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Appendix 1: Assumptions and proofs of the main results

Assumptions

Let g; = g(2¢,0°) and g; = g(2¢,0*) denote, respectively, the moments conditions evaluated at 6° and 6*.

Let go,. and gy , denote the corresponding first-order partial derivative of g with respect to the parameters

of interest. To prove the higher-order properties, we adopt the same assumptions as in Anatolyev (2005)

with the exception that the uniform kernel proposed by Kitamura and Stutzer (1997) is used for the

reasons aforementioned in the text.

Assumptions A

Al

A2

A3

A4

A5

A6

AT

The sequence z; is strictly stationary and strongly mixing with mixing coefficients o; satisfying

Z;’;lj2a;_1/y < oo for some v > 1.
The moment conditions (1) holds for unique §° € int(©), where © C RP is compact.

The function g(z,6*) is Borel measurable for all §* € © and is twice continuously differentiable

in 0* for all 6* € © and for z; in its support.

For some stationary series d; with finite E(d}), supg.ce max{| g; |, || 95+ I, 1l 9g5.,/00; I, |
0%g5,/00;00" || Vj = 1,--- ,p} < dy and max{|| g; — ¢ ||l 95, — 90.¢ |l | 0g5,,/00; — Ogo.¢/00; ||
Vi=1,---,p} <d; || 0" — 0| for all 0* € ©.

The matrices G = F(gp+) and Q = >0 F(gigi—s) are of full rank.

S§=—00

K7 — 00 as T — oo and K7 = o(T"/3).

p(+) is concave and three times continuously differentiable on its domain; an open interval ®
containing zero, has bounded Lipschitz third derivative in a neighborhood of zero and p; = ps =

—1.

Proof of Proposition 1

To show this result, we first follow Smith (2011) and start from the definition of the smoothed generalized

empirical likelihood estimator and the definition of the corresponding smoothed implied probabilities.

The smoothed generalized empirical likelihood (SGEL) estimator is a solution to the following saddle

point problem (Smith, 2011):

L [p(kNgir(0)) — pol

T

9§~GEL = argmin sup

€0 \eAr(0) 151



where k = %, pi() = 8p()/0¢? and p; = p;(0) for j = 0,1,2,..., and p; = po = —1 (normalization

assumption). Following Smith (2011), the associated empirical (implied) probabilities are given by:

SGEL(QSGEL) (kj\/Tng(éSGEL)) (A1)
Et 1P1 (k)‘/TgtT(eSGEL))

« / ASGEL\y_
for £ =1,...,T where Ap = argmax, . ) S otk gtT(e; ) po}. Eq. (A.1) also holds true at any

efficient first-order estimator 67 such that /T (éT — 00) = Op(1) and for the uniform truncated kernel

(11):

p1 (AT(éT)'QtT(éT))

SGEL(j \ _
T (0r) = T ~ -
D=1 P1 ()‘T<9T)IgtT(9T)>
where /\T(éT) = argmax, . g Zle W fort =1,...,T. Using a Taylor expansion AT(éT)

around 0 yields (uniformly in ¢t =1,...,T):

A 1 1
P 0r) = =+ =Ar(0r) g (Or) — ZAT (07) gir(01) + R (1) (A.2)

T T —~
where the remainder term ||R (67| = O, (H)\T(éT)’gtT(éT)\P/T). Under weaker assumptions than
Assumptions A, Smith (2011, Theorem 2.2) shows that (i) gtT(éT) =0, ((QKT + 1)_1/2) for t =
1,....T and (i) [[Ar(f7)| = O, [((T/(2Kr +1)?)"1/2]) for any efficient first-order estimator.! This
yields that | 2407 | = O (IAe(0r) gerOr)[2/T) = 20, (IMr(0r) |2lger Or)]12) = O, (25).

Now, using the FOC with respect to the vector of Lagrange multipliers and a Taylor expansion around

0 leads to:
T 1 <& . . -
Z ( gtT(eT)> gr(br) = — thT -7 thT(eT)gtT(eT)/)\T(eT)
T 0o .
+ ; > gr(fr Z ,Pg+1 ()\T(QT) gtT(QT)) :
=1 =2/
Therefore
T A 1 X A 1 X A A A A
T Z ( ) gir (07 )) ger(0r) = —7 > gir(0r) — T > gur(07)ger(0r) A (Or) + Ra(6r)

!See also Kitamura and Stutzer (1997).



where ||Ry(07)|| = O, ((QK + 1)*3/2||AT((‘§T)||2> =0, ((2K +1)!/2/T). By using a consistent estimator

Qr(0r) = QKTH Zle gtT(éT)gtT(éT)', one obtains:

T
0= % tZZlgtT(éT) + 2K1+ 1QT(9T)AT(éT) + Ro(67)
and thus
Ae(Or) = —(@Kr + 1)0r(0r)"57(0r) + O, (2Kr +1)°%/T). (A.3)

Replacing the expression (A.3) in Eq. (A.2) evaluated at Or yields the following SGEL implied proba-

bilities uniformly over ¢t = 1,...,T":
SGELj 1 1 5 Nk s 1 A
T (0r) = 7T (2K +1) [gtT(HT) - gT(HT)} Qr(07) g, (67)
1 iy = (o] 2Ky + 1
o)t o (e ) <o, (F517).

We obtain:

RSP (r) = 1 = £ @Kr +1) [oim(r) ~ 5r(0r)] 02 (0r) . 0r) + O, (K +1)/T%) (A

uniformly over t = 1,...,T.

On the other hand, the closed-form expression of the SEEL implied probabilities evaluated at Or (uni-
formly for t = 1,...,T) using the uncentered estimator of the long-run covariance matrix of the moment

conditions is given by:

1

7P (fr) = o~ (2K + ger (Br) O (Br) 57 (0r) (4.5)

(see Antoine, Bonnal and Renault 2007 in an i.i.d. context).

The expression 7 (2Kr + 1)§T(éT)'Q;1§T(9AT) in Eq. (A4) is O, ((2Kr +1)/T?) since gr(07) is
O, (T_1/2) (see Smith 2011, Lemma A.7). Finally, putting together Eq. (A.5) and Eq. (A.4) for

the smoothed empirical likelihood (SEL) yields:

1B (7)) = nPEEL (7)) + O, ((2K7 +1)/T?)



uniformly over t = 1,...,T.

Proof of Proposition 2

The proof is based on Theorem 1 in Robinson (1988) which allows to evaluate the order of magnitude for
the stochastic difference between two alternative estimators. The sketch of the proof for the smoothed
3SW-EEL is adapted from the one in Antoine et al. (2007) but with smoothed moment conditions. The
proof for the smoothed 3S-EEL estimator follows.

Under Assumptions A, the p equations corresponding to the FOC of the SEL are given by:

!
T
~ . -11 .
[a5EL 05| 23 g (0551 = 0

t=1

QSEL [Z 7rSEL (é:%EL) Gor (é;EL)

where QSFL(0SEL) = (2Kp + 1) S| nfPL (é;EL) g (05FL) g, (BSFLY . The smoothed 3SW-EEL

estimator is given by (using a second step efficient estimator 67 ):

T !

953SW [Z SEEL (éag?,sw) Gur (é§3sw)

B T
(0551|139 057°) = 0

t=1

where Q%EEL(Q ) (2KT + 1) Zt 1 FSEEL <9T> gtT(éT)gtT(éT)/.

The objective is to show that 535V — §5FL = O, ((2Kr +1)/T?%/?). In doing so, we apply Theo-
rem 1 in Robinson (1988). In that respect, two assumptions need to be fulfilled. Firstly, Assumption
A1 in Robinson (1988) is directly verified since 0557 = 6y + 0,(1). Secondly, Assumption A2 in Robin-
son (1988) also holds since (i) 653" = 6y + 0,(1) and (ii) the derivative of hr(f) with respect to 6
is uniformly continuous (for large T') with a probability arbitrarily close to one in the neighborhood of
fo by virtue of Assumption A4 above. We also need to show that Hr(6535W) = H(6y) + 0,(1) where
Hr(0) = %8#9(9) and H(0y) = G'Q ' Eg,(0p) + G'Q G where G and (2 are defined in Assumption A5.

In this regard,

T R ~ /
9 [Z rSEEL (9¥3sw> Gur (eiqsswﬂ LT
Hp(05%5Y) = —=1 i (3P Or)] 5 D 0 (BF)
t=1

_|_

T , . )
) j 3 N1 Sarr(0S3SW
Lz_:l 7rtSEEL (ggssw) Gy (95?35”’)1 {Q%EEL(QT)} 1 % ; %T/)

= G'Q 1 Eg(fy) + G'Q1G + 0,(1) = H(f) + 0,(1)



since t; rSEEL (égssw) Gor (ég?,sw) =L Gir (é&q:’,sw) Fop(l) = 4

T
. T T
0,(1) taking that P EEL (959«35”1) = 7 (14 0p(1)) uniformly in ¢t and = - Gy (0) = 7 > Gt (0)+0,(1)

~ R T R
(see Smith 2011). Moreover, QFFFL (A7) 2 Q and 3 g7 (0535Y) 2 Eg,(6o).
=1
Under these assumptions, Theorem 1 in Robinson (1988) implies that:

983SW HSEL (HhT (HSEL) _ ( SEL) ”)

where

!/

[QSEEL é }7 thT QSEL

hT(HSEL [Z SEEL (GSEL) Gor (é?EL)

t=1

T . .
Taking Therorem 3.1 in Smith (2011), the estimator Y 77 FEL (0§EL) Ger (HigwEL) is an estimator of
t=1
G = E0g(zt,00)/00" that efficiently incorporates the moment information (1) for any SGEL estimator.
In particular, the conclusion is valid for the SEL and the smoothed CUE. This implies that (using

Proposition 1):

S (mee (355%) - w75 (3557)) Gur (355) = 300, (@K + /%) Gur (5) = 0, (2K + 1)/

t=1
and thus

éwf}ﬂ (é;EL) ( SEL) i (é&S:EL) Gor (éis:EL) +o,(1).
Consequently,

0535 — G3EE = 0, (|Inr (855%) — fo (0557) |)

<0, [Z 7TSEL ( SE‘L) Gor (é%EL)

/

HQ%EEL(@ )1 QSEL QSEL H H thT QSEL

T . N
For the first right-hand side term, Y 77 F~ (0§EL> Gr (GgEL) %, @ and this term is O,(1). The last
=1

T -«
term 4 231 g7 (02FF) is shown to be O,(1/v/T) by Smith (2011, Lemma A.7). Thus, to get the desired
t=

result, we only need to show that:

HQSEEL(éT)q _ QSEL(é%EL)*l“ =0,(2Kr +1)/T). (A.6)



By virtue of the triangular inequality,
"ﬁSEEL(éT) _ QSEL(QA%:EL)H < “QSEEL(@T) _ ﬁSEEL(é%EL)H n HQSEEL(H”&S:EL) -~ ﬁSEL(éiS:EL)H .

The first right-hand side expression is @, (1/T) by an usual Taylor expansion using 7 —63FF = 0, (1/T)

and the boundness Assumption A4. For the second expression, using Proposition 1, one has:

Oy (2K1 +1)/T?) gir(077F)9ir (075F) = O, (2K7 +1)/T).

M=

HQSEEL(@TQEL) _ ﬁSEL(é%EL)H — (2Kr + 1)
t

1

This shows Eq. (A.6). The result follows by noticing that M~1 — N=! = M~}(N — M)N~1.

What remains to be shown is the result for the smoothed 3S-EEL: 6535 — 0351 = O, ((2Kr + 1)/T?/?).
T « «

As aforementioned, the estimator > mPFL (QgEL) Gir (HigﬁEL) is an estimator of G = Edg(z,60)/00’
i=1

which efficiently incorporates the moment information (1) for any SGEL estimator. This also holds if

the SEL estimator is replaced by any first order equivalent estimator (e.g., the 2-step GMM estimator).

We get that:

zT:WtSEL (é%EL> Gir (éi’”) = ET:WEEL (éT) Gir (éT) +op(1) = zT:WtSEEL (éT) Gr (éT) + 0,(1)
=1 =1 =1

by Smith (2011, Theorem 3.1) and Proposition 1. Using the derivation for Eq. (A.6), the result follows

directly.

Appendix 2: Bias-corrected versions of the proposed estimators

Given that the smoothed 3S-EEL, 3SSW-EEL and the SEL estimators have the same bias-order, namely
O(T~1), the higher-order asymptotic derivations in Anatolyev (2005) allow us for proposing a bias-
corrected version of these estimators. The next proposition gives the corresponding expression for the

smoothed 3SW-EEL estimator. The same result applies for the smoothed 3S-EEL estimator.

Proposition 1 Under Assumptions A, a consistent estimator of the asymptotic bias of order T~1 is

given by:

Bias(033°V) = Bgzy/T + Baz, /T



where Bgzy and By are consistent estimators of:

and e; is the jth column of the identity matriz of order p, ¥ = (G’Q’lG)f1 and Z = LG'Q7L. The

bias corrected smoothed three-step estimators 0535V defined as 0335V = 0535V — Bias(6335W) are

asymptotically unbiased up to order T—1.

Proof: Theorem 1 in Anatolyev (2005) provides the asymptotic bias of the SEL estimator. Taking
Proposition 2, both smoothed three-step EEL estimators are asymptotically higher-order equivalent, i.e.
the asymptotic bias of each estimator is the same as the one for the SEL estimator up to an order
O, ((QKT + 1)/T3/2). The first term appearing in the asymptotic bias of the SEL estimator (Theorem
1 in Anatolyev (2005)) is removed by the use of the uniform kernel proposed by Kitamura and Stutzer
(1997). The asymptotic bias at order T~! of the 3SW-EEL estimator is then given by: Bg=y + Bazg.

Finally, both terms are removed by the correction.

It is worth noting that the two terms, Bgzy and Bpz4, correspond to the asymptotic bias of the in-
feasible GMM estimator using the optimal linear combination of the moment conditions. Consistent
estimators of these two terms are then obtained by replacing the moment conditions or their derivatives
with their respective smoothed counterparts (see Lemma 2 and Lemma 3 in Anatolyev, 2005). Hence,
G = S0, wfPEL B ) Gur (B55W), Qp = (K7 + 1) Sy wf ZEH G555 ) gur (0555W ) gur (055 )

and a consistent estimator of Y o2 E[gs:Zg:—.] is given by:

T
2KT+1 Z SEFEL 953SW)GtT(9§‘3SW)ETgtT(gig“?)SW)

- SN Uy
where Zp = (G/TQ;lGT) G4 Q7" (see Lemma 3b in Anatolyev (2005)). Finally, a consistent estimator

_ 1
of the second bias term is obtained with X7 = (G’ 1GT) and a consistent estimate of the second-

order partial derivative of the smoothed moment conditions with respect to the parameter vector 8. As a
final remark, note that that the bias terms may also be estimated with the uniform weights, 1/7', instead

of the constrained implied probabilities.



Appendix 3: The reduced-form and the concentration parameter

The full model of the endogenous variable, y;, rests on the following system:

Y = WY1 + Ve By + AT + €

Ty = P1T¢—1 F P2Xi—2 + V.

Using the companion form of the second equation, we have:

Ty
Yo = WYt—1 VB + ( A0 ) +e
Tt—1
Ty Y Ti—1 n Ut
Tt—1 Ti—9 0
where:
P11 P2
A =
1 0
Determining the roots of the characteristic equation, we get:
1 _ -1 Ty
yt=§1yt71+—(>\ 0)([2—521A) +5 €
025 Tt—1 27f
where:
5 1— /T4y d s L+ /1 =4y
1= Q= .
2vf 2vs
It is straightforward to show that the reduced-form is:
Y¢ = O1Ys—1+ ol + a1Ty_1 + €y
Tt = P1%¢—1 + P2Xt—2 + Ut
where ag = ﬁﬂw oy = aog—z, Qe = ﬁ7 o = 52{” and A is given by p (é) =1- g—; — f;%-

Following Mavroeidis (2004), the first-stage regression for the endogenous regressors is given by:

Y, =I'Z + X, + V,



where V; = (yi11,20), Zi = (@4—1,20—2)', X¢ = ye—1, Vi = (i1, v;) and:

P I I R A
p1 P2 0
M1 = Oe€pp1 + 010€r + apvig1 + (op1 + a1 + d1a) vy

with ay = p1 (aop1 + a1 + d1apg) + agp2 + d101, and &1 = (wp1 + a1 + 1) po.
The concentration parameter is the minimum eigenvalue of the following matrix:
-1/2 —1/2
TS VI OIS, Y/

where Q = X4, — EZXZ)_(le’ZX, Y7z, Lxx, and Yzx are respectively the variance-covariance of Z;

and X;, and the covariance matrix between Z; and X;, Xyy = AX A’ + BX.B’, with:

02 O
E =

Oy 02
4 droe ag (61 +p1) +ou

0 1

e o
B = 0

0 0
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