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Appendix 1: Assumptions and proofs of the main results

Assumptions

Let gt = g(zt, θ0) and g∗t = g(zt, θ∗) denote, respectively, the moments conditions evaluated at θ0 and θ∗.

Let gθ,t and g∗θ,t denote the corresponding first-order partial derivative of g with respect to the parameters

of interest. To prove the higher-order properties, we adopt the same assumptions as in Anatolyev (2005)

with the exception that the uniform kernel proposed by Kitamura and Stutzer (1997) is used for the

reasons aforementioned in the text.

Assumptions A

A1 The sequence zt is strictly stationary and strongly mixing with mixing coefficients αj satisfying∑∞
j=1 j

2α
1−1/ν
j <∞ for some ν > 1.

A2 The moment conditions (1) holds for unique θ0 ∈ int(Θ), where Θ ⊆ Rp is compact.

A3 The function g(zt, θ∗) is Borel measurable for all θ∗ ∈ Θ and is twice continuously differentiable

in θ∗ for all θ∗ ∈ Θ and for zt in its support.

A4 For some stationary series dt with finite E(d8
t ), supθ∗∈Θ max{‖ g∗t ‖, ‖ g∗θ,t ‖, ‖ ∂g∗θ,t/∂θj ‖, ‖

∂2g∗θ,t/∂θj∂θ
′ ‖ ∀j = 1, · · · , p} ≤ dt and max{‖ g∗t − gt ‖, ‖ g∗θ,t − gθ,t ‖, ‖ ∂g∗θ,t/∂θj − ∂gθ,t/∂θj ‖

∀j = 1, · · · , p} ≤ dt ‖ θ∗ − θ ‖ for all θ∗ ∈ Θ.

A5 The matrices G = E(gθ,t) and Ω =
∑∞
s=−∞E(gtgt−s) are of full rank.

A6 KT →∞ as T →∞ and KT = o(T 1/3).

A7 ρ(·) is concave and three times continuously differentiable on its domain; an open interval Φ

containing zero, has bounded Lipschitz third derivative in a neighborhood of zero and ρ1 = ρ2 =

−1.

Proof of Proposition 1

To show this result, we first follow Smith (2011) and start from the definition of the smoothed generalized

empirical likelihood estimator and the definition of the corresponding smoothed implied probabilities.

The smoothed generalized empirical likelihood (SGEL) estimator is a solution to the following saddle

point problem (Smith, 2011):

θ̂SGELT = arg min
θ∈Θ

sup
λ∈Λ̂T (θ)

T∑
t=1

[ρ(kλ′gtT (θ))− ρ0]
T
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where k = k1
k2

, ρj() = ∂jρ()/∂φj and ρj = ρj(0) for j = 0, 1, 2, . . . , and ρ1 = ρ2 = −1 (normalization

assumption). Following Smith (2011), the associated empirical (implied) probabilities are given by:

πSGELt (θ̂SGELT ) =
ρ1(kλ̂′T gtT (θ̂SGELT ))∑T
t=1 ρ1(kλ̂′T gtT (θ̂SGELT ))

(A.1)

for t = 1, . . . , T where λ̂T = arg maxλ∈Λ̂(θ)

∑T
t=1

[ρ(kλ′gtT (θ̂SGEL
T ))−ρ0]
T . Eq. (A.1) also holds true at any

efficient first-order estimator θ̂T such that
√
T
(
θ̂T − θ0

)
= Op(1) and for the uniform truncated kernel

(11):

πSGELt (θ̂T ) =
ρ1

(
λT (θ̂T )′gtT (θ̂T )

)
∑T
t=1 ρ1

(
λT (θ̂T )′gtT (θ̂T )

)

where λT (θ̂T ) = arg maxλ∈Λ̂(θ)

∑T
t=1

[ρ(λ′gtT (θ̂T ))−ρ0]
T for t = 1, . . . , T . Using a Taylor expansion λT (θ̂T )

around 0 yields (uniformly in t = 1, . . . , T ):

πSGELt (θ̂T ) =
1
T

+
1
T
λT (θ̂T )′gtT (θ̂T )− 1

T 2

T∑
t=1

λT (θ̂T )′gtT (θ̂T ) +R1(θ̂T ) (A.2)

where the remainder term ‖R1(θ̂T )‖ = Op
(
‖λT (θ̂T )′gtT (θ̂T )‖2/T

)
. Under weaker assumptions than

Assumptions A, Smith (2011, Theorem 2.2) shows that (i) gtT (θ̂T ) = Op
(
(2KT + 1)−1/2

)
for t =

1, . . . , T and (ii) ‖λT (θ̂T )‖ = Op
[(

(T/(2KT + 1)2)−1/2
])

for any efficient first-order estimator.1 This

yields that ‖R1(θ̂T )‖ = Op
(
‖λT (θ̂T )′gtT (θ̂T )‖2/T

)
= 1

TOp
(
‖λT (θ̂T )‖2‖gtT (θ̂T )‖2

)
= Op

(
2KT +1
T 2

)
.

Now, using the FOC with respect to the vector of Lagrange multipliers and a Taylor expansion around

0 leads to:

1
T

T∑
t=1

ρ1

(
λT (θ̂T )′gtT (θ̂T )

)
gtT (θ̂T ) = − 1

T

T∑
t=1

gtT (θ̂T )− 1
T

T∑
t=1

gtT (θ̂T )gtT (θ̂T )′λT (θ̂T )

+
1
T

T∑
t=1

gtT (θ̂T )
∞∑
j=2

1
j!
ρj+1(0)

(
λT (θ̂T )′gtT (θ̂T )

)j
.

Therefore

1
T

T∑
t=1

ρ1

(
λT (θ̂T )′gtT (θ̂T )

)
gtT (θ̂T ) = − 1

T

T∑
t=1

gtT (θ̂T )− 1
T

T∑
t=1

gtT (θ̂T )gtT (θ̂T )′λT (θ̂T ) +R2(θ̂T )

1See also Kitamura and Stutzer (1997).
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where ‖R2(θ̂T )‖ = Op
(

(2K + 1)−3/2‖λT (θ̂T )‖2
)

= Op
(
(2K + 1)1/2/T

)
. By using a consistent estimator

ΩT (θ̂T ) = 2K+1
T

∑T
t=1 gtT (θ̂T )gtT (θ̂T )′, one obtains:

0 =
1
T

T∑
t=1

gtT (θ̂T ) +
1

2K + 1
ΩT (θ̂T )λT (θ̂T ) +R2(θ̂T )

and thus

λT (θ̂T ) = −(2KT + 1)ΩT (θ̂T )−1gT (θ̂T ) +Op
(

(2KT + 1)3/2/T
)
. (A.3)

Replacing the expression (A.3) in Eq. (A.2) evaluated at θ̂T yields the following SGEL implied proba-

bilities uniformly over t = 1, . . . , T :

πSGELt (θ̂T ) =
1
T
− 1
T

[
(2KT + 1)

[
gtT (θ̂T )− gT (θ̂T )

]′
ΩT (θ̂T )−1gT (θ̂T )

]
+

1
T

[
gtT (θ̂T )− gT (θ̂T )

]′
Op
(

(2KT + 1)3/2/T
)

+Op
(

2KT + 1
T 2

)
.

We obtain:

πSGELt (θ̂T ) =
1
T
− 1
T

(2KT + 1)
[
gtT (θ̂T )− gT (θ̂T )

]′
ΩT (θ̂T )−1gT (θ̂T ) +Op

(
(2KT + 1)/T 2

)
(A.4)

uniformly over t = 1, . . . , T .

On the other hand, the closed-form expression of the SEEL implied probabilities evaluated at θ̂T (uni-

formly for t = 1, . . . , T ) using the uncentered estimator of the long-run covariance matrix of the moment

conditions is given by:

πSEELt (θ̂T ) =
1
T
− 1
T

(2KT + 1)gtT (θ̂T )′ΩT (θ̂T )−1gT (θ̂T ) (A.5)

(see Antoine, Bonnal and Renault 2007 in an i.i.d. context).

The expression 1
T (2KT + 1)gT (θ̂T )′Ω̂−1

T gT (θ̂T ) in Eq. (A.4) is Op
(
(2KT + 1)/T 2

)
since gT (θ̂T ) is

Op
(
T−1/2

)
(see Smith 2011, Lemma A.7). Finally, putting together Eq. (A.5) and Eq. (A.4) for

the smoothed empirical likelihood (SEL) yields:

πSELt (θ̂T ) = πSEELt (θ̂T ) +Op
(
(2KT + 1)/T 2

)
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uniformly over t = 1, . . . , T .

Proof of Proposition 2

The proof is based on Theorem 1 in Robinson (1988) which allows to evaluate the order of magnitude for

the stochastic difference between two alternative estimators. The sketch of the proof for the smoothed

3SW-EEL is adapted from the one in Antoine et al. (2007) but with smoothed moment conditions. The

proof for the smoothed 3S-EEL estimator follows.

Under Assumptions A, the p equations corresponding to the FOC of the SEL are given by:

fT (θ̂SELT ) =

[
T∑
t=1

πSELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)]′ [
Ω̃SELT (θ̂SELT )

]−1 1
T

T∑
t=1

gtT (θ̂SELT ) = 0

where Ω̃SELT (θ̂SELT ) = (2KT + 1)
∑T
t=1 π

SEL
t

(
θ̂SELT

)
gtT (θ̂SELT )gtT (θ̂SELT )′. The smoothed 3SW-EEL

estimator is given by (using a second step efficient estimator θ̂T ):

hT (θ̂S3SW
T ) =

[
T∑
t=1

πSEELt

(
θ̂S3SW
T

)
GtT

(
θ̂S3SW
T

)]′ [
Ω̃SEELT (θ̂T )

]−1 1
T

T∑
t=1

gtT (θ̂S3SW
T ) = 0

where Ω̃SEELT (θ̂T ) = (2KT + 1)
∑T
t=1 π

SEEL
t

(
θ̂T

)
gtT (θ̂T )gtT (θ̂T )′.

The objective is to show that θ̂S3SW
T − θ̂SELT = Op

(
(2KT + 1)/T 3/2

)
. In doing so, we apply Theo-

rem 1 in Robinson (1988). In that respect, two assumptions need to be fulfilled. Firstly, Assumption

A1 in Robinson (1988) is directly verified since θ̂SELT = θ0 + op(1). Secondly, Assumption A2 in Robin-

son (1988) also holds since (i) θ̂S3SW
T = θ0 + op(1) and (ii) the derivative of hT (θ) with respect to θ

is uniformly continuous (for large T ) with a probability arbitrarily close to one in the neighborhood of

θ0 by virtue of Assumption A4 above. We also need to show that HT (θ̂S3SW
T ) = H(θ0) + op(1) where

HT (θ) = ∂hT (θ)
∂θ and H(θ0) = G′Ω−1Egt(θ0) +G′Ω−1G where G and Ω are defined in Assumption A5.

In this regard,

HT (θ̂S3SW
T ) =

∂

[
T∑
t=1

πSEELt

(
θ̂S3SW
T

)
GtT

(
θ̂S3SW
T

)]′
∂θ

[
Ω̃SEELT (θ̂T )

]−1 1
T

T∑
t=1

gtT (θ̂S3SW
T )

+

[
T∑
t=1

πSEELt

(
θ̂S3SW
T

)
GtT

(
θ̂S3SW
T

)]′ [
Ω̃SEELT (θ̂T )

]−1 1
T

T∑
t=1

∂gtT (θ̂S3SW
T )

∂θ′

= G′Ω−1Eg(θ0) +G′Ω−1G+ op(1) = H(θ0) + op(1)
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since
T∑
t=1

πSEELt

(
θ̂S3SW
T

)
GtT

(
θ̂S3SW
T

)
= 1

T

T∑
t=1

GtT

(
θ̂S3SW
T

)
+op(1) = 1

T

T∑
t=1

Gt

(
θ̂S3SW
T

)
+op(1) = G+

op(1) taking that πSEELt

(
θ̂S3SW
T

)
= 1

T (1 + op(1)) uniformly in t and 1
T

T∑
t=1

GtT (θ) = 1
T

T∑
t=1

Gt (θ)+op(1)

(see Smith 2011). Moreover, Ω̃SEELT (θ̂T )
p→ Ω and

T∑
t=1

gtT (θ̂S3SW
T )

p→ Egt(θ0).

Under these assumptions, Theorem 1 in Robinson (1988) implies that:

θ̂S3SW
T − θ̂SELT = Op

(
‖hT

(
θ̂SELT

)
− fT

(
θ̂SELT

)
‖
)

where

hT (θ̂SELT ) =

[
T∑
t=1

πSEELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)]′ [
Ω̃SEELT (θ̂T )

]−1 1
T

T∑
t=1

gtT (θ̂SELT ) = 0.

Taking Therorem 3.1 in Smith (2011), the estimator
T∑
t=1

πSEELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)
is an estimator of

G = E∂g(zt, θ0)/∂θ′ that efficiently incorporates the moment information (1) for any SGEL estimator.

In particular, the conclusion is valid for the SEL and the smoothed CUE. This implies that (using

Proposition 1):

T∑
t=1

(
πSELt

(
θ̂SELT

)
− πSEELt

(
θ̂SELT

))
GtT

(
θ̂SELT

)
=

T∑
t=1

Op
(
(2KT + 1)/T 2

)
GtT

(
θ̂SELT

)
= Op ((2KT + 1)/T )

and thus

T∑
t=1

πSELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)
=

T∑
t=1

πSEELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)
+ op(1).

Consequently,

θ̂S3SW
T − θ̂SELT = Op

(
‖hT

(
θ̂SELT

)
− fT

(
θ̂SELT

)
‖
)

≤ Op

∥∥∥∥∥∥
[
T∑
t=1

πSELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)]′∥∥∥∥∥∥
∥∥∥Ω̃SEELT (θ̂T )−1 − Ω̃SELT (θ̂SELT )−1

∥∥∥∥∥∥∥∥ 1
T

T∑
t=1

gtT (θ̂SELT )

∥∥∥∥∥
 .

For the first right-hand side term,
T∑
t=1

πSELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)
p→ G and this term is Op(1). The last

term 1
T

T∑
t=1

gtT (θ̂SELT ) is shown to be Op(1/
√
T ) by Smith (2011, Lemma A.7). Thus, to get the desired

result, we only need to show that:

∥∥∥Ω̃SEEL(θ̂T )−1 − Ω̃SEL(θ̂SELT )−1
∥∥∥ = Op ((2KT + 1)/T ) . (A.6)
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By virtue of the triangular inequality,

∥∥∥Ω̃SEEL(θ̂T )− Ω̃SEL(θ̂SELT )
∥∥∥ ≤ ∥∥∥Ω̃SEEL(θ̂T )− Ω̃SEEL(θ̂SELT )

∥∥∥+
∥∥∥Ω̃SEEL(θ̂SELT )− Ω̃SEL(θ̂SELT )

∥∥∥ .
The first right-hand side expression is Op(1/T ) by an usual Taylor expansion using θ̂T − θ̂SELT = Op(1/T )

and the boundness Assumption A4. For the second expression, using Proposition 1, one has:

∥∥∥Ω̃SEEL(θ̂SELT )− Ω̃SEL(θ̂SELT )
∥∥∥ = (2KT + 1)

T∑
t=1

Op
(
(2KT + 1)/T 2

)
gtT (θ̂SELT )gtT (θ̂SELT ) = Op ((2KT + 1)/T ) .

This shows Eq. (A.6). The result follows by noticing that M−1 −N−1 = M−1(N −M)N−1.

What remains to be shown is the result for the smoothed 3S-EEL: θ̂S3S
T − θ̂SELT = Op

(
(2KT + 1)/T 3/2

)
.

As aforementioned, the estimator
T∑
t=1

πSELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)
is an estimator of G = E∂g(zt, θ0)/∂θ′

which efficiently incorporates the moment information (1) for any SGEL estimator. This also holds if

the SEL estimator is replaced by any first order equivalent estimator (e.g., the 2-step GMM estimator).

We get that:

T∑
t=1

πSELt

(
θ̂SELT

)
GtT

(
θ̂SELT

)
=

T∑
t=1

πSELt

(
θ̂T

)
GtT

(
θ̂T

)
+ op(1) =

T∑
t=1

πSEELt

(
θ̂T

)
GtT

(
θ̂T

)
+ op(1)

by Smith (2011, Theorem 3.1) and Proposition 1. Using the derivation for Eq. (A.6), the result follows

directly.

Appendix 2: Bias-corrected versions of the proposed estimators

Given that the smoothed 3S-EEL, 3SW-EEL and the SEL estimators have the same bias-order, namely

O(T−1), the higher-order asymptotic derivations in Anatolyev (2005) allow us for proposing a bias-

corrected version of these estimators. The next proposition gives the corresponding expression for the

smoothed 3SW-EEL estimator. The same result applies for the smoothed 3S-EEL estimator.

Proposition 1 Under Assumptions A, a consistent estimator of the asymptotic bias of order T−1 is

given by:

ˆBias(θ̂S3SW
T ) = B̂GΞg/T + B̂∂2g/T
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where B̂GΞg and B̂∂2g are consistent estimators of:

BGΞg = Ξ
∞∑

u=−∞
E [gθ,tΞgt−u]

B∂2g = Ξ
p∑
j=1

E

[
∂gθ,t
∂θj

Σ
2
ej

]

and ej is the jth column of the identity matrix of order p, Σ =
(
G′Ω−1G

)−1 and Ξ = ΣG′Ω−1. The

bias corrected smoothed three-step estimators θ̂S3SWc
T defined as θ̂S3SWc

T = θ̂S3SW
T − ˆBias(θ̂S3SW

T ) are

asymptotically unbiased up to order T−1.

Proof: Theorem 1 in Anatolyev (2005) provides the asymptotic bias of the SEL estimator. Taking

Proposition 2, both smoothed three-step EEL estimators are asymptotically higher-order equivalent, i.e.

the asymptotic bias of each estimator is the same as the one for the SEL estimator up to an order

Op
(
(2KT + 1)/T 3/2

)
. The first term appearing in the asymptotic bias of the SEL estimator (Theorem

1 in Anatolyev (2005)) is removed by the use of the uniform kernel proposed by Kitamura and Stutzer

(1997). The asymptotic bias at order T−1 of the 3SW-EEL estimator is then given by: BGΞg + B∂2g.

Finally, both terms are removed by the correction.

It is worth noting that the two terms, BGΞg and B∂2g, correspond to the asymptotic bias of the in-

feasible GMM estimator using the optimal linear combination of the moment conditions. Consistent

estimators of these two terms are then obtained by replacing the moment conditions or their derivatives

with their respective smoothed counterparts (see Lemma 2 and Lemma 3 in Anatolyev, 2005). Hence,

G̃T =
∑T
t=1 π

SEEL
t (θ̂S3SW

T )GtT (θ̂S3SW
T ), Ω̃T = (2KT + 1)

∑T
t=1 π

SEEL
t (θ̂S3SW

T )gtT (θ̂S3SW
T )gtT (θ̂S3SW

T )′

and a consistent estimator of
∑∞
u=−∞E [gθ,tΞgt−u] is given by:

(2KT + 1)
T∑
t=1

πSEELt (θ̂S3SW
T )GtT (θ̂S3SW

T )Ξ̃T gtT (θ̂S3SW
T )

where Ξ̃T =
(
G̃′T Ω̃−1

T G̃T

)−1

G̃′T Ω̃−1
T (see Lemma 3b in Anatolyev (2005)). Finally, a consistent estimator

of the second bias term is obtained with Σ̃T =
(
G̃′T Ω̃−1

T G̃T

)−1

and a consistent estimate of the second-

order partial derivative of the smoothed moment conditions with respect to the parameter vector θ. As a

final remark, note that that the bias terms may also be estimated with the uniform weights, 1/T , instead

of the constrained implied probabilities.
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Appendix 3: The reduced-form and the concentration parameter

The full model of the endogenous variable, yt, rests on the following system:

yt = γbyt−1 + γfEtyt+1 + λxt + εt

xt = ρ1xt−1 + ρ2xt−2 + vt.

Using the companion form of the second equation, we have:

yt = γbyt−1 + γfEtyt+1 +
(
λ 0

) xt

xt−1

+ εt

 xt

xt−1

 = Λ

 xt−1

xt−2

+

 vt

0


where:

Λ =

 ρ1 ρ2

1 0

 .

Determining the roots of the characteristic equation, we get:

yt = δ1yt−1 +
1

δ2γf

(
λ 0

) (
I2 − δ−1

2 Λ
)−1

 xt

xt−1

+
1

δ2γf
εt

where:

δ1 =
1−

√
1− 4γfγb
2γf

and δ2 =
1 +

√
1− 4γfγb
2γf

.

It is straightforward to show that the reduced-form is:

yt = δ1yt−1 + α0xt + α1xt−1 + αεεt

xt = ρ1xt−1 + ρ2xt−2 + vt

where α0 = λ
∆δ2γf

, α1 = α0
ρ2
δ2

, αε = 1
δ2γf

, αε = 1
δ2γf

and ∆ is given by ρ
(

1
δ2

)
≡ 1− ρ1

δ2
− ρ1

δ22
.

Following Mavroeidis (2004), the first-stage regression for the endogenous regressors is given by:

Yt = Π′Zt + Φ′Xt + Vt
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where Yt = (yt+1, xt)
′, Zt = (xt−1, xt−2)′, Xt = yt−1, Vt = (ηt+1, vt)

′ and:

Π′ =

 α̃0 α̃1

ρ1 ρ2

 ,Φ′ =

 δ2
1

0


ηt+1 = αεεt+1 + δ1αεεt + α0vt+1 + (α0ρ1 + α1 + δ1α0) vt

with α̃0 = ρ1 (α0ρ1 + α1 + δ1α0) + α0ρ2 + δ1α1, and α̃1 = (α0ρ1 + α1 + δ1α0) ρ2.

The concentration parameter is the minimum eigenvalue of the following matrix:

TΣ−1/2
V V Π′ΩΠΣ−1/2

V V

where Ω = ΣZZ − ΣZXΣ−1
XXΣ′ZX , ΣZZ , ΣXX , and ΣZX are respectively the variance-covariance of Zt

and Xt, and the covariance matrix between Zt and Xt, ΣV V = AΣA′ +BΣB′, with:

Σ =

 σ2
ε σεv

σεv σ2
v


A =

 δ1αε α0 (δ1 + ρ1) + α1

0 1


B =

 αε α0

0 0

 .
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