,

independent of the initial values zs
0; s ¼ 1; . . . ;S:

ðA18Þ
1ffiffiffiffi
T
p

qV T

qg
ðeys

T
ðy01; ȳ2; z

s
0Þ; g

0Þ,

is asymptotically normally distributed with mean zero and with an asymptotic covariance
matrix A�0 and independent of the initial values zs

0; s ¼ 1; . . . ;S:

ðA19Þ B�0 ¼ P� lim
T!1

q2VT

qgqg0
ðeys

T
ðy01; ȳ2; z

s
0Þ; g

0Þ.

ðA20Þ lim
T!þ1

Cov�
1ffiffiffiffi
T
p

qVT

qg
ðeys

T
ðy01; ȳ2; z

s
0Þ; g

0Þ;
1ffiffiffiffi
T
p

qVT

qg
ðeys

T
ðy01; ȳ2; z

s
0Þ; g

0Þ

� �
¼ C�0,

independent of the initial values zs
0 and z!0, for sa‘.

We can show that

F�0ðSÞ ¼ B�10 A0B�10 þ
1

S
B��10 A�0B��10 þ 1�

1

S

� �
B��10 C�0B��10 � B�10 C0B

��1
0 � B��10 C00B

�1
0 .
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