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The usefulness of SVARs for developing empirically plausible models is actually subject to
controversies in macroeconomics. We propose a two-step SVARs-based procedure which consistently
estimates the effect of permanent technology shocks on aggregate variables. Simulation experiments
from a standard business cycle model and a sticky prices model show that our approach outperforms
standard SVARs. The two-step procedure, when applied to actual data, predicts a significant
short-run decrease of hours after a technology improvement followed by a hump-shaped positive
response. Additionally, the rate of inflation and the nominal interest rate displays a significant
decrease after this shock.

Structural Vector Autoregressions (SVARs) have been widely used as a guide to evaluate
and develop dynamic general equilibrium models. Given a minimal set of identifying
restrictions, SVARs represent a helpful tool to discriminate between competing
theories of the business cycle. For example, Galı́ (1999) uses long-run restrictions �a la
Blanchard and Quah (1989) in a SVAR model of labour productivity and hours and
shows that the response of hours worked to a positive technology shock is persistently
and significantly negative. This negative response of hours obtained from SVARs is
then implicitly employed to discriminate among business cycle models (Galı́, 1999, Galı́
and Rabanal, 2004, Francis and Ramey, 2005 and Basu et al., 2006).

The usefulness of SVARs for building empirically plausible models has been subject
to many controversies in quantitative macroeconomics (Cooley and Dwyer, 1998).
More recently, the debate about the effect of technology improvements on hours
worked has triggered the emergence of several contributions concerned with the ability
of SVARs to adequately measure the impact of technology shocks on aggregate
variables.

Using Dynamic Stochastic General Equilibrium (DSGE) models estimated on US
data as their Data Generating Process (DGP), Erceg et al. (2005) show that the effect of
a technology shock on hours worked is not precisely estimated with SVARs. They
suggest that part of their results originate from the difficulty in disentangling
technology shocks from other shocks that have highly persistent, if not permanent, and
sizeable effects on labour productivity and hours. Their findings also suggest inclusion
of other variables with lower serial correlation in SVARs.

* We thank the Editor, A. Scott, and two anonymous referees for helpful comments. We also thank
J. Campbell, F. Collard, M. Dupaigne, J. Galı́, L. Gambetti, S. Grégoir, A. Kurman, J. Matheron, F. Pelgrin,
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Chari et al. (2007b) simulate a prototypical business cycle model estimated by
Maximum Likelihood on US data with structural shocks as well as measurement errors.
They show that the SVAR model with a specification of hours in difference (DSVAR) or
in quasi-difference (QDSVAR) leads to a negative response of hours under a business
cycle model in which hours respond positively. Moreover, they show that a level spec-
ification of hours (LSVAR) does not uncover the true response of hours and implies a
large upward bias. A significant part of their results originates from the inability of
SVARs with a finite number of lags to properly capture the true dynamic structure of
the model; see also Ravenna (2007).1 This problem can be eliminated if a relevant state
variable is introduced in the SVAR model. Unfortunately, the lack of observability of
such a variable (for example, capital stock and shocks) makes its use impossible.
However, even if such a meaningful variable is virtually unobserved, we can always think
about observable relevant instrumental variables that share approximatively the same
dynamic structure.

Christiano et al. (2006) argue that SVARs are still a useful guide for developing
models. They find that most of the disappointing results with SVARs in Chari et al.
(2007b) come from the values assigned to the standard errors of shocks in their
economy. They notably show that when the model is more properly estimated, the
standard error of the non-technology shocks is half the standard error of the tech-
nology shock. In such a case, the bias in SVARs with labour productivity and hours is
strongly reduced. Evidence from their simulation experiments suggests using other
variables which are less sensitive to the volatility of non-technology shocks and/or
contain a sizeable part of technology shocks.

In light of the above findings, we propose a simple alternative method to estimate
technology shocks and their short-run effects on aggregate variables consistently. As an
illustration and a contribution to the current debate, we concentrate our analysis on
the response of hours worked. However, our empirical strategy can be easily imple-
mented to other variables of interest. In the empirical part of the article, we investigate
the dynamic responses of the rate of inflation and the short-term nominal interest rate.
Although imperfect, we maintain the labour productivity variable as a way to identify
technology shocks using long-run restrictions. We argue that SVARs can deliver accu-
rate results if more efforts are made over the choice of the stationary variables. More
precisely, hours (or other highly persistent variables subject to empirical controversies
about their stationarity) must be excluded from SVARs and replaced by any variable
which presents better stochastic properties. The introduction of a highly persistent
variable as hours worked in the SVARs confounds the identification of the permanent
and transitory shocks and thus contaminates the corresponding Impulse Response
Functions (IRFs). Following the previously mentioned contributions, the selected
variable must satisfy the following stochastic properties. First, the variable must display
less controversy over its stationarity.2 Second, the variable must behave more as a capital
(or state) variable than hours worked do, so that a VAR model with a finite number of

1 The problem of missing state variable is especially problematic for VARs with long-run restrictions. The
identification of technology shocks is then based on the long-run covariance matrix which depends on sum of
the estimated VAR parameters. This is not the case with short-run restrictions.

2 Pesavento and Rossi (2005) and Francis et al. (2005) propose other methods for dealing with the
presence of highly persistent process.
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lags can more easily approximate the true underlying dynamics of the data. Third, the
variable must contain a sizeable technology component and present less sensitivity to
highly persistent non-technology shocks. The consumption to output ratio (in logs) is a
promising candidate for fulfilling these three requirements. The ratio is stationary and
consequently displays less persistence than hours worked. Moreover, the consumption
to output ratio probably represents a better approximation of the state variables than
hours worked and appears less sensitive to transitory shocks. The first requirement can
be directly found with actual data, since standard unit root tests reject the null
hypothesis of an unit root. The two other requirements can be quantitatively (through
numerical experiments) and analytically deduced from equilibrium conditions of
DSGE models. In addition, Cochrane (1994) has already shown that in SVARs the
consumption to output ratio allows to suitably characterise permanent and transitory
components in GNP.

The proposed approach consists in the following two steps. In the first step, a SVAR
model which includes labour productivity growth and consumption to output ratio is
considered to consistently estimate technology shocks using a long-run restriction. In
the second step, the IRFs of hours (or any other aggregate variable under interest) at
different horizons are obtained by a simple (univariate or multivariate) regression of
hours on the estimated technology shock. We show that the IRFs are consistently
estimated whether hours worked are projected in level or in difference in the second
step. Consequently, our approach does not suffer from the specification choice of
hours as in the standard SVAR approach. Our method can be viewed as a combination
of a SVAR approach in the line of Blanchard and Quah (1989), Galı́ (1999) and
Christiano et al. (2004) and the regression equation used by Basu et al. (2006) in their
growth accounting exercise.

To evaluate this proposed two-step approach, we perform simulation experiments
using a standard business cycle model and a sticky prices model with a permanent
technology shock and stationary preference and investment-specific shocks. The results
show that our approach, denoted CYSVAR, performs better than the DSVAR and
LSVAR models. In particular, the bias of the estimated IRFs is strongly reduced. In
contrast with the results for the DSVAR and LSVAR models, we also show that
the specification of hours (in level or in difference) does not matter. Moreover, the
estimated technology shock using the CYSVAR model is strongly correlated with
the true technology shock while weakly with the non-technology shock. In other words,
the estimated technology shock is not contaminated by other shocks that drive hours
worked up or down. Consequently, the estimated response of hours obtained in the
second step displays small bias. We complete these findings by calculating the coverage
rate for the computed confidence interval. Apart the first difference specification in the
second step, the coverage rate indicates that the confidence intervals include the true
value of the IRFs with a probability close to the true one.

A central practical question is to decide what variables should belong to the first and
the second steps. Suppose that the variable under interest (hours worked, inflation,
nominal interest rate in the empirical part of our article) displays high level of serial
correlation, such that its specification in a SVAR model with long-run restriction is
uncertain. In addition, level and first difference specifications may yield very different
and controversial dynamic responses from SVAR models. Our empirical strategy
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proposes to eliminate this variable from the first step and then uses our procedure to
consistently estimate the dynamic responses of this variable in a second step. Conse-
quently, the first step VAR must avoid highly persistent variables with uncertainty about
their right specification (in level or in difference).

We then apply our two-step approach with US data. As a contribution to the current
debate, we first investigate the dynamic responses of hours. The DSVAR and LSVAR
specifications deliver conflicting results. In the DSVAR specification, hours signifi-
cantly decrease in the short run whereas they display a positive hump pattern with the
level specification. In contrast, the two-step approach provides the same dynamic
responses whatever the specification of hours in the second step. Hours worked
decrease in the short run after a positive technology shock but display a positive
hump-shaped response. Our results are in line with the previous empirical findings
which show that hours fall significantly on impact (Galı́, 1999, Basu et al., 2006,
Francis and Ramey, 2008) and display a positive hump pattern during the subsequent
periods (Christiano et al., 2004 and Vigfusson, 2004). We also apply this methodology
to the rate of inflation and the nominal interest rate and we find that these two
nominal variables significantly decrease in the short run after a positive technology
shock.

The article is organised as follows. In a first Section, we present our two-step
approach. The second Section presents a prototypical business cycle model and
documents in more details simulation experiments on SVARs. In Section 3, we assess
the robustness of our findings. In Section 4, we present the empirical results. The last
Section concludes.

1. The Two-Step Approach

This Section motivates the two-step approach and presents the practical implementa-
tion of this procedure in more details. It also discuss different models that can be used
in the second step.

1.1. Motivations

The goal of our approach is to identify the technology shocks in the first step accurately
using an adequate stationary variable in the SVAR model. A large part of the perfor-
mance of the two-step approach depends on the time series properties of this variable.
This latter can be interpreted as an instrument allowing to retrieve with more precision
the true technology shock. The variable choice is motivated in part by simulation
results in Erceg et al. (2005), Chari et al. (2007b) and Christiano et al. (2006). They show
that, when hours worked are contaminated by an important persistent transitory
component, the SVAR performs poorly in their experiments.

Chari et al. (2007a) propose a method in order to account for economic fluctuations
based on the measurement of various wedges. They assess what fraction of the output
fluctuations can be attributed to each wedge separately and in combinations. For the
postwar period, the efficiency and labour wedges are prominent to explain output
movement. Investment wedge plays a minor role in the postwar period and especially at
low frequencies of output fluctuations.
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The results in Chari et al. (2007a) suggest that the observed fluctuations and
persistence of hours worked depend on an important portion of the labour wedge. In
contrast, in their prototypical economy, the consumption–output ratio is less
dependent on the labour wedge. As a consequence, the transitory component of the
consumption–output ratio is then probably less important than the one corresponding
to the permanent shock. According to this, the consumption–output ratio is a
more promising variable to use in a SVAR model for identifying technology and non-
technology and the associated dynamic responses than hours worked.

Cochrane (1994) also argues that the consumption to output ratio contains useful
information for disentangling the permanent to the transitory component. This
result can receive a structural interpretation using a simple permanent income
model. This model implies that consumption is a random walk and that consump-
tion and total income are cointegrated. Consequently, it follows from the inter-
temporal decisions on consumption that any shock to aggregate output that leaves
consumption constant is necessarily a transitory shock. The joint observation of
output growth and the log of consumption to output ratio allows the econometri-
cian to separate shocks into permanent and transitory components, as perceived by
consumers. Moreover, in the data, we can reject the unit root for this ratio and the
empirical autocorrelation function is clearly less persistent that the one for hours.
The introduction of a less persistent variable in level in the VAR also allows us to
minimise the problem of weak instruments raised by Christiano et al. (2004) and
Gospodinov (2006). So we introduce this ratio as an instrument to identify the
technology shocks. With this identified shocks at the first step, we can then evaluate
the impact of these shocks on a variable of interest (for example, hours) in the
second step.

1.2. The Approach

We now present the two-step approach in greater detail.
Step 1: Identification of technology shocks
We consider a VAR model which includes productivity growth D(yt � ht) and con-

sumption to output ratio ct � yt (in logs). For simplicity, we omit a vector of constant
terms. We start by specifying a VAR(p) model in these two variables:

Dðyt � htÞ
ct � yt

� �
¼
Xp

i¼1

Bi
Dðyt�i � ht�iÞ

ct�i � yt�i

� �
þ et ð1Þ

where the white noise et ¼ (e1,t, e2,t)
0 and Eðete

0
tÞ ¼ R. Under usual conditions, this

VAR(p) model admits a VMA(1) representation

Dðyt � htÞ
ct � yt

� �
¼ CðLÞet

where CðLÞ ¼ ðI2 �
Pp

i¼1 BiL
iÞ�1. The SVAR model is represented by the following

VMA(1) representation
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Dðyt � htÞ
ct � yt

� �
¼ AðLÞ

gT
t

gNT
t

 !

where gt ¼ ðgT
t ; g

NT
t Þ

0. gT
t is period t technology shock, whereas gNT

t is period t
composite non–technology shock; see Blanchard and Quah (1989) and Faust and
Leeper (1997) for a discussion on the conditions for valid shock aggregation in the
small SVAR models. By normalisation, these two orthogonal shocks have zero mean
and unit variance. The identifying restriction implies that the non-technology shock
has no long-run effect on labour productivity. This means that the upper triangular
element of A(L) in the long run must be zero, i.e. A12(1) ¼ 0. In order to uncover this
restriction from the estimated VAR(p) model, an estimator of the matrix A(1) is
obtained as the Choleski decomposition of the estimator for C(1)RC(1)0 resulting from
the VAR. The structural shocks are then directly deduced up to a sign restriction:

gT
t

gNT
t

 !
¼ Cð1Þ�1Að1Þ e1;t

e2;t

� �

Step 2: Estimation of the responses of hours to a technology shock
The structural infinite moving average representation for hours worked as a function

of the technology shock and the composite non-technology shock3 is given by:

ht ¼ a1ðLÞgT
t þ a2ðLÞgNT

t : ð2Þ

Notice that we again omit a constant term in this equation. The coefficient a1,k(k � 0)
measures the effect of the technology shock at lag k on hours worked, i.e. a1;k ¼
@htþk=@gT

t .
According to the debate on the right specification of hours worked, we first examine

three univariate specifications to measure the impact of technology on this variable.
In the first specification, the hours series is projected in levels on the identified
technology shocks while in the second specification, the hours series is projected in
differences. Finally, in the third specification, the hours series is projected on its own
first lag and the identified technology shocks.

Let us now present these three specifications in more detail. In the first one, we
regress the logs of hours worked on the current and past values of the identified
technology shocks ĝT

t in the first-step:

ht ¼
Xq

i¼0

hi ĝ
T
t�i þ mt ð3Þ

where q < þ 1 and ĝT
t denotes the estimated technology shocks obtained from the

SVAR model in the first step. mt is a composite error term that accounts for non-
technology shocks and the remainder technology shocks. A standard OLS regression
provides the estimates of the population responses of hours to the present and lagged

3 In typical DSGE models, non-technology shocks correspond to preference, taxes, government spending,
monetary policy shocks and so on. When the number of stationary variables in the SVAR model is small
respective to the number of these shocks and, without additional identification schemes, these shocks are not
identifiable. For our purpose, this identification issue does not matter since we only focus on the dynamic
response of hours to a (permanent) technology shock.
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values of the technology shocks, â1;k ¼ ĥk . Hereafter, we refer to this approach as
LCYSVAR. According to the debate on the appropriate specification of hours, this
variable is regressed in first difference on the current and past values of the identified
technology shocks. Hereafter, we refer to this approach as DCYSVAR. The response of
hours worked to a technology shock is now estimated from the regression:

Dht ¼
Xq

i¼0

~hi ĝ
T
t�i þ ~mt : ð4Þ

As hours are specified in first difference, the estimated response at horizon k is
obtained from the cumulated OLS estimates, ~̂a1;k ¼

Pk
i¼0

~̂hi . Finally, an interesting
avenue is to adopt a more flexible approach by freely estimating the autoregressive
parameter of order one for hours. This lets the data discriminate between the
presence of an unit root in the stochastic process of hours worked. Hereafter, we
refer to this approach as CYSVAR-AR. The response to a technology shock is now
estimated from the regression of hours on one lag of itself and lags of the technology
shock:

ht ¼ qht�1 þ
Xq

i¼0

~~hi ĝ
T
t�i þ ~~mt : ð5Þ

The estimated response at horizon k is obtained from the OLS estimates of q

and hiði ¼ 1; . . .; qÞ; ~̂~a1;k ¼
Pk

i¼0 q̂i ~̂~hk�i . This last specification calls for various
comments. First, (5) is more flexible than (3) and (4) since it allows estimation of the
autoregressive parameter of order one for hours freely. Therefore, it lets the data
select the appropriate time series representation of hours worked. The LCYSVAR and
DCYSVAR specifications are in fact restricted versions of the third specification with
the autoregressive parameter q fixed to zero or to one. Second, it imposes that the
dynamic responses of hours to various aggregates shocks share the same root. It does
not mean that the shapes of IRFs are the same since they are obtained from the
autoregressive parameter and the MA(q) representation of these shocks. Notice that
this is the case in most of DSGE models where the variables of interest share the same
dynamics implied by the state variables (for example, the capital stock in the simple
model), but differs in their sensitivity to shocks that hit the economy. The regression
equation (5) simply accounts for these features. In the following Proposition, we
show that the OLS estimators of the effect of technology shocks are consistent estim-
ators of the true ones for the three specifications (see the proof in Appendix A).

Proposition 1. Assume the infinite moving average representation (2) for hours worked and
consider the estimation of the finite VAR in the first step as defined in (1) and the three projections
(3), (4) and (5) in the second step. The OLS estimators â1;k, ~̂a1;k and ~̂~a1;k converge in probability
to a1,k for the three specifications, 8k.

In Proposition 1, the property of consistency is derived under the assumption
that hours worked follow a stationary process. While the specification of hours in
differences could provide a good statistical approximation of this variable in small
sample, hours worked per capita are bounded and therefore the stochastic process of

1290 [ D E C E M B E RT H E E C O N O M I C J O U R N A L

� The Author(s). Journal compilation � Royal Economic Society 2009



this variable cannot have a unit root asymptotically. By definition, the consistency
property of an estimator is an asymptotically concept so only the asymptotic behaviour
of hours worked is of interest. Consequently, the consistency of the OLS estimators for
the three specifications is derived only under the assumption that hours worked per
person is a stationary process. It is worth noting that the specification of hours (level or
first difference) does not matter asymptotically. However, the small sample behaviour
of the three estimators associated to the three specifications can differ.

We can complement the two-step approach by considering a VAR model in the
second step. The VAR model includes the labour productivity growth, hours worked
(either in level and first difference) and the consumption to output ratio4

Dðyt � htÞ
ht

ct � yt

2
4

3
5 ¼Xp

i¼1

Di

Dðyt�i � ht�iÞ
ht�i

ct�i � yt�i

2
4

3
5þ ft : ð6Þ

This reduced form VAR is estimated to retrieve the residuals f̂t . We then regress these
residuals f̂t on the technology shock series ĝT

t identified from the first step and then we
obtained the IRFs to the technology shocks by inverting the VAR model. Hereafter, we
refer to this approach as CYSVAR-VAR. Notice however that there is no specific reason
for assuming that aggregate data are generated by a VAR. This is especially true if we
consider a subset of the variables included in the VAR model. Moreover, most of
business cycle models admits a VARMA representation. From this view, the specifica-
tion (5) appears more able to capture an ARMA structure than (6).

Other regression models can be considered in the second step. First, we can
successively regress hours on each estimated technology shocks instead of considering a
given block of the shocks, as in regressions (3), (4) or (5) (Chang and Sakata, 2007).
This approach, similar to ours, does not impose any parametric restrictions on the IRFs.
Notice also that the resulting estimator is asymptotically equivalent to those of Prop-
osition 1. Second, the CYSVAR-AR can include additional lags of hours worked in order
to capture their persistence better. Third, we can estimate an ARMA model on hours,
regress the residuals on the technology shock series ĝT

t and then compute the IRFs by
inverting the model. The advantage of this approach is its parsimony compared (3), (4)
or (5). Moreover, it accounts for the possible ARMA structure of hours in DSGE
models. Fourth, following Jordà (2005), we can run local projections at the second step
using a VAR model including labour productivity growth and hours worked (either in
level and first difference). This approach as proven to be more flexible than VARs and
represents a natural alternative to estimating IRFs. All these models have been inves-
tigated in our simulation experiments. As they deliver very similar results, we do not
report the results to save space.5

Finally, the two-step procedure is not only used to measure the effect of technology
shocks on hours worked (or any other variable of interest) but also to hypothesis
testing about the significance of these responses. The approach raises two practical

4 In most of our simulation experiments and the empirical applications, the VAR model includes three
variables. When we simulate the business cycle models with two shocks, the VAR model includes only two
variables (productivity growth and hours).

5 All the simulation experiments with the above mentioned approaches are available from the authors
upon request.
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econometric issues. First, confidence intervals in the second step must account for the
uncertainty resulting from the first step estimation. This is usually called the generated
regressors problem. Second, the residuals in the second step can be serially correlated in
practice. This is especially true for the regression (3) with hours in level. Confidence
intervals of IRFs are computed using a bootstrap procedure which accounts for the
generated regressors problem and serial correlation. We draw randomly and jointly
the fitted VAR residuals from the first step and the residuals from the second step. For
the second step residuals, we use a block bootstrap method with an optimal block
length chosen according to the data-based procedure proposed by Politis and White
(2004). In practice we implement the correction of this procedure such proposed in
Patton et al. (2009). It is important to use the same ordering of the random draws for
the first and the second steps to preserve the correlation structure of the whole system
of equations. For each random draw, the first-step VAR is estimated and the corre-
sponding identified technology shocks are retrieved. The second step projection is
then estimated to obtain the bootstrapped impulse responses conditioning on the
technology shocks identified at the first step and the random draws from the residuals
of this second step (with the same ordering of the random draw). The percentile
confidence intervals of the effect of technology shocks is constructed by repeating this
bootstrap procedure for 1,000 random draws.

2. Simulation Experiments from a Business Cycle Model

This Section briefly presents the model and its parameterisation and then documents
in more detail simulation experiments on SVARs.

2.1. The Business Cycle Model

We consider a standard business cycle model that includes three shocks. The utility
function of the representative household is given by

Et

X1
i¼0

bi log ðCtþiÞ þ wvtþi log ð1�HtþiÞ
� �

where b 2 (0,1) denotes the discount factor and w > 0 is a time allocation parameter.
Et is the expectation operator conditional on the information set available at time t.
Ct and Ht represent consumption and labour supply at time t. The labour supply Ht is
subjected to a preference shock vt, that follows a stationary stochastic process.

logðvtÞ ¼ qv logðvt�1Þ þ ð1� qvÞ log �vþ rvev;t

where �v > 0, jqvj < 1, rv > 0 and ev,t is iid with zero mean and unit variance. As noted
by Galı́ (2005), this shock can be an important source of fluctuations as it accounts for
persistent shifts in the marginal rate of substitution between goods and work (Hall,
1997). Such shifts capture persistent fluctuations in labour supply following changes in
labour market participation and/or changes in the demographic structure. Addition-
ally, this preference shock allows us to simply account for other distortions on the
labour market, labelled labour wedge in Chari et al. (2007a).
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The representative firm uses capital Kt and labour Ht to produce a final good Yt. The
technology is represented by the following constant returns-to-scale Cobb-Douglas
production function

Yt ¼ K a
t ðZtHtÞ1�a

where a 2 (0,1). Zt is assumed to follow an exogenous process of the form

logðZtÞ ¼ logðZt�1Þ þ cz þ rzez;t

where rz > 0 and ez,t is iid with zero mean and unit variance. In the terminology of
Chari et al. (2007a), Z 1�a

t in the production function corresponds to the efficiency
wedge. This wedge may capture for instance input-financing frictions. Capital stock
evolves according to the law of motion

Ktþ1 ¼ ð1� dÞKt þ It

where d 2 (0,1) is a constant depreciation rate. Finally, the final output good can be
either consumed or invested

Yt ¼ Ct þ It :

The model is thus characterised by two time varying wedges, i.e. the efficiency and
labour wedges, that summarise a large class of mechanisms without having to explicitly
specify them.

To analyse the quantitative implications of the model, we first apply a stationary-
inducing transformation for variables that follow a stochastic trend. Output,
consumption, investment and government consumption are divided by Zt, and the
capital stock is divided by Zt�1. The approximate solution of the model is computed
from a log-linearisation of the stationary equilibrium conditions around the deter-
ministic steady state.

The parameter values are familiar from business cycle literature (see Table 1). We
set the capital share to a ¼ 0.33 and the time allocation parameter w ¼ 3.60, such
that households spend 20% of their time endowment on market activity. We choose
the discount factor so that the steady state annualised real interest rate is 3%. We
set the depreciation rate d ¼ 0.025. The growth rate of Zt, namely cz, is equal to
0.0036. The parameters of the two forcing variables (Zt, vt) are borrowed from
previous empirical works with US data. The standard-error rz of the technology
shock is equal to 1% (Prescott, 1986; Burnside and Eichenbaum, 1996; Chari et al.,
2007b; Christiano et al., 2006). We choose alternative values (0.90; 0.95; 0.99) for
the autoregressive parameter qv of the preference shock. Previous estimations (Chari
et al., 2007b ; Christiano et al., 2006) suggest value between 0.95 and 0.99, but we
add qv ¼ 0.90 to check robustness. Finally, the standard error of this shock rv takes
three different values (0.005; 0.01; 0.02). These values roughly summarise the range
of previous estimates (Erceg et al., 2005; Chari et al., 2007b; Christiano et al., 2006).
The alternative calibrations summarise previous estimates which use different data-
sets and estimation techniques. They allow us to conduct a sensitivity analysis and to
evaluate the relative merits of different approaches for various calibrations of the
forcing variables.
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2.2. Simulation Results

We assess each approach from the distribution of IRFs based on Monte-Carlo experi-
ments. We generate 1,000 data samples from the business cycle model. Every data
sample consists of 200 quarterly observations and corresponds to the typical sample size
of empirical studies. In order to reduce the effect of initial conditions, the simulated
samples include 200 initial points which are subsequently discarded in the estimation.
For every data sample, we estimate VAR models with four lags as in Erceg et al. (2005),
Chari et al. (2007b) and Christiano et al. (2006).

For each experiment, we investigate the reliability of different SVARs approaches to
identify of technology shocks and their aggregate effects: a LSVAR model with labour
productivity growth and hours in level; a DSVAR model with labour productivity growth
and hours in first difference; a LCYSVAR approach in which the SVAR model includes
labour productivity growth and consumption to output ratio in the first step and hours in
level are regressed on the estimated technology shock in the second step. The DCYSVAR
and CYSVAR-AR approaches are the same in the first step but they consider hours in first
difference and once lagged hours in the second step. The CYSVAR-VAR approach
includes in the second step labour productivity growth and hours in level. In the second
step of the CYSVAR approach (LCYSVAR and DCYSVAR), we consider current and
twelve lagged values of the identified (in the first step) technology shocks. For the
CYSVAR-AR, we include current and four lagged values of the shock and for the
CYSVAR-VAR, we set four lags in the regression. We have also investigated the sensitivity
of the results to the number of lags. All the empirical findings are left unaffected.

Figures 1 and 2 display the responses of hours for each SVAR in our baseline
calibration (qv ¼ 0.95 and rz ¼ rv ¼ 0.01). The dashed line represents the response of
hours in the model, whereas the solid line corresponds to the estimated response from
SVARs.

The responses of hours obtained from a LSVAR model displays a large upward bias,
as the estimated response on impact is almost twice the true response and is persistently
above the true response. These results are in the line with those of Chari et al. (2007b).
The confidence intervals are very large and therefore not informative.

The response of hours obtained from the DSVAR model displays a large downward
bias, and it is persistently negative. This result is again similar to Chari et al. (2007b)
who show that the difference specification of hours adopted by Galı́ (1999), Galı́ and
Rabanal (2004) and Francis and Ramey (2005) can lead to mistaken conclusions about
the effect of a technology shock. Note that a DSVAR model is obviously misspecified

Table 1

Calibrated Values

Deep Parameters
Shocks Parameters

(benchmark)
Shocks Parameters

(alternative)

b 0.9926 rz 0.01 rv/rz [0.5; 1;2]
a 0.330 qv 0.95 qv [0.9; 0.95; 0.99]
d 0.0250 rv 0.01
cz 0.0036 qv 0.95
w 3.600 rv 0.01 rz/(rv,rz) [1;2]
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under the business cycle model considered here, as it implies an over-differentiation of
hours. The first difference specification of hours can create distortions and lead to
biased estimated responses. However, Chari et al. (2007b) show that SVARs with hours
in quasi-difference, consistent with the business cycle model, display similar patterns.

Consider now the CYSVAR approach. Figure 2 shows that this approach delivers
reliable estimates of the response of hours. The bias is small, especially in comparison
with the ones from the DSVAR and LSVAR. Another interesting result is that the four
CYSVAR approaches deliver very similar results. Therefore, our two-step approach does
not suffer from the specification of hours, contrary to the DSVAR and LSVAR. It is
worth noting that these small sample experiments support the asymptotic results of
Proposition 1.

To evaluate the size of the bias, Table 2 reports the cumulative absolute bias between
the average response in SVARs and the true response over different horizons.6 Since
quantitative results are rather similar, to save space we report only simulation results
with the CYSVAR-AR and CYSVAR-VAR approaches. Our benchmark calibration
corresponds to the second panel in Table 2 when qv ¼ 0.95 and rv/rz ¼ 1. We also
obtained a large bias with DSVAR and LSVAR models (both on impact and for different
horizons). However, the CYSVAR-AR and CYSVAR-VAR deliver very reliable results
compared with DSVAR and LSVAR. We also investigate other calibrations of (qv, rv).
When the standard error rv of the non-technology shock is smaller, the accuracy of the
LSVAR and DSVAR models increases (see the cases where rv/rz ¼ 0.5) and the LSVAR
model and the CYSVAR-AR and CYSVAR-VAR approaches deliver very similar results.
Conversely, when the standard error rv of the preference increases, the LSVAR and
DSVAR models poorly identify the effect of a technology shock on hours (see the cases
rv/rz ¼ 2). In this latter case, the CYSVAR approach tends to over-estimate the true
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Fig. 1. Simulation Results with SVARs (Two Shocks)
Note. LSVAR and DSVAR models. The LSVAR model includes labour productivity growth
and the log of hours. The DSVAR model includes labour productivity growth and the log
of hours in first difference. The dashed line corresponds to the true IRF of hours. The
results are obtained from our benchmark calibration. The selected horizon for IRFs is 13.
Confidence intervals are based the 95-percentile from 1,000 Monte-Carlo experiments.

6 This measure is defined as cmdðkÞ ¼
Pk

i¼0 jirfiðmodelÞ � irfiðsvarÞj where k denotes the selected horizon,
irfi(model) the RBC impulse response and irfiðsvarÞ ¼ ð1=N Þ

PN
j¼1 irfiðsvarÞj the mean of impulse responses

over the N simulation experiments obtained from a SVAR model. In fact, the cmd measures the area of the
bias up to the horizon k.
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effect of the technology shock, but the cumulative absolute mean bias remains small
compared to the LSVAR and DSVAR models. Table 2 displays another interesting
result: when the persistence of the preference shock increases from 0.9 to 0.99, the bias
decreases. For the DSVAR model, this result can be partly explained by a decrease
in distortions created by over-differentiation. For the CYSVAR approach, the bias
reduction mainly originates from the effect of the preference shock on hours and
consumption to output ratio. It is worth noting that the CYSVAR-AR delivers a smaller
bias than the CYSVAR-VAR in most of cases.

To understand these last results better, we investigate the effect of qv and rv on the
structural autoregressive moving average representation of hours and the consumption
to output ratio. For our baseline calibration (qv ¼ 0.95, rz ¼ rv ¼ 0.01), we obtain:

logðHtÞ¼cstþ0:3536
1

ð1�0:9622LÞrzez;t�1:5240
ð1�0:9759LÞ

ð1�0:9622LÞð1�0:95LÞrvev;t

logðCtÞ� logðYtÞ¼cst�0:4220
1

ð1�0:9622LÞrzez;tþ0:8180
ð1�0:9928LÞ

ð1�0:9622LÞð1�0:95LÞrvev;t ;
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Fig. 2. Simulation Results with the Two-Step Approach (Two Shocks)
Note. Two-Step identification. The SVAR model in the first step includes labour productivity
growth and the log of consumption to output ratio. In the second step, the dynamic responses of
hours are obtained from (3), (4), (5) and (6). For this latter equation, the VAR model includes
labour productivity growth, the log of hours and the log of consumption to output ratio. The
dashed line correspond to the true IRF of hours. The results are obtained from our benchmark
calibration. The selected horizon for IRFs is 13. Confidence intervals are based the 95-percentile
from 1,000 Monte-Carlo experiments.
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where cst is an appropriate constant. The non-technology component is larger for
hours than for consumption to output ratio. In this case, the preference shock accounts
for 91% of variance of hours, whereas it represents 63% of the variance of the ratio.
Moreover, the persistence of hours generated by the preference shock is more
pronounced. This can be seen from the ARMA(2,1) representation of hours and
consumption to output ratio. The two series display the same autoregressive parameters
(0.9622 and 0.95), which are associated to the dynamics of the deflated capital K/Z and
the persistence of the preference shock. However, the moving average parameter
differs. In the case of hours, the parameter is equal to �0.976, whereas it is �0.993 for
the consumption to output ratio. Figure 3 illustrates this property and reports the
autocorrelation function of these two variables due to the preference shock. We see
that the autocorrelations of the consumption to output ratio are smaller than the ones

Table 2

Simulation Results with Two Shocks: Cumulative Absolute Bias

qv rv/rz Model

Horizon Correlation

0 0 to 4 0 to 8 0 to 12 Corr(ez,g
T) Corr(ev,g

T)

0.90 0.5 LSVAR 0.056 0.195 0.262 0.452 0.941 �0.101
DSVAR 0.215 1.047 1.732 2.230 0.931 0.250
CYSVAR-AR 0.022 0.123 0.355 0.649 0.953 0.013
CYSVAR-VAR 0.022 0.106 0.294 0.565 0.953 0.013

1 LSVAR 0.261 0.990 1.228 1.287 0.923 �0.198
DSVAR 0.690 3.307 5.752 8.015 0.859 0.419
CYSVAR-AR 0.070 0.228 0.326 0.540 0.949 �0.059
CYSVAR-VAR 0.069 0.249 0.332 0.558 0.949 �0.059

2 LSVAR 1.003 3.902 5.325 5.902 0.872 �0.365
DSVAR 1.925 9.197 16.251 23.132 0.728 0.596
CYSVAR-AR 0.4937 1.883 2.493 2.675 0.934 �0.180
CYSVAR-VAR 0.036 0.186 0.352 0.550 0.934 �0.180

0.95 0.5 LSVAR 0.047 0.183 0.222 0.256 0.924 �0.104
DSVAR 0.196 0.988 1.658 2.143 0.931 0.252
CYSVAR-AR 0.035 0.168 0.331 0.503 0.950 0.033
CYSVAR-VAR 0.035 0.169 0.331 0.513 0.950 0.033

1 LSVAR 0.259 1.101 1.641 1.959 0.899 �0.218
DSVAR 0.629 3.115 5.472 7.650 0.861 0.422
CYSVAR-AR 0.035 0.130 0.149 0.194 0.943 �0.038
CYSVAR-VAR 0.034 0.136 0.162 0.224 0.943 �0.038

2 LSVAR 1.025 4.436 6.820 8.430 0.835 �0.407
DSVAR 1.769 8.728 15.564 22.231 0.728 0.606
CYSVAR-AR 0.420 1.794 2.738 3.385 0.927 �0.167
CYSVAR-VAR 0.036 0.186 0.352 0.550 0.927 �0.167

0.99 0.5 LSVAR 0.002 0.006 0.038 0.108 0.874 �0.071
DSVAR 0.158 0.812 1.359 1.726 0.936 0.238
CYSVAR-AR 0.067 0.315 0.485 0.587 0.945 0.093
CYSVAR-VAR 0.068 0.338 0.559 0.710 0.945 0.093

1 LSVAR 0.158 0.737 1.280 1.792 0.842 �0.181
DSVAR 0.510 2.559 4.498 6.260 0.874 0.405
CYSVAR-AR 0.099 0.456 0.701 0.852 0.932 0.072
CYSVAR-VAR 0.100 0.473 0.760 0.958 0.932 0.072

2 LSVAR 0.760 3.570 6.065 8.243 0.788 �0.362
DSVAR 1.499 7.474 13.348 19.057 0.738 0.610
CYSVAR-AR 0.003 0.019 0.091 0.228 0.924 �0.007
CYSVAR-VAR 0.036 0.186 0.352 0.550 0.924 �0.007
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for hours. The labour wedge has therefore a greater impact in terms of volatility and
persistence on hours than on consumption to output ratio. When the standard error of
the preference shock is reduced (rv ¼ 0.005), its contribution to the variance
decreases, it becomes 73% for hours and 30% for the consumption to output ratio.
In this case, SVARs have less difficulty disentangling technology shocks from other
shocks that have highly persistent, if not permanent effects on labour productivity. This
explains why SVARs can properly uncover the true IRFs of hours to a technology shock.

To assess the effect of a highly persistent preference shock, we now set qv ¼ 0.99.
This situation is of quantitative interest as Christiano et al. (2006) obtain values for this
parameter between 0.986 and 0.9994. In this case, the ARMA representation becomes:

logðHtÞ¼cstþ0:3536
1

ð1�0:9622LÞrzez;t�1:2710
ð1�0:9737LÞ

ð1�0:9622LÞð1�0:99LÞrvev;t

logðCtÞ� logðYtÞ¼cst�0:4220
1

ð1�0:9622LÞrzez;tþ0:5167
ð1�0:9960LÞ

ð1�0:9622LÞð1�0:99LÞrvev;t :

The roots of moving average and the autoregressive parameters related to the prefer-
ence shock in the expression of the consumption to output ratio are very similar,7 so its
dynamics can be approximated by a first order autoregressive process:

½logðCtÞ � logðYtÞ� ’ cst þ 0:9622½logðCt�1Þ � logðYt�1Þ� � 0:4220rzez;t þ 0:5167rvev;t :

The consumption to output ratio behaves like the deflated capital. Conversely, hours
do not share this property and finite autoregressions cannot properly uncover its true
dynamics. This is illustrated in Figure 4 which reports the autocorrelation function of
hours, consumption to output ratio and capital deflated by the total factor productivity.
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Fig. 3. Autocorrelation Function (preference shock)

7 When we set qv ¼ 0.999, this finding is strengthened. Regarding only the effect of the preference shock,
the reduced form of the consumption to output ratio is log (Ct) � log (Yt) ¼ 0.3733(1 � 0.9993L)
(1 � 0.9622L)�1(1 � 0.999L)�1rvev,t.
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As emphasised by Chari et al. (2007b), one of the problems with a SVAR model is that it
does not include a capital-like variable. In the model, the corresponding relevant state
variable is log (Kt/Zt�1). Since Zt is not observable in practice and Kt is measured with
errors, we cannot include log (Kt/Zt�1) in SVARs. As can be seen from Figure 4, the
autocorrelation functions of (C/Y) and (K/Z ) are very close but the ones for hours
differ sharply.

This latter result suggests that the consumption to output ratio can be a good
proxy of the relevant state variable when shocks to labour supply are very persistent or
non-stationary. Conversely, hours cannot display this pattern. Highly persistent or
non-stationary labour supply shocks are of course debatable but empirical works
support this specification in small sample (Gali, 2005; Christiano et al., 2006; Chang et
al., 2007). Chang et al. (2007) have shown that a DSGE model with a permanent shock
to labour supply fits the data better. However, this result only holds for a frictionless
version of their model. When the model includes labour adjustment costs, a version
with stationary preference shock must be preferred. To better understand the results
under a close to non-stationary labour supply, in Appendix B we report some calcu-
lations about the dynamic behaviour of the consumption to output ratio and hours for
an economy with non stationary labour supply shocks. We show notably that when
preference shocks follow a random walk (and thus hours are non-stationary), the
consumption to output ratio follows an autoregressive process of order one with an
autoregressive parameter exactly equal to the one of the deflated capital. Conversely,
the growth rate of hours follows an ARMA process which can be poorly approximated
by finite autoregressions. As pointed out in the Introduction, this problem is essentially
problematic for SVARs with long-run restrictions, because the estimated VAR param-
eters enter in the computation of the long-run covariance matrix. Note that a SVAR
model with long-run restrictions that includes labour productivity growth and the
consumption to output ratio is valid whatever the process (stationary or non-stationary)
of the hours series. The CYSVAR approach allows us to abstract from the very sensitive
specification choice of hours in SVARs.
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Fig. 4. Autocorrelation Function (technology and preference shock)
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Simulation results for the cumulative absolute bias are completed with a measure of
uncertainty about the estimated effect of the technology shocks. We thus compute the
cumulative Root Mean Square Errors (RMSE) at various horizons.8 The RMSE accounts
for both bias and dispersion of the estimated IRFs. The results are reported in Table 3.
Simulation experiments for different calibrations show again that the CSVAR approach
provides smaller RMSE than the LSVAR and DSVAR models. This result comes
essentially from the smaller bias with CSVAR. The large RMSE of DSVAR mainly
originates from the large bias. In consequence, DSVAR model displays IRFs that are

Table 3

Simulation Results with Two Shocks: Cumulative Root Mean Square Errors

qv rv/rz Model

Horizon

0 [0:4] [0:8] [0:12]

0.90 0.5 LSVAR 0.184 0.824 1.317 1.731
DSVAR 0.243 1.210 2.060 2.767
CYSVAR-AR 0.169 0.782 1.271 1.695
CYSVAR-VAR 0.168 0.7864 1.294 1.726

1 LSVAR 0.434 1.835 2.727 3.318
DSVAR 0.726 3.511 6.132 8.583
CYSVAR-AR 0.341 1.517 2.286 2.825
CYSVAR-VAR 0.340 1.529 2.354 2.932

2 LSVAR 1.191 4.845 6.977 8.216
DSVAR 1.968 9.454 16.709 23.7937
CYSVAR-AR 0.813 3.448 5.014 5.950
CYSVAR-VAR 0.812 3.474 5.110 6.085

0.95 0.5 LSVAR 0.203 0.960 1.593 2.105
DSVAR 0.224 1.155 2.002 2.714
CYSVAR-AR 0.168 0.824 1.366 1.809
CYSVAR-VAR 0.168 0.832 1.408 1.878

1 LSVAR 0.471 2.155 3.464 4.452
DSVAR 0.663 3.319 5.869 8.256
CYSVAR-AR 0.354 1.649 2.659 3.430
CYSVAR-VAR 0.344 1.659 2.722 3.523

2 LSVAR 1.245 5.559 8.791 11.170
DSVAR 1.810 8.979 16.035 22.928
CYSVAR-AR 0.840 3.719 5.925 7.584
CYSVAR-VAR 0.803 3.7430 6.016 7.685

0.99 0.5 LSVAR 0.248 1.220 2.114 2.915
DSVAR 0.185 0.983 1.724 2.350
CYSVAR-AR 0.164 0.842 1.436 1.948
CYSVAR-VAR 0.164 0.855 1.496 2.042

1 LSVAR 0.520 2.519 4.359 6.015
DSVAR 0.542 2.763 4.913 6.910
CYSVAR-AR 0.354 1.776 3.030 4.118
CYSVAR-VAR 0.353 1.786 3.097 4.223

2 LSVAR 1.192 5.734 9.858 13.552
DSVAR 1.535 7.715 13.824 19.777
CYSVAR-AR 0.732 3.641 6.239 8.532
CYSVAR-VAR 0.730 3.644 6.292 8.602

8 This measure is defined as crmseðkÞ ¼
Pk

i¼0 rmsei where k denotes the selected horizon,
rmsei ¼

�
ð1=N Þ

PN
j¼1

�
irfiðmodelÞ � irfiðsvarÞ j �2	1=2

the RMSE at horizon i, irfi(model) the RBC impulse
response function of hours and irfi(svar)j the SVAR impulse responses function of hours for the jth draw and N
is the number of simulation experiments.
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strongly biased but more precisely estimated. In contrast, LSVAR model displays
smaller bias of IRFs but larger dispersion than DSVAR. The CSVAR approach presents
the smallest bias on estimated IRFs and the estimated responses are more precisely
estimated in comparison with LSVAR. These results from RMSE suggest favouring
CYSVAR to LSVAR and DSVAR.

Finally, to judge the identification of the structural shocks, we compare the corre-
lation between the estimated shock and the true shock for the different model’s
parameterisations. First, we compute the correlation between the estimated (from
SVARs) and the true technology shocks, namely: Corrðez; ĝT Þ, where ez denotes the true
technology shock and ĝT is the estimated technology shock from SVARs in the first
step. Second, we compute Corrðev; ĝT Þ, the correlation between the estimated tech-
nology shock and non-technology shock ev of the business cycle model. The idea is that
if any method is able to estimate the technology shock consistently, we must obtain
Corrðez; ĝT Þ � 1 and Corrðev; ĝT Þ � 0. These correlations are reported in the last
column of Table 2. The CYSVAR approach always delivers the highest Corrðez; ĝT Þ. This
correlation is relatively high, as it always exceeds 0.9 and it is not very sensitive to
changes in (rz,qv,rv). Conversely, this correlation is lower in the case of the DSVAR
model and it decreases dramatically with the volatility of the preference shock. The
LSVAR delivers better results that the DSVAR but it never outperforms the CYSVAR
approach. Concerning the correlation between the identified technology shocks and
the true preference shocks, the CYSVAR approach always delivers the lowest correlation
(in absolute value). In the case of the DSVAR model, this correlation is large and
positive. This allows us to explain why the DSVAR model underestimates the response
of hours. Indeed, the estimated technology shock is contaminated by the preference
shock. Hours worked persistently decrease after this shock in the model. It follows that
the DSVAR model erroneously concludes that hours drop after a technology shock. A
similar result applies in the case of the LSVAR model: the correlation between the
estimated technology shock and the true non-technology shock is negative. This
explains why the LSVAR model over-estimates the effect of a technology shock. In
contrast, the CYSVAR approach does not suffer from this contamination.

3. Robustness

We now investigate three robustness issues of the two-step approach. We first consider
an additional shock in the baseline model. Second, we connect the simulation part with
the estimation part by considering a sticky prices model in which hours worked
decrease in the short-run after a technology improvement. Third, we assess the accu-
racy of confidence intervals obtained from bootstrap techniques by computing the
coverage rate for each models in the second step.

3.1. Results from the Three Shock Model

The baseline model is augmented with a third shock. The capital stock is now assumed
to evolve according to the law of motion

Ktþ1 ¼ ð1� dÞKt þ xt It :

2010] 1301I D E N T I F I C A T I O N O F T E C H N O L O G Y S H O C K S

� The Author(s). Journal compilation � Royal Economic Society 2009



The variable xt represents a disturbance to the investment-specific technology process
and is assumed to follow a first order autoregressive process

logðxtÞ ¼ qx logðxt�1Þ þ rxex;t

where jqxj < 1, rx > 0 and ex,t is iid with zero mean and unit variance. The calibration
of (qx,rx) is reported in Table 1. In the benchmark experiment, we set qx ¼ 0.95 and
rx ¼ 0.01. In this case, the productivity shock accounts for tiny portion of aggregate
fluctuations. It represents 6% of hours and 13% of the consumption to output ratio.
This roughly corresponds to the two shock version of the model when rz ¼ 0.01 and
rv ¼ 0.02 , which constitute the worst case for each approach. Consequently, we analyse
another case where technology shock accounts for a sizeable part of fluctuations. In this
second situation, we set rz ¼ 0.01 and rv ¼ rx ¼ 0.005. With this new parameterisation
of the standard-error, we obtain that the technology shock represents 20% of the
variance of hours and 38% of the consumption to output ratio.

We first investigate the reliability of SVARs which include two variables (labour
productivity growth and hours for the LSVAR and DSVAR models; labour productivity
growth and consumption to output ratio for the two-step approach). Figures 5 and 6
display the responses of hours for each approach using our baseline calibration (qv ¼
qx ¼ 0.95, rz ¼ rv ¼ rx ¼ 0.01). As in the case of two shocks, the response of hours
obtained from the DSVAR model is downward biased (see Figure 5) and persistently
negative. The response of hours from the LSVAR model is upward biased and the
CYSVAR approach delivers again more reliable results. This is confirmed in the first
panel of Table 4. For the two values of rv and rx, the CYSVAR approach outperforms
the DSVAR and LSVAR models.

We also assess the DSVAR and LSVAR models when they include three variables
(labour productivity growth, hours and consumption to output ratio). SVAR models
that include three variables deliver better results (see Figure 5). The downward bias of
the DSVAR is strongly reduced, as the response on impact becomes positive. Moreover,
the upward bias of the LSVAR decreases. The introduction of the consumption to
output ratio in the VARs helps to disentangle the permanent shock from the transitory
ones, as argued by Cochrane (1994). In our experiments, the CYSVAR approach still
outperforms the DSVAR and LSVAR models (see Table 4 and Figure 6). Moreover, the
CYSVAR approach always delivers the smallest RMSE at each horizon. We also report in
Table 4 the correlation between the estimated technology shock and the true shock of
the business cycle model. We do not report the correlation with individual stationary
shocks as we cannot separately identify each of them. In most cases the CYSVAR
approach delivers the highest Corr(ez,g

T).

3.2. Simulation Experiments from a Sticky Prices Model

We now consider a sticky prices model. As illustrated by Galı́ (1999), this model
generates a negative response of hours because the aggregate short-run dynamics is
essentially driven by the demand side. Facing a positive productivity improvement,
hours worked may decrease because firms can satisfy the given level of demand with less
labour input. The model (not expound here to save space) is borrowed from Ireland
(2003). The real part of the model is identical to the baseline model, apart the
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imperfect competition on the good market. Price setting by a local monopolist is
subject to a quadratic adjustment cost. Different from Ireland (2003), the model
includes the two previous shocks, i.e. a permanent productivity shock and a persistent
shock that shift labour supply every periods. All the parameters are similar to those of
the previous model and are calibrated according to Table 1. Two additional parameters
in the sticky prices model (the mark-up and price adjustment cost parameters) are set
to 20% and 20, respectively. Our findings appear not to be sensitive to the calibration
of these two parameters.

Figures 7 and 8 display the responses of hours worked for each approaches. Now,
under the sticky prices model, hours decrease in the short run. The LSVAR and DSVAR
models still deliver conflicting results. The LSVAR model tends to over-estimate the
true response, whereas the DSVAR model delivers a more pronounced negative
response in the short run. On the contrary, the two-step approach yields very accurate
responses, whatever the regression used in the second step. Again, this approach does
not suffer from the specification of hours, contrary to standard SVARs. Table 5 reports
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Fig. 5. Simulation Results with SVARs (Three Shocks)
Note. LSVAR and DSVAR models. The Two Variable LSVAR model includes labour pro-
ductivity growth and the log of hours. The Two variable DSVAR model includes labour
productivity growth and the log of hours in first difference. The Three variable LSVAR
model includes labour productivity growth, the log of hours and the log of consumption to
output ratio. The Three variable DSVAR model includes labour productivity growth, the log
of hours in first difference and the log of consumption to output ratio. The dashed line
correspond to the true IRF of hours. The results are obtained from our benchmark
calibration and three shocks. Confidence intervals are based the 95-percentile from 1,000
Monte-Carlo experiments.
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the absolute bias and the RMSE. The DSVAR model works very well on impact but the
bias increases very quickly with the horizon. The LSVAR model and the CYSVAR ap-
proach work equally well on impact, but as the horizon increase the LSVAR is more and
more inaccurate. Again, the CYSVAR outperforms LSAVR and DSVAR models, both in
terms of bias and dispersion (RMSE).

3.3. Coverage Rate and the Accuracy of Confidence Intervals

We finally assess the accuracy of the confidence interval estimators. As previously
mentioned, these estimators are obtained from a bootstrap procedure which accounts
for generated regressors problem and serial correlation. As in Christiano et al. (2006),
we proceed as follows. For a given random realisation of the DGP, we estimate each
specification of the the two-step approach (level, difference, AR and VAR). From the
resulting residuals, we use the estimated parameters from the two-step procedure to
generate 1,000 data sets. We then estimate each specification and then compute the
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Fig. 6. Simulation Results with the Two-Step Approach (Three Shocks)
Note. Two-Step identification. The SVAR model in the first step includes labour productivity
growth and the log of consumption to output ratio. In the second step, the dynamic responses of
hours are obtained from (3), (4), (5) and (6). For this latter equation, the VAR model includes
labour productivity growth, the log of hours and the log of consumption to output ratio. The
dashed line correspond to the true IRF of hours. The results are obtained from our benchmark
calibration and three shocks. The selected horizon for IRFs is 13. Confidence intervals are based
the 95-percentile from 1000 Monte-Carlo experiments.
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associated population of IRFs. For each artificial data set, the confidence intervals are
defined as the top 2.5% and bottom 2.5% of the estimated IRFs. We then assess the
accuracy of the confidence interval estimators using the coverage rate. For a given
realisation of the DGP, we verify if the true IRF lies inside the computed confidence
interval and we count for this. The rate corresponds also to the fraction of times, across
the 1,000 data sets simulated from the DGP, that the confidence interval contains the
true IRFs of hours. If the confidence intervals were perfectly accurate, the coverage rate
would be 95%. A coverage rate that exceeds 95% means that the computed confidence
intervals are too large, leading to accept too often the model. Conversely, a coverage

Table 4

Simulation Results with Three Shocks

Variables rz/(rv,ri) Model

Horizon

Corr(ez,g
T)0 0 to 4 0 to 8 0 to 12

Average Cumulative Absolute Bias
(y � h, h) 1 LSVAR 0.592 2.513 3.748 4.450 0.847

DSVAR 0.783 3.992 7.165 10.162 0.850
CYSVAR-AR 0.333 1.383 2.008 2.358 0.836
CYSVAR-VAR 0.316 1.272 1.779 2.005 0.836

2 LSVAR 0.142 0.599 0.845 0.933 0.911
DSVAR 0.261 1.332 2.300 3.083 0.922
CYSVAR-AR 0.064 0.253 0.295 0.343 0.920
CYSVAR-VAR 0.054 0.195 0.228 0.325 0.920

(y � h, h, c � y) 1 LSVAR 0.384 1.618 2.409 2.906 0.782
DSVAR 0.320 1.323 1.718 1.828 0.850
CYSVAR-AR 0.333 1.383 2.008 2.358 0.836
CYSVAR-VAR 0.316 1.272 1.779 2.005 0.836

2 LSVAR 0.065 0.268 0.359 0.376 0.844
DSVAR 0.055 0.224 0.292 0.519 0.922
CYSVAR-AR 0.064 0.253 0.295 0.343 0.920
CYSVAR-VAR 0.054 0.195 0.228 0.325 0.920

Variables rg/(rz,rv) Model

Horizon

0 0 to 4 0 to 8 0 to 12

Cumulative Root Mean Square Errors
(y � h, h) 1 LSVAR 0.717 3.177 4.960 6.236

DSVAR 0.821 4.208 7.570 10.765
CYSVAR-AR 0.485 2.212 3.447 4.325
CYSVAR-VAR 0.469 2.108 3.357 4.343

2 LSVAR 0.261 1.202 1.932 2.491
DSVAR 0.290 1.504 2.645 3.636
CYSVAR-AR 0.194 0.929 1.497 1.941
CYSVAR-VAR 0.187 0.893 1.494 2.018

(y � h, h, c � y) 1 LSVAR 0.615 2.732 4.297 5.490
DSVAR 0.485 2.251 3.638 4.809
CYSVAR-AR 0.485 2.212 3.447 4.325
CYSVAR-VAR 0.469 2.108 3.357 4.343

2 LSVAR 0.257 1.176 1.890 2.463
DSVAR 0.197 0.970 1.669 2.335
CYSVAR-AR 0.194 0.929 1.497 1.941
CYSVAR-VAR 0.187 0.893 1.494 2.018
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rate less than 95% indicates that the computed confidence intervals are too small,
leading to reject too often the model.

Figure 9 reports the coverage rate for each approach under the frictionless model
with two shocks under the baseline calibration (see Section 2). This Figure indicates
that the coverage rate is roughly 95% for the CYSVAR-AR and CYSVAR-VAR. So, with
these two models, the confidence intervals include the true IRF with a probability close
to the true one. The results are similar with level specification, except on impact
response. With the difference specification, the coverage rate is lower especially on
impact. The bootstrapped confidence intervals with the specification (4) appears too
small for short horizons and empirical testing must be conducted with caution.

Table 5

Simulation Results with the Sticky Prices Model

Model

Horizon

Corr(ez,g
T)0 0 to 4 0 to 8 0 to 12

Average Cumulative Absolute Bias
LSVAR 0.469 1.315 1.952 2.378 0.899
DSVAR 0.258 2.716 5.129 7.287 0.849
CYSVAR-AR 0.469 0.555 1.043 1.600 0.901
CYSVAR-VAR 0.400 0.984 1.423 1.693 0.901

Model

Horizon

0 0 to 4 0 to 8 0 to 12

Cumulative Root Mean Square Errors
LSVAR 0.691 2.306 3.500 4.376
DSVAR 0.292 2.952 5.534 7.883
CYSVAR-AR 0.679 1.763 2.492 3.128
CYSVAR-VAR 0.567 1.785 2.714 3.384
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Fig. 7. Simulation Results with SVARs (Sticky Prices Model)
Note. DSVAR and LSVAR models. The LSVAR model includes labour productivity growth
and the log of hours. The DSVAR model includes labour productivity growth and the log
of hours in first difference. The dashed line correspond to the true IRF of hours. The
results are obtained from our benchmark calibration and the sticky prices model. The
selected horizon for IRFs is 13. Confidence intervals are based the 95-percentile from 1,000
Monte-Carlo experiments.
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4. Application of the Two-Step Approach

We now apply the two-step methodology with US data. Except for the Federal Fund
rate, the data cover the sample period 1948Q1–2003Q4. We first study the dynamic
responses of hours work to technology shocks. Second, we investigate the effects of
these shocks on the rate of inflation and the nominal interest rate.

4.1. The Dynamic Responses of Hours Worked

We first present results for the IRFs of hours to technology shocks. In the first step, the
VAR model includes the growth rate of labour productivity and the log of consumption
to output ratio. Labour productivity is measured as the non-farm business output
divided by non-farm business hours worked. Consumption is measured as consumption
on nondurables and services and government expenditures. The consumption to
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Fig. 8. Simulation Results with the Two-Step Approach (Sticky Prices Model)
Note. Two-Step identification. The SVAR model in the first step includes labour productivity
growth and the log of consumption to output ratio. In the second step, the dynamic
responses of hours are obtained from (3), (4), (5) and (6). For this latter equation, the
VAR model includes labour productivity growth and the log of hours. The dashed line
correspond to the true IRF of hours. The results are obtained from our benchmark cali-
bration and the sticky prices model. The selected horizon for IRFs is 13. Confidence
intervals are based the 95-percentile from 1,000 Monte-Carlo experiments.
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output ratio is obtained by dividing the nominal expenditures by nominal GDP. In the
second step, the log level ht (see (3) and (5)) and the growth rate of hours Dht (see (4))
are projected on the estimated technology shocks. Hours worked in the non-farm
business sector are converted to per capita terms using a measure of the civilian
population over the age of 16. The period is 1948Q1–2003Q4.

We also compare the estimation results with our two-step approach to those obtained
from the estimation of SVAR models. These SVAR models include growth rate of
labour productivity, the log of consumption to output ratio and either the log level of
hours (LSVAR) or the growth rate of hours (DSVAR). In each of the SVAR models, we
identify technology shocks as the only shocks that can affect the long-run level of labour
productivity. The lag length p for each VAR model (1) is obtained using the Hannan-
Quinn criterion. For each estimated model, we also apply a LM test to check for serial
correlation. The number of lags p is 4. For the two-step procedure, we include in the
second step the current and twelve past values of the identified technology shocks in
the first step, i.e. q ¼ 13 in (3), (4) and (5).

In order to assess the dynamic properties of hours worked and consumption to
output ratio (in logs), we first compute their autocorrelation functions (ACFs).
Figure 10 reports these ACFs for lags between 1 and 15. As this Figure makes clear, the
autocorrelation functions of hours worked always exceed those of the consumption to
output ratio. Additionally, these ACFs decay at a slower rate. We also perform an
Augmented Dickey Fuller (ADF) test for a unit root. For each variable, we regress the
growth rate on a constant, lagged level and four lags of the first difference. The ADF
test statistic is equal to �2.74 for hours and �2.93 for the consumption to output ratio.
This hypothesis cannot be rejected at the 5% level for hours, whereas it is rejected at
the 5% level for the consumption to output ratio. These findings suggests that the
consumption to output ratio is less persistent than hours.
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Fig. 9. Coverage Rates for Percentile-Based Confidence Intervals
Note. Two-Step identification. The SVAR model in the first step includes labour productivity
growth and the log of consumption to output ratio. In the second step, the dynamic
responses of hours are obtained from (3), (4), (5) and (6).
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The estimated IRFs of hours after a technological improvement are reported in
Figure 11. The upper panel shows the well known conflicting results of the effect of a
technology shock on hours worked between LSVAR and DSVAR specifications.9 The
LSVAR displays a positive hump-shaped response whereas DSVAR implies a decrease in
hours. We obtained (from bootstrap techniques) wide 95% confidence intervals in the
LSVAR specification, such that the estimated IRFs of hours are not significantly
different from zero at any horizon. For the DSVAR specification, the impact response is
more precisely estimated (not significant at 95% but significant at 90%) but as the
horizon increases the negative response is not significantly different from zero. In these
SVARs, including the consumption to output ratio does not help to reconcile the two
specifications.

In contrast, the two-step approach delivers the same picture whether hours are
specified in levels, first differences, including a lagged term in the regression or
specified in a VAR model (see the bottom panel of Figure 11). In the very short run,
the IRFs of hours are very similar and when the horizon increases the positive response
is a bit more pronounced when hours are in levels rather than in first differences, with
lagged hours or included in a VAR model. On impact, hours worked decrease but after
five periods the response becomes persistently positive and hump-shaped. The bottom
panel of Figure 11 reports also the 95% confidence interval obtained from bootstrap
techniques. As previously mentioned, these confidence intervals account for the
generated regressor problem and the serial correlation of the errors term in (3), (4), (5) and
(6). The confidence interval is wide when we consider hours in level. Consequently,
these responses cannot be used to discriminate among business cycle theories and for
model building. When hours are projected in first difference, the dynamic response are
more precisely estimated and hours significantly drop on impact. However, our
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Fig. 10. ACFs of Hours and Consumption to Output Ratio
Note. NFB Sector data and Sample Period 1948Q1-2003Q4. All variables in logs.

9 Christiano et al. (2004) also obtain conflicting results in larger SVARs.
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Fig. 11. IRFs of Hours Worked to a Technological Improvement
Note. LSVAR, DSVAR and two-step identification. The LSVAR model includes labour pro-
ductivity growth, the log of hours and the log of consumption to output ratio. The DSVAR
model includes labour productivity growth, the log of hours in first difference and the log
of consumption to output ratio. For the two-step procedure, the SVAR model in the first
step includes labour productivity growth and the log of consumption to output ratio. In the
second step, the dynamic responses of hours are obtained from (3), (4), (5) and (6). Top
panel, IRFs computed from LSVAR and DSVAR specifications. Bottom panel, IRFs com-
puted from two-step procedure (3), (4), (5) and (6). Non Farm Business Sector data and
sample period 1948Q1-2003Q4. The selected horizon for IRFs is 13. 95% bootstrapped
confidence interval shown.
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previous simulations suggest that the coverage rate associated with this approach is
inadequate, especially in the very short run. Consequently, we should use this finding
with caution. The case of lagged hours in (5) delivers almost similar confidence
intervals, i.e. the response of hours on impact differs significantly from zero. Our
simulation experiments have indicated that this approach delivers accurate confidence
intervals (the coverage rate is close to 95%). When the horizon increases, the IRFs are
less precisely estimated. The VAR specification in the second step provides similar
results, but we can not reject that the response is zero on impact at 95%. Notice that
when we consider 90% confidence intervals both the AR and VAR specification predicts
a significant decrease of hours in the short run. Finally, we report the dynamic
responses of the LSAVR, DSVAR and two-step VAR in the last part of Figure 11. This
Figure shows that our two step–step procedure partially solves the conflicting results
about the right specification of hours in SVARs. Notably, our findings are in line with
those of previous empirical papers which obtain that hours fall significantly on impact
(Galı́, 1999; Basu et al., 2006; Francis and Ramey, 2008) but display a hump-shaped
positive response during the subsequent periods (Vigfusson, 2004).

4.2. The Dynamic Responses of Inflation and Nominal Interest Rate

We now illustrate the potential of our two-step approach by looking at the dynamic
responses of the inflation rate and the short-term nominal interest rate after a
technology shock. These two variables are known to display a high level of serial
correlation and some empirical studies have found that they can be characterised by
an integrated process of order one.10 Therefore, we use these two variables to
illustrate the consequence of the specification choice (level versus first difference) in
SVARs.

We first investigate the response of the inflation rate. The measure of inflation is
obtained using the growth rate of the GDP deflator. The estimated IRFs of the inflation
rate after a technological improvement are reported in Figure 12. As previously, the
upper panel reports the estimated dynamic responses obtained from LSAVR and
DSVAR specifications. The LSVAR model includes labour productivity growth, the
inflation rate and the log of consumption to output ratio. The DSVAR model includes
the same variables but inflation is considered in first differences. As this Figure shows,
the specification of the inflation rate matters. In the DSVAR specification, the rate of
inflation responds very little to identified technology shocks. Conversely, the response
of inflation in the LSVAR model is persistently negative.

The two-step approach provides similar IRFs according to the specification of the
inflation rate in the second step (see the bottom panel of Figure 12). With the level
specification, the dynamic responses are more pronounced but the four specifications

10 The empirical results offered in the literature are mixed, depending on the the econometric technique
used. Recent contributions on trend inflation specifies actual inflation as a sum of a random walk and a
stationary noise (Stock and Watson, 2007; Cogley et al., 2008). In Juselius (2006), cointegrated VAR models
include the inflation rate and the nominal interest rate in first difference. In the context of permanent
technology shocks, Galı́ (1999) considers a DSVAR model with the inflation rate in first difference and a
cointegration between the nominal interest rate and the inflation rate. See also King et al. (1991) for further
evidence of the non-stationarity of these two nominal variables in cointegrated VAR models.
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Fig. 12. IRFs of the Inflation Rate to a Technological Improvement
Note. LSVAR, DSVAR and two-step identification. The LSVAR model includes labour pro-
ductivity growth, the inflation rate and the log of consumption to output ratio. The DSVAR
model includes labour productivity growth, the inflation rate in first difference and the log
of the consumption to output ratio. For the two-step procedure, the SVAR model in the
first step includes labour productivity growth and the log of consumption to output ratio.
In the second step, the dynamic responses of the inflation rate are obtained from (3), (4),
(5) and (6) after replacement of hours by the inflation rate. Top panel, IRFs computed
from LSVAR and DSVAR specifications. Bottom panel, IRFs computed from two-step pro-
cedure (3), (4), (5) and (6). Non Farm Business Sector data and sample period 1948Q1–
2003Q4. The selected horizon for IRFs is 13. 95% bootstrapped confidence interval shown.
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of the inflation rate in the second step provide the same shape for the responses. In all
cases, the inflation rate decreases on impact and steadily goes back to its long-run value.
The bottom panel of Figure 12 also reports the 95% confidence interval. Contrary to
hours worked, the confidence interval appears less sensitive to the specification of
inflation in the second step. In each regression, the inflation rate significantly
decreases in the short run. Note that the effect of a technology improvement has no
long-lasting effect on inflation since the response is almost zero after two years. Our
findings are again in line with Basu et al. (2006). They also complement their results by
providing dynamic responses at quarterly frequency.

We now investigate the effect of technology shocks on the short-run nominal
interest rate, measured with Federal Fund rate. This rate is available for a shorter
sample 1954Q1–2003Q4. Since much of business cycle literature is concerned with
post-1959 data, we follow Christiano et al. (2004) and therefore consider a second
sample period given by 1959Q1–2003Q4. The dynamic responses of the nominal
interest rate after a technological improvement are reported in Figure 13. In the
upper panel, we report the IRFs obtained from LSVAR and DSVAR specifications.
The LSVAR model now includes labour productivity growth, the nominal interest rate
and the log of consumption to output ratio. The DSVAR model includes the same
variables but the nominal interest rate is now specified in first difference. We obtain
that the specification of the nominal interest rate modify the dynamic responses of
this variable. In particular, the DSVAR specification implies a permanent long-run
decrease, whereas it steadily goes back to its long-run value in the LSVAR specifica-
tion.

With the two-step approach, the shape of the IRFs is not altered by the specification
of the nominal interest rate in the second step (see the bottom panel of Figure 13).
However, the dynamic responses with the level specification are more pronounced than
the ones obtained from the three other specifications (as for the rate of inflation). In
the bottom panel of Figure 13, we also report the 95% confidence interval. For the four
specifications in the second step, we obtain a persistent and significant decrease in the
Fed Fund rate. These empirical results with quarterly frequency data are again similar
to those of Basu et al. (2006).

5. Conclusion

This article proposes a simple two-step approach to estimating a technology shock and
the response of aggregates variables that follows a technology improvement consis-
tently. In a first step, a SVAR model with labour productivity growth and the
consumption to output ratio allows us to estimate the technology shock. In a second
step, the response of hours is obtained by a simple regression of hours on the estimated
technology shock. When applied to artificial data generated by business cycle models
(RBC and sticky prices), our approach replicates the model IRFs more closely.
Importantly, the results are invariant to the specification of hours in the second step.
The two-step approach, when applied to actual data, predicts a short-run decrease of
hours after a technology improvement, as well as a delayed and hump-shaped positive
response. In addition, the rate of inflation and the nominal interest rate display a
significant decrease after a positive technology shock.
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Fig. 13. IRFs of the Nominal Interest Rate to a Technological Improvement
Note. LSVAR, DSVAR and two-step identification. The LSVAR model includes labour
productivity growth, the nominal interest rate and the log of consumption to output ratio.
The DSVAR model includes labour productivity growth, the nominal interest rate in first
difference and the log of the consumption to output ratio. For the two-step procedure,
the SVAR model in the first step includes labour productivity growth and the log of
consumption to output ratio. In the second step, the dynamic responses of the nominal
interest rate are obtained from (3), (4), (5) and (6) after replacement of hours by the
nominal interest rate. Top panel, IRFs computed from LSVAR and DSVAR specifications.
Bottom panel, IRFs computed from two-step procedure (3), (4), (5) and (6). Non Farm
Business Sector data and sample period 1959Q1–2003Q4. The selected horizon for IRFs is
13. 95% bootstrapped confidence interval shown.
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Appendix

A. Proof of Proposition 1

The consistency of the second step estimators depends on the consistency of the autoregressive
coefficients in the first step. The consistency of the the autoregressive coefficients ensures the
consistency of the estimated technology shocks. Two cases are of interest:

(i ) the data are generated by a finite VAR or
(ii ) the data are generated by an infinite VAR.

When the data are generated by a finite VAR, the VAR estimators in the first step are consistent
for a number of lags included in the VAR greater or equal to the true ones. For data generated by
an infinite VAR, Lewis and Reinsel (1985) show that a finite order k fitted VAR to a realisation
T provides consistency and asymptotic normality of the estimated autoregressive coefficients
assuming that k ! 1 at some rate as T ! 1. In particular, they show the consistency for k
function of T such that k2/T ! 0 as k, T ! 1. Now, consider the first specification in the second
step. The convergence in probability is established by standard arguments. First, the estimator
â21;k is centred on the true value by direct straightforward implications of the orthogonality of the
permanent and transitory shocks and by the fact that those shocks are serially uncorrelated.
Second, it is easy to show that the variance of the OLS estimator converges to zero. The
convergence in probability follows. Let us now examine the second and the third specifications.
One can always rewrite the infinite moving average representation as follows:

ht � ~qht�1 ¼ a1ðLÞ � ~qa1ðLÞL½ �gT
t þ a2;l ðLÞ � ~qa2;l ðLÞL

� �
gNT

l ;t

¼ h1ðLÞgT
t þ h2ðLÞgNT

t :

The structural moving average coefficients corresponding to the impact of the technology shocks
on hours can thus be retrieved by the following relationship a1;k ¼

Pk
j¼0 ~qjh1;k�j . First, consider

the AR(1) specification for our second step. We can easily show for this case that the OLS
estimators of ĥ1;k converges in probability to h1,k. For a given estimator q̂, a consistent estimator
â1;k is thus guaranteed by the consistency of ĥ1;k . In fact, we only need to suppose that the OLS
estimator of ~q is bounded in probability, namely

ffiffiffiffi
T
p
ðq̂ � ~qÞ ¼ Opð1Þ for some ~q 2 R; see An-

drews and Mohanan (1992) for a similar argument in a different context. Finally for the case with
the hours in differences, this corresponds to fix ~q to 1. The OLS estimator of h1,k is

ĥ1;k ¼
PT

t¼qþ1 gT
t�kDhtPT

t¼qþ1 gT
t�k

� �2 :

The estimator â1;k is given by the cumulative sum of the ĥ1;k , namely:

â1;k ¼
PT

t¼qþ1 gT
t ht � gT

t ht�1 þ gT
t�1ht � gT

t�1ht�1 þ � � � þ gT
t�kht � gT

t�kht�1

� �
PT

t¼qþ1 gT
t�k

� �2 :

By the stationarity hypothesis for ht, ð1=T Þ
P

gT
t�kht �!

p
ck for all k not depending on t where ck

is the covariance function between gT
t and ht. Moreover, ð1=T Þ

P
gT

t ht�1�!
p

0 and ð1=T ÞPT
t¼qþ1ðgT

t�kÞ
2�!

p
1, the consistency result follows.

B. A Business Cycle Model with Non-Stationary Hours

The model includes a random walk in productivity (Zt) and non-stationary hours, due to a
permanent preference shock (Bt). The intertemporal expected utility function of the repres-
entative household is given by

2010] 1315I D E N T I F I C A T I O N O F T E C H N O L O G Y S H O C K S

� The Author(s). Journal compilation � Royal Economic Society 2009



Et

X1
i¼0

bi ½logðCtþiÞ � vðHtþi=BtþiÞ�;

where v > 0, b 2 (0, 1) denotes the discount factor and Et is the expectation operator
conditional on the information set available as of time t. Ct is consumption at t and Ht

represents the household’s labour supply. The labour supply is subjected to a preference shock
Bt, that follows the stochastic process D log (Bt) ¼ rb eb,t, where rb > 0, and eb,t is iid with zero
mean and unit variance. The representative firm uses capital Kt and labour Ht to produce the
homogeneous final good Yt. The technology is represented by the following constant returns-
to-scale Cobb-Douglas production function Yt ¼ K a

t ðZtHtÞ1�a, where a 2 (0,1). Zt is assumed to
follow an exogenous process of the form D log (Zt) ¼ rzez,t, where ez,t is iid with zero mean and
unit variance. The capital stock evolves according to the law of motion Ktþ1 ¼ (1 � d)Kt þ It,
where d 2 (0,1) is the constant depreciation rate. Finally, the final good can be either
consumed or invested Yt ¼ Ct þ It. In this model, the labour supply shock Bt induces a
stochastic trend into hours as well as into output, consumption and capital. In addition, Zt has
a long-run impact on Yt, Ct, Kt, and It. Accordingly, to obtain a stationary equilibrium, these
variables must be detrended as �ht ¼ Ht=Bt , �yt ¼ Yt=ðZtBtÞ, �ct ¼ Ct=ðZtBtÞ, �ıt ¼ It=ðZtBtÞ and
�ktþ1 ¼ Ktþ1=ðZtBtÞ. With these transformations, the approximate solution of the model is
computed from a log-linearisation of the stationary equilibrium conditions around this
deterministic steady state. It is important to notice that in our model, Bt has a long-run impact
on Ht, as well as on Yt and the above trending variables. At the same time, Zt alone can have a
long-run effect on labour productivity. Hence, this model is perfectly compatible with the
identification assumptions used by Galı́ (1999).

The log-linearisation of equilibrium conditions around the deterministic steady state yields

�̂ktþ1 ¼ ð1� dÞð �̂kt � rzez;t � rbeb;tÞ þ
y

k
�̂yt �

c

k
�̂ct ð7Þ

�̂ht ¼ �̂yt � �̂ct ð8Þ

�̂yt ¼ að �̂kt � rzez;t � rbeb;tÞ þ ð1� aÞ �̂ht ð9Þ

Et �̂ctþ1 ¼ �̂ct þ ab
y

k
Etð�̂ytþ1 � �̂ktþ1 � rzez;tþ1 � rbeb;tþ1Þ ð10Þ

where y/k ¼ [1 � b(1 � d)]/(ab) and c/k ¼ y/k � d. After substitution of (8) into (9), one gets

�̂yt � �̂kt ¼ �rzez;t � rbeb;t �
1� a

a
�̂ct :

Now, using the above expression, (7) and (10) rewrite

Et �̂ctþ1 ¼ u�̂ct with u ¼ a
1� bð1� aÞð1� dÞ 2 ð0; 1Þ ð11Þ

�̂ktþ1 ¼ m1
�̂kt � m1ðrzez;t þ rbeb;tÞ � m2�̂ct with m1 ¼

1

bu
> 1 and m2 ¼

1� b 1� dð1� a2Þ½ �
a2b

: ð12Þ

As m1 > 1, (12) must be solved forward

�̂kt ¼ rzez;t þ rbeb;t þ
m2

m1

� �
lim

T!1
Et

XT

i¼0

1

m1

� �i

�̂ctþi þ lim
T!1

Et
1

m1

� �T

�̂ktþT :

Excluding explosive paths, i.e. limT!1 Etð1=m1ÞT �̂ktþT ¼ 0, and using (11), one gets the decision
rule on consumption:
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�̂ct ¼
m1 � u

m2

� �
�̂kt � ðrzez;t þ rbeb;tÞ
h i

: ð13Þ

After substituting (13) into (12), the dynamics of capital are given by:

�̂ktþ1 ¼ u �̂kt � ðrzez;t þ rbeb;tÞ
h i

: ð14Þ

The persistence properties of the model are thus governed by the parameter u 2 (0,1). The
decision rules of the other (deflated) variables are similar to (13). Using (13) and (14), the
consumption to output ratio is given by

logðCtÞ � logðYtÞ ¼ mcy �
ðrzez;t þ rbeb;tÞ

1� uL

� �

where mcy ¼ a(m1 � u � m2)/m2. The latter expression shows that the consumption to output ratio
follows exactly the same stochastic process (an autoregressive process of order one) as the
deflated capital log [Kt/(Zt�1Bt�1)] in (14). The consumption to output ratio is thus an exact
representation of the relevant state variable of the model. Notice than both shocks have a
transitory effect on the ratio. Hours do not display a similar pattern. Using (8) and the above
expression, the growth rate of hours is given by:

ð1� uLÞD logðHtÞ ¼ mcyrzDez;t þ ð1þ mcyÞ 1�
uþ mcy

1þ mcy

� �
L

� �
rbeb;t

where D logðHtÞ ¼ D �̂ht þ eb;t . The technology shock has no long-run effect on hours, whereas
the preference shock increases hours permanently. More importantly, hours follow an
ARMA(1,1) process, with an unit root in the moving average representation of the technology
shock. It follows that finite autoregressions with long-run restrictions may be problematic in
properly uncovering the true dynamics of hours.
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