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Abstract

The response of hours to a technology shock is a controversial issue in macroeconomics.

Part of the difficulty lies in that the estimated response is sensitive to the specification

of hours in SVARs. This paper uses a simple two-step approach to consistently estimate

the response of hours. The first step considers a SVAR model with a relevant stationary

variable, but excluding hours. Given a consistent estimate of technology shocks in the

first step, the response of hours to this shock is estimated in a second step. Simulation

experiments from an estimated DSGE show that this approach outperforms standard

SVARs. When applied to US data, the two-step approach predicts a short-run decrease

followed by a hump-shaped positive response. This result is robust to other specifications

and data.
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Introduction

The response of hours to a technology shock is the subject of many controversies in quan-

titative macroeconomics. The contributions of Gaĺı (1999), Basu, Fernald and Kimball

(2006) and Francis and Ramey (2005) show that the short–run response of hours worked

to a technology shock is significantly negative in the US economy. Gaĺı (1999) and Francis

and Ramey (2005) obtain this result using a Structural Vector Autoregression (SVAR) of

labor productivity growth and hours in first difference (DSVAR) with long–run restrictions

(see Blanchard and Quah, 1989). Basu, Fernald and Kimball (2006) use a direct measure

of aggregate technology change, controlling for imperfect competition, varying utilization

of factors and aggregation effects, and find that hours fall significantly on impact after a

technology improvement. Moreover, Gaĺı (1999, 2004) shows that the level of hours sig-

nificantly decreases in the short run in all G7 countries and the euro area as a whole, with

the exception of Japan. These results are in contradiction with Christiano, Eichenbaum

and Vigfusson (2004). Using a SVAR with a level specification of hours (LSVAR), they

find a positive and hump–shaped response of hours after a technology shock. Moreover,

they show that the LSVAR specification encompasses the DSVAR specification.

The specification of hours in level or in difference appears to be the core issue of the

controversies. Gaĺı (1999), and Gaĺı and Rabanal (2004) and Christiano, Eichenbaum and

Vigfusson (2004) perform various unit root tests, but it becomes hard to obtain clear–

cut evidence in favor of level or difference specification. Furthermore, recent contributions

proceeding with simulation experiments point out that the specification of hours in SVARs

using long–run restrictions can alter significantly the estimated effect of a technology
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shock on hours. For example, Chari, Kehoe and McGrattan (2008) simulate a business

cycle model estimated by Maximum Likelihood on US data with multiple shocks. They

show that the DSVAR specification leads to a negative response of hours under a RBC

model in which hours respond positively. As pointed out by Christiano, Eichenbaum and

Vigfusson (2004), the DSVAR specification may induce strong distortions if hours worked

are stationary in level.

In this paper, we use a simple method that allows us to consistently estimate technol-

ogy shocks and thus the responses of hours to a technology improvement. In contrast to

existing LSVAR and DSVAR specifications, we choose to exclude hours worked series from

SVARs to identify technology shocks.1 The proposed approach consists in the following

two steps. In a first step, a SVAR model with long–run restriction that includes well-

chosen covariance stationary variables allows to properly identify the technology shock

series. Among these variables, the consumption to output ratio seems to be a promising

candidate. Two reasons motivate this choice. First, as argued by Cochrane (1994), this

ratio may help to better predict the permanent and transitory components of output. In-

deed, using a simple permanent income argument, permanent (technology) shocks can be

separated from other (non–permanent and non–technology) shocks because these latter

do not modify the consumption. The joint observation of output growth and consumption

to output ratio allows then the econometrician to properly identify permanent and transi-

tory shocks. Second, both from the simulations of a DSGE model and the actual data, we

obtain that the consumption to output ratio displays less persistence than hours. When

a SVAR model with long–run restrictions includes variables characterized by a highly

persistent process (typically hours with the level specification), the identification of the

4



responses of hours to technology shocks can be seriously disturbed. Gospodinov (2008)

using a near-unit root process for the hours and Christiano, Eichenbaum and Vigfusson

(2004) using a unit root process have shown that the LSVAR specification for such highly

persistent processes leads an inconsistent estimator of the technology shocks. With re-

spect to this result, a less persistent variable such as consumption to output ratio should

improve the identification of the technology shocks. Moreover, the specification of this

ratio is not subject to controversies in quantitative macroeconomics and the cointegra-

tion between consumption and output is usually imposed in SVARs (see Cochrane, 1994,

Christiano, Eichenbaum and Vigfusson, 2004, Francis and Ramey, 2005, King, Plosser,

Stock and Watson, 1991, among others).

In the second step, the Impulse Response Functions (IRFs) of hours at different hori-

zons are obtained by a simple regression of hours on the estimated technology shocks for

different lags. In this latter step, according to the debate about the right specification of

hours, we consider hours worked in level and in difference in this regression. We obtain

that the specification of hours does not matter either in the identification step and the

estimation step. Our method can be seen as a combination of a SVAR approach in the

line of Blanchard and Quah (1989), Gaĺı (1999) and Christiano, Eichenbaum and Vig-

fusson (2004) and the regression equation used by Basu, Fernald and Kimball (2006) in

their growth accounting exercise. Our approach is also related to the paper of Francis and

Ramey (2008) in which they construct a corrected measure of hours. When low frequency

movements are removed from hours, they find that both level and first difference specifi-

cations in SVAR yield to a decline in hours. This is what we obtain with the two–step

approach both from simulated and actual data. A key advantage of our approach is its
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simplicity because it is not necessary to compute neither a corrected measure of hours

(as in Francis and Ramey, 2008) or a proper measure of Total Factor Productivity (TFP)

(as in Basu, Fernald and Kimball, 2006). Moreover, our empirical strategy can be simply

applied to a variety of data which display high degree of serial correlation.

We assess our proposed approach and compare it to SVARs (LSVAR and DSVAR

models) using artificial data obtained from the simulation of a DSGE model. Using US

quarterly data, we first estimate by maximum likelihood a DSGE model with real frictions,

i.e. habits in consumption and investment adjustment costs. It should be noted that

our estimation strongly rejects a frictionless version of the model. The estimated model

leads to a decrease in hours worked in the short run, because of strong real frictions.

We then simulate the model and compare the estimated dynamic responses of hours

under the different approaches. Our results show that the two step approach outperforms

LSVARs and DSVARs. Our findings suggest that the consumption to output ratio helps

significantly to separate permanent from transitory components in labor productivity.

We then apply the two–step approach to US data. We obtain that hours worked

decrease significantly in the short–run after a positive technology shock but display a

positive hump–shaped response. Contrary to SVARs, the specification of hours in the

second step does not matter a lot. Our results are in line with previous empirical findings

which show that hours fall on impact (see Gaĺı, 1999, Basu, Fernald and Kimball, 2006,

Francis and Ramey, 2005, 2008) and display a positive hump pattern during the subse-

quent periods (see Christiano, Eichenbaum and Vigfusson, 2004 and Vigfusson, 2004). So,

our approach allows to bridge the gap between the LSVAR and DSVAR specifications.

These results appear robust to the sample period considered, measures of hours and out-

6



put, bivariate VARs, relevant larger VARs and breaks in labor productivity. Interestingly,

the results obtained in all cases are in accordance with the simulation experiments: the

level and difference specifications of hours provide similar IRFs in all our estimations, the

level specification of hours delivers uninformative IRFs characterized by wide confidence

intervals, the dynamic responses when hours are taken in first difference in the second

step are precisely estimated.

The paper is organized as follows. In a first section, we present our two-step approach.

Section 2 presents simulation experiments from an estimated DSGE model of the US

economy. Section 3 is devoted to the exposition of the empirical results. The last section

concludes.

1 The Two-Step Approach

The goal of our approach is to accurately identify technology shocks in a first step using

adequate covariance–stationary variables in the VAR model. A large part of the perfor-

mance of the two-step approach depends on the time series properties of these variables,

which can be interpreted as instruments allowing to estimate with more precision the true

technology shocks.

The objective of the first step is then to include a set of variables in the SVAR model

to properly identify the technology shocks series. Among these variables, a promising

candidate is the log of consumption to output ratio. There is both structural and empirical

evidence that supports the selection of this variable.

First, following Cochrane (1994), we argue that the consumption to output ratio con-

tains useful econometric information to disentangle the permanent to the transitory com-
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ponent. Indeed, this ratio helps to identify transitory shocks as those that have no effect

on consumption. The argument of Cochrane (1994) is based on a structural interpreta-

tion using a simple permanent income model. This model implies that consumption is

a random walk and that consumption and total income are cointegrated. Consequently,

it follows from the intertemporal decisions on consumption that any shock to aggregate

output that leaves consumption constant is necessarily a transitory shock. The joint ob-

servation of output growth and the log of consumption to output ratio allows then the

econometrician to decompose aggregate shocks into permanent and transitory shocks, as

perceived by consumers.

Second, as shown from simulations experiments (see section 2) and actual data (see

section 3), the unit root can be rejected for this ratio at a conventional level and the em-

pirical autocorrelation function indicate a less persistent process than the one of hours.

Gospodinov (2008) using a near-unit root process for the hours and Christiano, Eichen-

baum and Vigfusson (2004) using an exact unit root process show that a SVAR model

which includes such highly persistent processes leads to a weak instrument problem. This

weak instrument problem implies that technology shocks and their impacts are incon-

sistently estimated. Consequently, the introduction of a less persistent variable in the

VAR, as the consumption-output ratio, should improve the identification of the technol-

ogy shocks by avoiding the weak instrument problem. The impact of these shocks on

the variable of interest (hours worked) is evaluated in the second step. To do so, hours

are projected in level and in difference on the identified technology shocks series. In the

applications, we also consider in the first step larger SVARs that have been used in the

relevant literature (see for example, Gaĺı, 1999, Francis and Ramey, 2005a and Christiano,

8



Eichenbaum and Vigfusson, 2004) to check the robustness of our two-step strategy. We

now present in more details the two-step approach.

Step 1: Identification of technology shocks

Consider a VAR(p) model which includes productivity growth ∆ (yt − ht) and consump-

tion to output ratio ct − yt (in logs).2:

Xt =

p∑
i=1

BiXt−i + εt (1)

where Xt = (∆ (yt − ht) , ct − yt)′ and εt = (ε1,t, ε2,t)
′ with E(εtε

′
t) = Σ. Without loss of

generality, we omit a constant term in (1). Under usual conditions, this VAR(p) model

admits a VMA(∞) representation3

Xt = C(L)εt

where C(L) = (I2 −
∑p

i=1BiL
i)−1 and L is the backshift operator. The structural

VMA(∞) representation is given by

Xt = A(L)ηt

where ηt = (ηTt , η
NT
t )′. ηTt is period t technology shock, whereas ηNTt is period t composite

non–technology shock.4 By normalization, these two orthogonal shocks have zero mean

and unit variance. The identifying restriction implies that the composite non–technology

shock has no long–run effect on labor productivity. This means that the upper triangular

element of A(L) in the long run must be zero, i.e. A12(1) = 0. In order to uncover this

restriction from the estimated VAR(p) model in equation (1), the matrix A(1) is obtained
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by the Choleski decomposition of C(1)ΣC(1)′. The structural shocks are then directly

deduced up to a sign restriction by

(
ηTt
ηNTt

)
= C(1)−1A(1)

(
ε1,t

ε2,t

)

Step 2: Estimation of the response of hours to a technology shock

The structural infinite moving average representation for hours worked as a function of

the technology shock and the composite non–technology shock5 is given by:

ht = a1(L)ηTt + a2(L)ηNTt . (2)

The coefficient a1,k (k ≥ 0) measures the effect of the technology shock at lag k on hours

worked, i.e. a1,k = ∂ht+k/∂η
T
t .

The identifying restriction in Step 1 implies that non–technology shocks are orthogonal

to technology shocks by construction, i.e. E(ηTt−i, η
NT
t−j ) = 0 ∀ i,j and that the technology

and non–technology shocks are serially uncorrelated which implies E(ηTt , η
T
t−i) = 0 and

E(ηNTt , ηNTt−i ) = 0 ∀i 6= 0. These properties allow us to obtain consistent estimates of the

dynamic responses.

According to the debate on the right specification of hours worked, we examine two

specifications to measure the effect of a technology shock. In the first specification, hours

are projected in level on the identified technology shocks while in the second specification,

hours are projected in difference.

Let us now examine in more details both specifications. In the first one, the log of

hours worked is regressed on the current and past values of the identified technology
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shocks η̂Tt in the first-step:

ht =

q∑
i=0

θiη̂
T
t−i + νt (3)

where q < +∞ and η̂Tt denotes the estimated technology shocks obtained from the SVAR

model in the first step. νt is an error term that accounts for non–technology shocks and

the remaining technology shocks. A standard OLS regression provides the estimates of the

population responses of hours to the present and lagged values of the technology shocks,

namely: â1,k = θ̂k.

The log of hours worked is also regressed in first difference on the current and past

values of the identified technology shocks. The response to a technology shock is now

estimated from the regression:

∆ht =

q∑
i=0

θ̃iη̂
T
t−i + ν̃t. (4)

As hours are specified in first difference, the estimated response at horizon k is obtained

from the cumulated OLS estimates: ̂̃a1,k =
∑k

i=0
̂̃θi.

The two estimators â1,k and ̂̃a1,k obtained from equations (3) and (4) are consistent

estimators of a1,k in equation (2). The consistency is a direct consequence of the properties

of technology and composite non–technology shocks, since they are mutually orthogonal

and serially uncorrelated. The consistency property is obtained under the assumption

that hours is a stationary process.6 Hours worked per capita are by definition bounded

and therefore the stochastic process of this variable cannot asymptotically have a unit

root even though a unit process could provide a good statistical approximation in a

small sample. To derive the consistency property, only the asymptotic behavior of hours

worked matters. Consequently, the consistency of the estimators â1,k and ̂̃a1,k for both
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specifications is derived under the assumption that hours worked per capita is a stationary

process.7 This property of both estimators implies that the specification of hours (level

or first difference) does not asymptotically matter for the estimation of the effect of a

technology improvement on this variable.8 However, the small sample behavior of the

estimators associated to the two specifications of our approach can differ, especially when

hours display high persistence. We will investigate this issue in the next section.

2 Testing the measurement device

This section provides simulation experiments from an DSGE model estimated with US

data.9 The model allows for habits in consumption and investment adjustment costs.

Both mechanisms have proven useful in accounting for the dynamics of macroeconomic

variables in particular in terms of their persistence properties (see e.g. Beaudry and Guay,

1996, Boldrin, Christiano and Fisher, 2001 and Christiano, Eichenbaum and Evans, 2005).

Intertemporal consumption choices are not time separable and the flows of consump-

tion services are a linear function of current and lagged consumption decisions. The

intertemporal expected utility function of the representative household is given by

Et

∞∑
i=0

βi{log(ct+i − bct+i−1) + χt+iψ log(1− ht+i)}

where β ∈ (0, 1) is the discount factor, b ∈ [0, 1) rules the degree of habit persistence

and ψ ≥ 0 is a scale parameter. Et denotes the expectation operator conditional on the

information set at period t. The variables ct and ht represent consumption and labor

supply at time t. Time endowment is normalized to one for every period. The labor
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supply is subjected to a preference shock χt, which follows a stationary stochastic process

log(χt) = ρχ log(χt−1) + σχεχ,t

where |ρχ| < 1, σχ > 0 and εχ,t is iid with zero mean and unit variance. As noted by Gaĺı

(2005), this shock represents a sizeable source of aggregate fluctuations as it accounts for

persistent shifts in the marginal rate of substitution between goods and work. Moreover,

it captures different distortions on the labor market, labeled labor wedge in Chari, Kehoe

and McGrattan (2007).

The representative firm produces a homogeneous final good yt by means of capital, kt,

and labor, ht, using a constant returns–to–scale technology represented by the following

Cobb–Douglas production function

yt = kαt (ztht)
1−α

where α ∈ (0, 1). zt is a shock to total factor productivity and is assumed to follow a

random walk process with drift of the form

log zt = γz + log zt−1 + σzεz,t

where σz > 0 and εz,t is iid with zero mean and unit variance. The constant term γz > 0

is the drift term and accounts for the deterministic component of the growth process. The

homogenous good can be used for consumption ct and investment xt purposes. Capital

accumulation is governed by the following law of motion

kt+1 = (1− δ)kt +

[
1− S

(
xt
xt−1

)]
υtxt

where δ ∈ (0, 1) is the constant depreciation rate and S(.) reflects the presence of adjust-

ment costs. We assume that S(.) satisfies (i) S(γz) = S ′(γz) = 0 and (ii) ξ = S ′′(γz)γ
2
z > 0.
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It follows that the steady state of the model does not depend on the parameter ξ while

its dynamic properties do. As in Smets and Wouters (2007), the variable υt represents a

disturbance to the investment–specific technology process and is assumed to follow a first

order autoregressive process

log(υt) = ρυ log(υt−1) + συευ,t

where |ρυ| < 1, συ > 0 and ευ,t is iid with zero mean and unit variance. Finally the

market clearing condition on the good market writes: yt = ct + xt.

As usual, the model is deflated for the stochastic trend component zt and log-linearized

around the deterministic steady state to obtain a state-space representation. Let Ψ de-

notes the whole set of model parameters. The parameters of the state-space solution of

the model depends on complicated nonlinear functions of Ψ. We split Ψ in two vectors Ψ1

and Ψ2. The first vector Ψ1 = {β, α, δ, γx, ψ} includes parameters which are calibrated

for the US economy prior to estimation. The discount factor β is chosen such that the

steady–state annual return to capital equals 3.6%. The elasticity of output to the la-

bor input 1 − α equals 0.67, which corresponds to the average share of labor income to

output. The depreciation rate of physical capital δ and the gross growth rate of total

factor productivity γx are set equal to 0.0153 and 0.0040, respectively. The value of ψ in

the utility function is chosen such that households allocate 20% of their time to market

activities. All theses values are reported in the first column of Table 1. The second vector

Ψ2 = {b, ξ, σz, ρχ, σχ, ρυ, συ} contains the parameters which summarize the law of motion

of the three forcing variables (σz, ρχ, σχ, ρυ, συ), the habit persistence (b) and adjustment

costs on investment (ξ).
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From the state–space representation resulting from the log-linearized version of the

model and under the assumption of Gaussian shocks, the log–likelihood function can be

evaluated. The parameters of vector Ψ2 are then estimated by maximizing this function.

We use US quarterly data covering the sample period 1948Q1–2003Q4. The observed

variables are: the growth rate of per capita output ∆ log yt, the consumption to output

ratio log ct − log yt and the investment to output ratio log xt − log yt.
10 The vector of

observations is centered prior to estimation and is assumed stationary.11 The estimation

results are reported in the second column of Table 1.

The parameters are precisely estimated and are close to previous estimates for the

US economy (see Smets and Wouters, 2007). The habit b and the adjustment cost ξ

parameters take large values (0.6397 and 7.9894, respectively), consistent with previous

estimations. These estimated values are crucial in replicating US data. For example,

setting b = ϕ = 0 dramatically reduces the log–likelihood and a likelihood ratio test

strongly rejects this restriction. In other words, our estimation results favor a version of

the model with a sizeable amount of real frictions. The estimated value of σz slightly

exceeds previous findings on US data (see Erceg, Guirieri and Gust, 2005, Chari, Kehoe

and MacGrattan, 2008, among others), but values around 1.5% are not formally rejected.

The autoregressive parameter ρχ on the preference shock is large (0.97). This empirical

finding is also in line with previous research which reports that this forcing variable in

estimated general equilibrium models generally displays a high degree of serial correlation

(see Christiano, Eichenbaum and Vigfusson, 2006 and Chari, Kehoe and MacGrattan,

2008, among others). The investment shock exhibits less persistence but its standard

error is significantly higher than the one for the permanent technology shock.
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From these estimated values, we compute the dynamic responses of hours worked

implied by the model (see the solid line in Figure 1). Hours worked decrease on impact and

its response turns out to be positive after one year. These findings are again in accordance

with those obtained from estimated DSGE models (see Smets and Wouters, 2007), from

SVAR models (see Gaĺı, 1999, Francis and Ramey, 2008) and direct measures of TFP (see

Basu, Fernald and Kimball, 2006). In our model, this response of hours is the result of the

interplay between habit persistence in consumption and adjustment costs on investment.

As pointed out by Francis and Ramey (2005), strong enough habit persistence induces a

sluggish response of consumption. Facing a positive technology shock, households can put

the extra resources on investment. However, the high degree of adjustment cost on capital

implies that an additional investment is very costly. Consequently, households choose to

spend their new wealth on the only remaining choice, i.e. they increase their leisure. We

also use the estimated DSGE model in order to compute other statistics which summarize

the time series behavior of hours and the consumption to output ratio (in logs). First, we

evaluate the contribution of the technology shock. It appears that this shock accounts for

a tiny portion of fluctuations in hours worked since it represents 5.85% of their variance.

At the same time, this shock represents one third of the volatility of the consumption to

output ratio. These findings are in accordance with previous DSGE estimates with US

data (see Smets and Wouters, 2007). The computation of the autocorrelation function of

hours and the consumption to output ratio between 1 and 15 (not reported here to save

space) show that the consumption to output ratio displays significantly less persistence

than hours.

We now use the model to simulate artificial data, over which we replicate the different
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structural VARs used in the relevant literature and in the empirical part of the paper. To

compute artificial time–series of the variables of interest, we draw S = 1000 independent

random realizations of the TFP innovation εz,t, the labor supply shock innovation εχ,t

and the investment shock innovation ευ,t. Using the parameters of Table 1, we compute

S = 1000 equilibrium paths for the growth rates of labor productivity, of hours worked

(in level and in first difference) and the log of the consumption to output ratio. In all

experiments, the sample size is equal to 224 quarters, as in actual data. In order to reduce

the influence of initial conditions, the simulated sample includes 250 initial points which

are subsequently discarded before the estimation of VAR models. For each draw, the

number of lags in VAR models is set to 4, a value typically used in empirical studies. In

order to evaluate the relative performance of the different approaches, we compute the

cumulative absolute bias and Root Mean Square Error (RMSE).12

The results are reported in Table 2 and in Figure 1. Let us first consider the DSVAR

model with two variables. The response of hours obtained from this model displays a large

downward bias (see panel (a) of Figure 1), and it is persistently negative. This result is

similar to Chari, Kehoe and McGrattan (2008) who obtain that the difference specification

of hours can create distortions and can lead to biased estimated responses under a DGP

with stationary hours. Of all our experiments, this specification delivers the worst results.

The responses of hours obtained from a LSVAR model displays a large upward bias, as

the estimated response on impact is almost twice the true response and is persistently

above the true response (see panel (a) of Figure 1). In addition, the confidence intervals

(not reported) with the LSVAR model are very large and therefore not informative. This

result is reflected in large absolute bias and RMSE (see Table 2).
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We now consider a three–variables version of the DSVAR model. The results show

improvement. The bias is reduced (see panel (b) of Figure 1 and Table 2). In particular,

the DSVAR model replicates very well the response of hours on impact but diverges after

horizon 5. These findings can be explained as follows. First, including the consumption

to output ratio may help to separate transitory from permanent components, as argued

by Cochrane (1994). Second, the first difference specification allows to remove low fre-

quency components in hours worked. However, when the horizon increases, the DSVAR

model does not properly uncover the true response since it displays a permanent effect

of technology shock on hours. This finding arises because hours are over–differentiated.

For the LSVAR specification, the results with three variables are similar to those with

two variables. Notably, this model still over–estimates the true response. A possible

explanation is that hours in level will contaminate the identification of the technology

shock since this specification implies that hours still contains low frequency movements.

Although reduced in the short run, the discrepancy between DSVAR and LSVAR models

is maintained when the horizon increases.

Finally, we report in Table 2 and in Figure 1 the simulation results with the two–step

approach. For comparison purpose, Table 2 reports the reduction in cumulated absolute

bias and RMSE delivered by the two–step approach with hours in first difference. A

positive value means that the two–step procedure with a first difference specification

of hours delivers smaller bias (Absolute Bias and RMSE) than the other approaches.

A negative value means the reverse. Panel (c) of Figure 1 displays the two estimated

responses. As this figure shows, the specification of hours has little effect on the estimated

responses since no conflict between the two estimated responses appears. This is confirmed
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by the cumulative absolute bias, which is very similar for the two specifications of hours.

The two–step approach delivers the smallest cumulated absolute bias, with the exception

of the DSVAR model with three variables in the very short run. In most cases, the two–

step approach greatly improves the estimated dynamic responses of hours. For example,

the improvement for the cumulated absolute bias is of the order of 43% and 31% compared

to the LSVAR and DSVAR models with three variables, respectively.13 At the same time,

the difference appears relatively small between the two specifications of hours in the

two–step approach (around 11%). The two–step approach with hours in first difference

provides also the smallest cumulative RMSE when the horizon increases. According to the

cumulative absolute bias and RMSE, the specification in first difference in the second step

yields more precise estimates of the dynamic response than the level specification. This

result suggests that the specification in difference must be preferred. All our findings

illustrate previous arguments: (i) the consumption to output ratio allows to properly

separate permanent from transitory components in labor productivity and thus identify

permanent technology shocks, (ii) hours must be excluded from the SVAR because they

contaminate the identification of permanent shocks.

As pointed out by Chari, Kehoe and Mc Grattan (2008) and Christiano, Eichenbaum

and Vigfusson (2006), the simulation results crucially depend on the relative size of shocks

(permanent/transitory) and their persistence. We now investigate these two quantitative

issues. First, we set the three standard–errors of shocks according to

σz = σ̂z ≡ 0.0217 , σχ = τ × σ̂χ ≡ τ × 0.0249 and συ = τ × σ̂υ ≡ τ × 0.2374

where τ ∈ [0.1, 0, 2]. The standard–error of the technology shock remains unchanged,
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whereas the two others will vary between (almost) zero and two times their estimated

values. When τ = 2, the variance of hours explained by the technology shock is very

small (1.53%), whereas it represents a non–negligible portion of the consumption to output

ratio (10.71%). Conversely, when τ = 0.1, these statistics are equal to 86.13% and 97.96%,

respectively. For each selected value of τ ∈ [0.1, 2], we simulate artificial data, estimate the

dynamic responses with each approach and compute the cumulated absolute error between

horizon 0 and 12. The results are reported in panel (a) of Figure 2. This sensitivity

analysis shows that the previous results are left unaffected.14 When the standard–errors

of the two non–technology shocks are small, the bias is reduced with both approaches.

When these standard–errors increase, the bias increases but again the two–step approach

(both with a level and first difference specification of hours) delivers the smallest bias.

Second, we modify the persistence of stationary shocks in the model. More precisely, we

inspect the role played by the highly persistent preference shock (recall that ρ̂χ = 0.97).

Panel (b) of Figure 2 reports the cumulative absolute bias between horizon 0 and 12 when

ρχ varies between 0.9 and 0.99. As shown in this figure, the two–step approach is not

very affected by the persistence of the preference shock, since its cumulative absolute bias

remains almost constant. This is not the case with LSVAR and DSVAR models. Again,

our two–step approach outperforms standard SVARs.

3 Empirical Results

We now apply the two-step methodology to US data. Except for the Federal Fund rate,

the data cover the sample period 1948Q1-2003Q4. We consider different measures of hours

and output, bivariate VARs and larger VAR specifications, different sample periods and
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breaks in labor productivity.

We first present results based on a simple bivariate VAR model in the first step. This

VAR model includes the growth rate of labor productivity and the log of consumption to

output ratio. Labor productivity is measured as the non farm business output divided

by non farm business hours worked. Consumption is measured as consumption on non-

durables and services and government expenditures. The ratio is obtained by dividing

these nominal expenditures by nominal GDP. In the second step, the log level ht (see

equation (3)) and the growth rate of hours ∆ht (see equation (4)) are projected on the

estimated technology shocks. Hours worked in the non farm business sector are converted

to per capita terms using a measure of the civilian population over the age of 16. The

period is 1948Q1-2003Q4 and we will therefore refer to this as the long sample.

We also compare the estimations results with our two–step approach to those obtained

from the estimation of SVAR models. As a benchmark, these SVAR models include growth

rate of labor productivity and either the log level of hours (LSVAR) or the growth rate of

hours (DSVAR). We have also investigated larger LSVAR and DSVAR models. In each

of the SVAR models, we identify technology shocks as the only shocks that can affect the

long-run level of labor productivity. The lag length p for each VAR model (1) is obtained

using the Hannan–Quinn criterion. For each estimated model, we also apply a LM test to

check for serial correlation. The number of lags p is 3 or 4 depending on the data and the

sample. In the second step, we include the current and past twelve values of the identified

technology shocks in the first step, i.e. q = 13 in equations (3) and (4).

In order to assess the dynamic properties of hours worked and consumption to output

ratio (in logs), we first compute their autocorrelation functions (ACFs). Figure 3 reports
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these ACFs for lags between 1 and 15. As this figure makes clear, the autocorrelation

functions of hours worked always exceed those of the consumption to output ratio and

decay at a slower rate. Additionally, we perform Augmented Dickey Fuller (ADF) test of

unit root. For each variable, we regress the growth rate on a constant, lagged level and

four lags of the first difference. The ADF test statistic is equal to -2.74 for hours and -2.93

for the consumption to output ratio. This hypothesis cannot be rejected at the 5 percent

level for hours, whereas it is rejected at the 5 percent level for the consumption to output

ratio. The ACFs and the ADF test suggest that this latter variable is less persistent than

hours.

The estimated IRFs of hours after a technological improvement are reported in Figure

4. The upper left panel shows the well known conflicting results of the effect of a tech-

nology shock on hours worked between LSVAR and DSVAR specifications. The LSVAR

specification displays a positive hump–shaped response whereas the DSVAR specification

implies a decrease in hours. We obtain wide confidence intervals (not reported) in the

LSVAR specification, such that the estimated IRFs of hours are not significantly different

from zero at any horizon. For the DSVAR specification, the impact response is significant,

but as the horizon increase the negative response is not significantly different from zero.

The conflicting result between LSVAR and DSVAR specifications is virtually unaffected

if these specifications include the log of the consumption to output ratio together with the

growth rate of labor productivity and the log (level or first difference) of hours (see Figure

5 in appendix). In SVARs, the consumption to output ratio does not help to reconcile

the two specifications.15

In contrast, the two-step approach delivers almost the same picture whether hours are
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specified in level or first difference (see the upper right panel of Figure 4). In the very short

run, the IRFs of hours are identical and when the horizon increases the positive response

is a bit more pronounced when hours are taken in level rather than in first difference. On

impact, hours worked decrease, but after five periods the response becomes persistently

positive and hump–shaped.

The bottom panel of Figure 4 also reports the 95 percent asymptotic confidence in-

terval. The confidence interval is wide when we consider hours in level. Consequently,

these responses cannot be used, for instance, to discriminate among business cycle theo-

ries. In contrast, when hours are projected in first difference, the dynamic response are

very precisely estimated. On impact, hours significantly decrease. Moreover, the positive

hump–shaped response after 8 quarters is precisely estimated. Notice that these findings

are in accordance with simulation experiments of section 2. Our empirical results are also

in line with those of previous empirical papers which obtain that hours fall significantly

on impact (see Gaĺı, 1999, Basu, Fernald and Kimball, 2006, Francis and Ramey, 2005,

2008), but display a hump–shaped positive response during the subsequent periods (see

Vigfusson, 2004).

We now check the robustness of our first results to different measures of hours and

output, bivariate VARs and larger VAR specifications, different sample periods and breaks

in labor productivity. The results are reported in Figures (6)–(11).

We first consider an alternative measure of output (labor productivity) and hours with

the long sample. The alternative measure of productivity and hours is based on business

sector data. Figure 6 shows that the IRFs are similar to those reported in Figure 4,

especially for hours worked in first difference. Hours decrease in the short run but increase
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after four quarters. While the shape of the IRFs is similar for both specifications, the

estimated values differ more than the ones obtained with non farm business sector data.

To understand this difference, Figure 7 in the Appendix reports the estimated response of

hours from the LSVAR and DSVAR specifications for both data sets: non farm business

data and business sector data. Although the DSVAR specification delivers the same

response for both sets of data, the positive estimated response from LSVAR specification

for the business sector is almost three times larger than for the non farm business sector.

The difference between the response of hours from the LSVAR and DSVAR specifications

is then exacerbated for the business sector data.

We now maintain the bivariate SVAR model in the first step but replace the log of the

consumption to output ratio by the log of the ratio of nominal investment expenditures to

nominal GDP. Investment is measured as expenditures on consumer durables and private

investment. This ratio is another promising candidate in the SVAR model, since it displays

lower serial correlation than hours. Indeed, Figure 3 shows that the ACFs of the ratio are

substantially lower than the ones of hours for any lag. These ACFs are very similar to the

ones for the consumption to output ratio. In addition, we perform ADF test of unit root

including four lags and a constant term. The ADF test statistic is equal to -3.50 for the

investment to output ratio. The null hypothesis of unit root is rejected at the 1 percent

level. We consider again non farm business data and the long sample.16 Figure 8 displays

the IRFs. The replacement of consumption to output ratio by the investment to output

ratio does not modify the previous findings and the response of hours displays the same

pattern. The two specifications yield very similar IRFs for hours and again the confidence

intervals are wide when hours are considered in level. Notice that the negative impact
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response in not significantly different from zero with hours in first difference. Moreover,

the positive hump–shaped pattern of hours is precisely estimated.

We now examine the robustness of the two-step strategy using a larger VAR system in

the first step. We maintain non farm business data for labor productivity and hours and

we use the long sample. The SVAR model in the first step includes labor productivity

growth, consumption to output ratio, investment to output ratio and the rate of inflation.

The measure of inflation is obtained using the growth rate of the GDP deflator. Results are

reported in Panel (a) of Figure 9. The IRFs are very similar to those of Figure 4. Moreover,

IRFs are close for both specifications. Again the specification with hours in difference in

the second step delivers precise estimates of the IRFs: hours significantly decrease in the

short–run, but positively increases after two years. Conversely, the confidence interval

with hours in level is so wide that results obtained with this specification are not very

informative.

Using this larger system, the exercise is repeated with a shorter sample. Since much of

business cycle literature is concerned with post–1959 data, we follow Christiano, Eichen-

baum and Vigfusson (2004) and therefore consider a second sample period given by

1959Q1–2003Q4. Panel (b) of Figure 9 reports the estimated responses. We obtain

again the same shape for the IRFs previously obtained from a level and a first difference

specification of hours. The negative responses in the short–run differ slightly according

to the specification of hours, but the two IRFs become positive and very close after five

periods. The difference in the two IRFs can be explained by the higher persistence of the

hours series for this shorter sample. Indeed, the ADF test statistic is equal to -2.47 for

the short sample compared to -2.74 for the long sample. Again, the response of hours is
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precisely estimated when hours are taken in difference. This is not the case for the level

specification which appears less informative.

We also add the federal fund rate in the larger system and consider the short sample

1959Q1–2003Q4. The results are reported in Figure 10. The negative response of hours

is more pronounced in the short run compared to the previous cases (when hours are

taken in first difference), but we still find a persistent increase in the subsequent periods.

Notice that the response of hours differs according to their specification, but the shapes

of the two IRFs remain very similar. As for other cases, the confidence intervals for the

level specification are larger but the difference in the confidence intervals between both

specifications is here amplified.

As last experiment, we investigate the sensitivity of our results to structural breaks in

labor productivity. We consider this issue in the context of the latter experiment. Fernald

(2007) shows that once we allow for trend breaks in labor productivity, the response

of hours to a technology shock in the LSVAR model becomes persistently negative.17

The breaking dates identified by Fernald are 1973Q1 and 1997Q2. Labor productivity

growth is first regressed on a constant, a pre–1973Q1 dummy variable and a pre–1997Q1

dummy variable. The residuals of this regression are then used as a new measure of labor

productivity growth in the first step. The responses of hours are reported in Figure 11.

The response appears unaffected as the negative response on impact is around -0.2 (see

Figure 10 for a comparison). Moreover, the hump–shaped and delayed–positive response

is maintained for both specifications and is significant for the specification in difference. A

possible explanation of the robustness to potential breaks is the following. The response of

hours to a technology shock in the LSVAR specification is sensitive to time variations, i.e.
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breaks in labor productivity. These breaks alter the low frequency correlation between

hours and labor productivity, but does not modify the one between consumption to output

ratio and labor productivity. Since hours are eliminated from the VAR model in the first

step, our approach seems to be more immune to structural time variations.

Finally, Figure 12 compares the dynamic responses of hours worked for all cases ex-

amined above. The results when hours are specified in level are reported in the left panel

of this Figure, while the ones with a specification of hours in first difference are in the

right panel. As this figure shows, the dynamic responses of hours in all cases and for

both specifications are remarkably similar. In the very short–run, hours decrease after

a technology improvement. After some period, hours gradually increase and display a

hump–shaped pattern. This finding does not vary too much with different sample peri-

ods, variables included in the VAR model at the first step and structural breaks in labor

productivity.18 That seems to confirm the robustness of our proposed two-step strategy

and the appeal of this alternative simple approach for further empirical investigations.

4 Concluding Remarks

This paper uses a simple two-step approach to consistently estimate technology shocks

and the responses of hours worked after a technology improvement. In a first step, a

SVAR model with labor productivity growth and the log of consumption to output ratio

allows to identify and estimate technology shocks. In a second step, the response of

hours is obtained by a simple regression of hours on the estimated technology shocks.

Simulation experiments conducted from an estimated DSGE of the US economy show

that the two–step procedure outperforms LSVARs and DSVARs. We obtain that the
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consumption to output ratio helps a lot to separate permanent from transitory components

in labor productivity. The two-step approach, when applied to US data, predicts a short–

run decrease of hours after a technology improvement, as well as a delayed and hump–

shaped positive response. The dynamic responses of hours are precisely estimated with

a first difference specification, whereas their confidence intervals are wide with a level

specification. These findings appear robust to different sample periods, measures of hours

and output and to the variables included in the VAR model in the first step. The proposed

approach is devoted here to the estimation of the responses of hours worked. However,

this empirical strategy can easily be used to evaluate the effect of a technology shock on

other persistent aggregate variables.
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Notes

1Simulation experiments based on a basic RBC model in Fève and Guay (2007) show

clear evidence that the uncertainty about the right specification of hours in the SVAR

model is more detrimental for the estimation of technology shocks and their impacts on

hours than the information loss resulting from the omission of this variable in the SVAR

model. These results are confirmed in section 2 by simulation experiments conducted

from an estimated DSGE model featuring sizeable real frictions.

2It should be noted that we use labor productivity growth rather than output growth,

as in Blanchard and Quah (1989) and Cochrane (1994). Gaĺı(1999) shows that labor

productivity growth must be preferred to output growth if there exists shocks that per-

manently and jointly shift the output and the labor input.

3As pointed out by Fernandez–Villaverde, Rubio–Ramirez and Sargent (2005), the

invertibility of VARs (and related to this, the existence of a fundamental representation)

is an important quantitative issue . Using the estimated DSGE model of Section 2, we

check the invertibility condition for the SVAR associated to our two–step estimator. The

DSGE model contains three shocks (a permanent technology shock and two stationary

shocks), while the SVAR model includes only two variables in the first step. We use the

innovations representation of Fernandez–Villaverde, Rubio–Ramirez and Sargent (2005)

and then their general formulation to check for invertibility. We find that the SVAR

model of step 1 admits an infinite autoregressive and fundamental representation.

4See Blanchard and Quah (1989) and Faust and Leeper (1997) for a discussion on the

conditions for valid shock aggregation in the small SVAR models.

5In typical DSGE models, non–technology shocks correspond to preference, taxes,

government spending, monetary policy shocks and so on (see Smets, and Wouters, 2007).

When the number of stationary variables in the SVAR model is small respective to the

number of these shocks and without additional identification schemes, these shocks are

not identifiable. For our purpose, this identification issue does not matter since we only

focus on the dynamic response of hours to a (permanent) technology shock.
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6When a stationary variable is included in difference in a VAR, the resulting estimators

are biased due to the impossibility of a finite VAR to properly approximate an unit root

in the MA component. The second step here does not suffer from this problem because

the variable in difference is directly regressed on the estimated technology shocks so it

does not need to approximate a MA component by a finite autoregression.

7See Fève and Guay (2007) for a formal proof.

8The computation of the corresponding confidence intervals raises two practical econo-

metric issues for our procedure. First, confidence intervals in the second step must ac-

count for the uncertainty resulting from the first step estimation. This is usually called

the generated regressors problem. Second, the residuals in the second step can be serially

correlated in practice. This is especially true for the regression (3) with hours in level.

Confidence intervals of IRFs are computed using a consistent estimator of the asymp-

totic variance-covariance of the second step parameters(see Newey and West 1994). The

consistent estimator that we use is borrowed from Newey (1984). Indeed, our two step

procedure can be represented as a member of the method of moments estimators. With

this representation in hand, we can derive the asymptotic variance-covariance matrix of

the second step estimator (see Fève and Guay 2007 for more details).

9See Erceg, Guerrieri and Gust (2005), Chari, Kehoe and Mc Grattan (2008) and

Christiano, Eichenbaum and Vigfusson (2006) for other simulation experiments.

10See section 3 for more details.

11Unit root tests conducted in section 3 indicate that the null hypothesis (of a unit

root) for the two ratios is rejected at conventional levels.

12The cumulative absolute bias at horizon k is defined as
∑k

i=0 |irfi(model)−irfi(svar)|

where irfi(model) denotes the model’s impulse response and irfi(svar) = (1/N)
∑N

j=1 irfi(svar)
j

the mean of impulse responses over the N simulation experiments obtained from SVARs.

The cumulative RMSE at horizon k is defined as
∑k

i=0 rmsei where rmsei = ((1/N)
∑N

j=1(irfi(model)−

irfi(svar)
j)2)1/2 represents the RMSE at horizon i.

13The improvement is of order of 75% and 400% compared to the LSVAR and DSVAR
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models with two variables, respectively.

14For the readability of this figure, we do not report the results with the two–variable

LSVAR and DSVAR models, given their relative poor performances.

15Christiano, Eichenbaum and Evans (2005) also obtain conflicting results in larger

SVARs. Furthermore, we have considered a six–variable DSVAR and LSVAR models and

we still find opposite results for the two specifications. The six–variable SVAR includes

labor productivity growth, hours (level or difference), consumption to output ratio, in-

vestment to output ratio, the inflation rate and the Federal Fund rate. The data concern

Non Farm Business Sector and the sample Period is 1959Q1–2003Q4.

16We obtain similar results (not reported) with business sector output and hours.

17Gambetti (2005) finds similar results in a Time–Varying Coefficients Bayesian VARs.

18One exception concerns the dynamic responses with Business Sector data and the

level specification of hours. However, the results with the difference specification is not

sensitive to the measure of output (labor productivity) and hours. Notice that this result

is already present in SVARs.
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Table 1: Parameter values

Calibrated Estimated
Parameter Value Parameter Value s.e.

β 0.9950 b 0.6397 0.0650
α 0.3300 ξ 7.9894 1.3076
δ 0.0153 σz 0.0217 0.0079
γz 0.0040 ρχ 0.9700 0.0219
ψ 3.6295 σχ 0.0249 0.0072

ρυ 0.3363 0.0846
συ 0.2374 0.0530

Note: US quarterly data covering the sample period 1948:1–
2003:1. The vector of observed data includes GDP, consump-
tion to output ratio and investment to output ratio.
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Table 2: Simulation Results

Horizon LSVAR DSVAR LSVAR DSVAR Two Step Two Step
2 Variables 2 Variables 3 Variables 3 Variables Level First Difference

Cumulative Absolute Bias
0 0.6473 0.5086 0.6422 0.4795 0.7510 0.4997
4 3.0821 4.5693 2.7529 0.9846 2.3370 1.1202
8 4.6277 9.8806 3.9457 2.0426 2.6518 1.8627
12 5.4563 15.5743 4.4814 4.0906 2.7823 3.1165

Reduction in Cumulative Absolute Bias (in %)
0 29.54 1.78 28.52 -4.04 50.29 –
4 175.14 307.90 145.76 -12.11 108.63 –
8 148.44 430.45 111.83 9.66 42.36 –
12 75.08 399.74 43.80 31.26 -10.72 –

Cumulative RMSE
0 0.9842 0.5459 0.8703 0.7168 1.1513 0.7549
4 2.3843 2.2785 2.1213 1.5147 2.2179 1.4238
8 3.0456 3.6383 2.7699 2.0804 2.7272 1.8712
12 3.4217 4.7326 3.1611 2.6244 3.1210 2.3210

Reduction in Cumulative RMSE (in %)
0 30.37 -27.69 15.29 -5.05 52.51 –
4 67.46 60.03 48.99 6.38 55.77 –
8 62.76 94.44 48.03 11.18 45.75 –
12 47.42 103.90 36.20 13.07 34.47 –

Note: DSVAR, LSVAR and two–step identification. The LSVAR–2 Variables model includes labor productivity growth
and the log of hours. The DSVAR–2 Variables model includes labor productivity growth and the log of hours in first
difference. The LSVAR–3 Variables model includes labor productivity growth, the log of hours and the log of consumption
to output ratio. The DSVAR–3 Variables model includes labor productivity growth, the log of hours in first difference
and the log of consumption to output ratio. For the two–step procedure. the SVAR model in the first step includes labor
productivity growth and the log of consumption to output ratio. In the second step, the dynamic responses of hours are
obtained from hours in level (Two–Step Level) and in first difference (Two–Step Difference). Reduction in Cumulative
Absolute Bias and in Cumulative RMSE (in %) are obtained using the Two–Step approach with hours in difference as
the reference. A positive value means that the Two–Step with a first difference specification of hours delivers smaller bias
(Absolute Bias and RMSE) than the other approaches. A negative value means the reverse. Results are obtained from
1000 experiments. The sample size is equal to 224 quarters. The simulated sample includes 250 initial points which are
subsequently discarded before the estimation of VAR models. The selected horizon for IRFs is 13. For each draw, the
number of lags in both VAR models is set to 4.
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Figure 1: True and Estimated IRFs of Hours
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Figure 2: Sensitivity Analysis (Cumulative Absolute Bias)

(a) Changing the Volatility of Shocks

(b) Changing the Persistence of Shocks
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Figure 3: ACFs

Note: NFB Sector data and Sample Period 1948Q1–2003Q4. All
variables in logs.
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Figure 4: IRFs of Hours to a Technological Improvement (NBF data)

Note: DSVAR, LSVAR and two–step identification. The DSVAR model includes labor
productivity growth and the log of hours in first difference. The LSVAR model includes
labor productivity growth and the log of hours. For the two–step procedure, the SVAR
model in the first step includes labor productivity growth and the log of consumption
to output ratio. In the second step, the dynamic responses of hours are obtained from
equations (3) and (4). Top left panel, IRFs computed from DSVAR and LSVAR speci-
fications. Top right panel, IRFs computed from two–step procedure (equations (3) and
(4)). Bottom left panel, IRFs obtained with the log of hours in level in the second step.
Bottom right panel, IRFs obtained with the log of hours in first difference in the second
step. Non Farm Business Sector data and sample period 1948Q1–2003Q4. The selected
horizon for IRFs is 13. 95 percent asymptotic confidence interval shown.
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Figure 5: Three–Variables SVARs

Note: The DSVAR model includes labor productivity growth, the
log of consumption to output ratio and the log of hours in first dif-
ference. The LSVAR model includes labor productivity growth, the
log of consumption to output ratio and the log of hours in level. Non
Farm Business Sector data and sample period 1948Q1–2003Q4. The
selected horizon for IRFs is 13. Asymptotic confidence interval not
reported.
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Figure 6: IRFs of Hours with Business Sector Data

Note: Two–step identification. The SVAR model in the first step includes labor productivity
growth and the log of consumption to output ratio. In the second step, the dynamic responses of
hours are obtained from equations (3) and (4). Left panel, IRFs obtained with the log of hours
in level. Right panel, IRFs obtained with the log of hours in first difference. Business Sector data
and sample period 1948Q1–2003Q4. The selected horizon for IRFs is 13. 95 percent asymptotic
confidence interval shown.

42



Figure 7: SVARs with Different Sector Data

Note: The DSVAR model includes labor productivity growth and
the log of hours in first difference. The LSVAR model includes labor
productivity growth and the log of hours in level. Business Sector
data, Non Farm Business Sector data and sample period 1948Q1–
2003Q4. The selected horizon for IRFs is 13. Asymptotic confidence
interval not reported.
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Figure 8: IRFs of Hours using Investment to Output Ratio

Note: Two–step identification. The SVAR model in the first step includes labor productivity
growth and the log of investment to output ratio. In the second step, the dynamic responses of
hours are obtained from equations (3) and (4). Left panel, IRFs obtained with the log of hours
in level. Right panel, IRFs obtained with the log of hours in first difference. Non Farm Business
Sector data and sample period 1948Q1–2003Q4. The selected horizon for IRFs is 13. 95 percent
asymptotic confidence interval shown.
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Figure 9: IRFs of Hours with a Four Variable System

Panel (a). NFB Sector data and Sample Period 1948Q1–2003Q4

Note: Two–step identification. The SVAR model in the first step includes labor produc-
tivity growth, the log of consumption to output ratio, the log of investment to output
ratio and the rate of inflation. In the second step, the dynamic responses of hours are
obtained from equations (3) and (4). Left panel, IRFs obtained with the log of hours
in level. Right panel, IRFs obtained with the log of hours in first difference. Non Farm
Business Sector data and sample period 1948Q1–2003Q4. The selected horizon for IRFs
is 13. 95 percent asymptotic confidence interval shown.

Panel (b). NFB Sector data and Sample Period 1959Q1–2003Q4

Note: Two–step identification. The SVAR in the first step includes labor productivity
growth, the log of consumption to output ratio, the log of investment to output ratio and
the rate of inflation. In the second step, the dynamic responses of hours are obtained
from equations (3) and (4). Left panel, IRFs obtained with the log of hours in level.
Right panel, IRFs obtained with the log of hours in first difference. Non Farm Business
Sector data and sample period 1959Q1–2003Q4. The selected horizon for IRFs is 13. 95
percent asymptotic confidence interval shown.
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Figure 10: IRFs of Hours with a Five Variable System

Note: Two–step identification. The SVAR model in the first step includes labor productivity
growth, the log of consumption to output ratio, the log of investment to output ration, the inflation
rate and the Federal Fund rate. In the second step, the dynamic responses of hours are obtained
from equations (3) and (4). Left panel, IRFs obtained with log of hours in level. Right panel, IRFs
obtained with log of hours in first difference. NFB Sector data and sample period 1959Q1–2003Q4.
The selected horizon for IRFs is 13. 95 percent asymptotic confidence interval shown.
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Figure 11: IRFs of Hours with Breaks in Labor Productivity

Note: Two–step identification. The SVAR model in the first step includes labor productivity
growth, the log of consumption to output ratio, the log of investment to output ratio, the inflation
rate and the Fed Fund rate. The breaking dates are 1973Q1 and 1997Q2. The new measure of
labor productivity growth is obtained as the residual of the regression of the original measure on
dummy variables associated to breaks. In the second step, the dynamic responses of hours are
obtained from equations (3) and (4). Left panel, IRFs obtained with the log of hours in level. Right
panel, IRFs obtained with the log of hours in first difference. NFB Sector data and Sample Period
1959Q1–2003Q4. The selected horizon for IRFs is 13. 95 percent asymptotic confidence interval
shown.
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Figure 12: Summary of the Results
NFB Sector data and Sample Period 1948Q1–2003Q4

Note: Legend: (1) see Figure 4; (2) see Figure 6; (3) see Figure 8; (4) see Figure 9, panel (a); (5)
see Figure 9, panel (b); (6) see Figure 10; (7) see Figure 11.
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